Recovery and Concentration of Precious Metals from Strong Acidic Wastewater

Total Page:16

File Type:pdf, Size:1020Kb

Recovery and Concentration of Precious Metals from Strong Acidic Wastewater Materials Transactions, Vol. 52, No. 7 (2011) pp. 1462 to 1470 #2011 The Japan Institute of Metals Recovery and Concentration of Precious Metals from Strong Acidic Wastewater Hisayoshi Umeda1;2;*, Atsushi Sasaki2, Kunihiko Takahashi2, Kazutoshi Haga1, Yasushi Takasaki3 and Atsushi Shibayama1 1Faculty of Engineering and Resource Science, Akita University, Akita 010-8502, Japan 2Yokohama Metal Co., Ltd., Sagamihara 252-0132, Japan 3International Center for Research and Education on Mineral and Energy Resources, Akita University, Akita 010-8502, Japan Generally, trace precious metals remaining in wastewaters generated from the refining process of precious metals are not recovered, due to a relatively high processing cost as well as various technical problems. Recovery of precious metals from wastewaters is very important for the þ conservation of resources and the protection of environment. However, wastewaters containing a large amount of ammonium ion (NH4 ) cannot be treated by general neutralization operation, due to formation of metal ammine complexes with increasing pH. In this study, the possibility of recovering precious metals and other valuable metals from wastewaters by various traditional metallurgical processes such as cementation, neutralization and reduction, were investigated. A recovery of 99% Copper (Cu), 96% Palladium (Pd), and 85% Gold (Au) by cementation using Iron (Fe) powder, and 99.6% Cu, 99.5% Pd by cementation using Aluminum (Al) powder was achieved. However, complete recovery of all valuable metals by a one-step cementation process was not possible. On the other hand, precious metals and other valuable metals including Copper and Indium, etc., were precipitated by combining neutralization, deammoniation and reduction processes. Results showed that the recovery of Platinum (Pt) in the reduction process was improved by adding deammoniation step. Finally, precious metals are concentrated in the crude copper metal by fusion process. The recovery of Au, Ag, Pd was more than 91%, and that of Pt was about 71%. [doi:10.2320/matertrans.M2010432] (Received December 24, 2010; Accepted April 5, 2011; Published May 25, 2011) Keywords: wastewater, precious metals, cementation, neutralization, deammoniation, reduction, fusion 1. Introduction However, such wastewaters contain precious metals not recovered from precipitation methods with concentrations Precious metals such as Gold (Au), Silver (Ag), Platinum around 10 mg/L, and other valuable metals with concen- (Pt) and Palladium (Pd), etc., are utilized in various trations ranging from several mg/L to more than 10,000 manufacturing fields including jewellery, electronics and mg/L. The recovery of precious metals and other valuable dental industries.1,2) In recent years, especially in the metals in the wastewater by general neutralization operation emerging countries, the demand for precious metals has is usually difficult due to the formation of metal ammine increased with the significant growth of economy. However, complex with increasing pH. it is difficult to economically or technologically acquire these The objective of this work was to recover the precious precious metals due to the small amount of supply by specific metals and other valuable metals that remain in such producing countries in unevenly distributed production wastewaters containing a large amount of ammonium ion 3–5) þ areas. There is a growing anxiety about securing a stable (NH4 ) by using the traditional hydrometallurgical processes supply, and therefore, the development of recycling tech- such as cementation, neutralization and reduction. nologies is very important to utilize resources efficiently. Examples of scrap wastes with high precious metal contents 2. Experimental that can be recovered are shown in Fig. 1. Several recovery techniques including; leaching,6,7) ce- 2.1 Wastewater sample mentation,8,9) precipitation,10) solvent extraction11–14) and The strongly acidic (pH 0.15) wastewater sample used in biological methods15–17) for the precious metals from scrap this experiment was collected from the recycling process of materials have been developed over the years. Generally, precious metals such as Au, Ag, Pt and Pd, etc. Quantitative scrap materials containing precious metals with relatively analysis of the wastewater is given in Table 1. The concen- high concentrations over 1% are treated by precipitation tration of Au, Ag and Pt in this wastewater varied from 10 to methods. A schematic flowsheet for the precipitation meth- 20 mg/L. On the other hand, the concentration of Pd in this od18) to recover Au, Pt, Pd precious metals from scrap sample was higher than that of usual wastewater. The materials is shown in Fig. 2. Various types of both alkali and wastewater also contained many other metals such as nickel acidic solutions are used throughout precious metal recovery (Ni), lead (Pb), tin (Sn), bismuth (Bi), and so on. In the study process which eventually report as process wastewater, of precipitation method (‘‘Cementation’’ and ‘‘Neutraliza- strongly acidic and contain a large amount of ammonium tion’’), we focused on five metals, namely; gold (Au), þ ion (NH4 ). platinum (Pt), palladium (Pd), copper (Cu), and indium (In). Cu was considered due to its high concentration (12,293 *Graduate Student, Akita University. Corresponding author, E-mail: mg/L) in this sample, and the other four elements are [email protected] expensive metals that are found only in rare amount. Recovery and Concentration of Precious Metals from Strong Acidic Wastewater 1463 Scrap Materials Precipitate dissolution Aqua regia (AgCl) Concentration/ HCl Denitrification Au-Recovery Crude-Au Na SO (Reduction) 2 3 Pt-Recovery H2O2 Crude-Pt (Precipitation) (1) Discarded electronic parts (CPU, etc.) (K2PtCl6) KCl Pd-Recovery NH3 Crude-Pd (Precipitation) (PdCl2(NH3)2) HCl Wastewater Fig. 2 Flowsheet for recovering Au-Pt-Pd by means of precipitation. Table 1 The composition of waste water. (1) Elements (mg/L) Au Pt Pd Ag Cu Fe Pb Bi Ni Sn Cr Al Zn In (2) Used Jewellery (Ring, Chain) 11.3 20.9 183.1 10.9 12,293 244 111 277 642 122 44 166 4,375 1,008 (2) Others (mg/L) À À þ Cl NO3 NH4 8:3 Â 104 9:5 Â 104 4:8 Â 104 times between 10 to 360 min. The samples were properly diluted, and each metallic ion in solution was analyzed by using an ICP-AES equipment. 2.2.2 Neutralization For evaluation of neutralization effect, 100 mL of waste- water was put in a 300 mL beaker and was stirred using a magnetic stirrer, while solution pH was adjusted using a 5 mol/L sodium hydroxide (NaOH). After adjusting pH to (3) Used dental alloy target pH (pH 2–12), the solution was stirred for 15 min, after which stirring was stopped and left overnight for precipita- Fig. 1 Example of scrap materials containing precious metals. tion to occur. The treated solution was filtered under reduced pressure by using a 5C filter paper, and then the filtrate was properly diluted and analyzed by using an ICP-AES equip- 2.2 Preliminary test — Precipitation method for metal- ment for evaluation of metal ion concentrations. lic ions in wastewater 2.2.3 Reduction of filtrated water generated from neu- 2.2.1 Cementation tralization Separation of dissolved metals in the wastewater by In general, neutralization process is utilized to recover cementation was performed by the addition of iron (Fe), heavy metals such as copper, etc. Therefore, the reduction aluminum (Al), and zinc (Zn) metallic powders into 250 mL process was investigated to recover valuable metals such as of wastewater (in a 300 mL beaker) and stirred continuously precious metals remaining in the filtrated water from with a magnetic stirrer. Mole ratio of metallic powder and Cu neutralization process. (metallic powder/Cu in wastewater) was 1 and 2, so each Solution sample for reduction test was obtained as follows; metallic powder was added at 0.2 and 0.4 mol/L respectively. first, deammonization for the removal of ammonium ions þ 5 mL of samples were drawn from the solution at different (NH4 ) in the filtrated water (non-deammoniated water) 1464 H. Umeda et al. Table 2 The composition of samples obtained for reduction experiments. Figure 3 shows recovery behavior of the different ele- Precious metals concentration (mg/L) ments. Complete recovery of Cu was achieved within 3–6 h Reduction conditions by using Fe and Al powders. Maximum recovery of Au was Au Pt Pd obtained in less than 30 min and did not change up to 6 h. Deammoniation 4.2 15.3 136.8 Also, the recovery of Pd reached maximum (>90%) within Non-deammoniation 5.8 12.9 131.5 1–3 h by using Fe and Al powders and remained constant up to 6 h. Pt recovery was only about 20% during cementation time of 6 h. from neutralization at pH 6 was performed with the addition In general, it is difficult to recover indium by cementation of NaOH and heating. This process is usually referred to as method because standard electrode potential of indium is the ‘‘Ammonia stripping method’’.19) To evaluate efficiency lower than that of other elements such as precious metals. of the reduction process, tests were performed both with and However, indium was recovered by using Zn powder, unlike without deammoniation process and results obtained are Fe and Al powders. It was also found that the pH of solution given in Table 2. increased during the cementation tests, depending upon 100 mL of wastewater sample (deammoniated or non- the type of the cementation agent being used. The initial pH deammoniated) was put into a 300 mL beaker and was stirred of solution was 0.15. However, the pH of solutions at the by using a magnetic stirrer. 3 mL of sodium borohydride end of cementation with Fe, Al and Zn increased to 1.2, 3.5 (2.6 mol/L-NaBH4 solution) was added while solution pH and 5.6, respectively.
Recommended publications
  • GUIDE to the PRECIOUS METALS MARKING ACT and REGULATIONS Cat
    GUIDE TO THE PRECIOUS METALS MARKING ACT AND REGULATIONS Cat. No. Iu54-9/2006 ISBN 0-662-49351-6 TABLE OF CONTENTS 1. INTRODUCTION 1 2. DEFINITIONS 2 3. UNAUTHORIZED MARKINGS 3 4. MARKING 4 5. MARKS (REGULATIONS) 6 6. ARTICLES OTHER THAN PLATED ARTICLES 7 7. PLATED ARTICLES 8 8. PLATED POCKET WATCH CASES 10 9. PLATED BRACELET WATCH CASES 12 10. SPECTACLE FRAMES 13 11. PLATED FLATWARE 14 12. PLATED HOLLOW WARE 16 13. TOLERANCES 18 14. EXAMPLES OF MARKINGS 19 15. PARTS EXEMPT FROM ASSAY 20 16. HOW TO CONTACT THE COMPETITION BUREAU 21 1 INTRODUCTION This guide provides an outline to the quality and marking requirements of precious metals articles subject to the Precious Metals Marking Act and the Precious Metals Marking Regulations (hereafter called the Act and Regulations). This document should be read in conjunction with the Act and Regulations which will govern. 1.1 Objectives of the Legislation The Act and Regulations seek: • to ensure that the information provided to consumers on the quality of a precious metal article is not misleading or deceptive; and • to provide for the uniform description and quality marking of precious metal articles, including jewellery, hollow ware, watches, spectacle frames, flatware, etc. in the Canadian marketplace thereby assisting consumers with their purchasing decisions. 1.2 Prohibitions Section 10 of the Act The Act prohibits: • a dealer from applying a mark to a plated article guaranteeing the durability or wear of the precious metal plating for a period of time. • a dealer from selling, importing into Canada or advertising any precious metal article in a manner which is false or misleading as to the precious metal content.
    [Show full text]
  • Hallmarking Guidance Notes
    HALLMARKING GUIDANCE NOTES PRACTICAL GUIDANCE IN RELATION TO THE HALLMARKING ACT 1973 INFORMATION FROM THE ASSAY OFFICES OF GREAT BRITAIN London Edinburgh Birmingham Sheffield Guaranteeing The Quality Of Precious Metals Since 1327 HALLMARKING GUIDANCE NOTES HALLMARKING GUIDANCE NOTES THE PURPOSE OF THESE HALLMARKING PRECIOUS METALS GUIDANCE NOTES WHY ARE PRECIOUS METAL ARTICLES The purpose of these notes is to give practical guidance in relation to the HALLMARKED? Hallmarking Act 1973 and subsequent amendments. No reliance must be placed on the document for a legal interpretation. The UK Assay Offices are happy to Silver, palladium, gold and platinum are rarely used in their purest form but answer questions arising from these guidance notes and on any articles or other instead they are normally alloyed with lesser metals in order to achieve a issues not specifically mentioned. desired strength, durability, colour etc. It is not possible to detect by sight or by touch the gold, silver, platinum or palladium content of an item. It is therefore a legal requirement to hallmark CONTENTS OF THIS BOOKLET: all articles consisting of silver, palladium, gold or platinum (subject to certain exemptions) if they are to be described as such. Contents Page The main offence under the UK Hallmarking Act 1973 is based on description. It is Hallmarking precious metals 3 - 17 an offence for any person in the course of trade or business to: Guidance on describing precious metals 18 - 19 • Describe an un-hallmarked article as being wholly or partly made of silver, palladium, gold or platinum. Contact details for UK Assay Offices Back Page • Supply or offer to supply un-hallmarked articles to which such a description is applied.
    [Show full text]
  • Metals and Metal Products Tariff Schedules of the United States
    251 SCHEDULE 6. - METALS AND METAL PRODUCTS TARIFF SCHEDULES OF THE UNITED STATES SCHEDULE 6. - METALS AND METAL PRODUCTS 252 Part 1 - Metal-Bearing Ores and Other Metal-Bearing Schedule 6 headnotes: Materials 1, This schedule does not cover — Part 2 Metals, Their Alloys, and Their Basic Shapes and Forms (II chemical elements (except thorium and uranium) and isotopes which are usefully radioactive (see A. Precious Metals part I3B of schedule 4); B. Iron or Steel (II) the alkali metals. I.e., cesium, lithium, potas­ C. Copper sium, rubidium, and sodium (see part 2A of sched­ D. Aluminum ule 4); or E. Nickel (lii) certain articles and parts thereof, of metal, F. Tin provided for in schedule 7 and elsewhere. G. Lead 2. For the purposes of the tariff schedules, unless the H. Zinc context requires otherwise — J. Beryllium, Columbium, Germanium, Hafnium, (a) the term "precious metal" embraces gold, silver, Indium, Magnesium, Molybdenum, Rhenium, platinum and other metals of the platinum group (iridium, Tantalum, Titanium, Tungsten, Uranium, osmium, palladium, rhodium, and ruthenium), and precious- and Zirconium metaI a Iloys; K, Other Base Metals (b) the term "base metal" embraces aluminum, antimony, arsenic, barium, beryllium, bismuth, boron, cadmium, calcium, chromium, cobalt, columbium, copper, gallium, germanium, Part 3 Metal Products hafnium, indium, iron, lead, magnesium, manganese, mercury, A. Metallic Containers molybdenum, nickel, rhenium, the rare-earth metals (Including B. Wire Cordage; Wire Screen, Netting and scandium and yttrium), selenium, silicon, strontium, tantalum, Fencing; Bale Ties tellurium, thallium, thorium, tin, titanium, tungsten, urani­ C. Metal Leaf and FoU; Metallics um, vanadium, zinc, and zirconium, and base-metal alloys; D, Nails, Screws, Bolts, and Other Fasteners; (c) the term "meta I" embraces precious metals, base Locks, Builders' Hardware; Furniture, metals, and their alloys; and Luggage, and Saddlery Hardware (d) in determining which of two or more equally specific provisions for articles "of iron or steel", "of copper", E.
    [Show full text]
  • Precious-Metal-Base Advanced Materials T
    Precious-metal-base advanced materials T. Nowicki, C. Carbonnaux To cite this version: T. Nowicki, C. Carbonnaux. Precious-metal-base advanced materials. Journal de Physique IV Pro- ceedings, EDP Sciences, 1993, 03 (C7), pp.C7-509-C7-518. 10.1051/jp4:1993782. jpa-00252202 HAL Id: jpa-00252202 https://hal.archives-ouvertes.fr/jpa-00252202 Submitted on 1 Jan 1993 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. JOURNAL DE PHYSIQUE IV Colloque C7, supplCment au Journal de Physique 111, Volume 3, novembre 1993 Precious-metal-base advanced materials T. NOWCKI and C. CARBONNAUX CLAL, Centre de Recherches, 8 rue Portefoin, 75003 Paris, France ABSTRACT The precious metals are basically known for their applications in jewelry, coins, bullions and catalysis. The reality is thas prcdous - 3tals constitute also the base of several advanced materials used in the industry in hundreds of metric tom. Since forties, platinum alloys have been used as structural materials for quipments in the glass industry. The essential reason for this is the excellent resistance of platinum doys to oxidation and elcmolytical corrosion in molten glasses at temperatures as high as l2fX-LWC.
    [Show full text]
  • Colloidal Goldgold
    ColloidalColloidal GoldGold Markus Niederberger Email: [email protected] 22.11.2006 OutlineOutline 1) Definition 2) History 3) Synthesis 4) Chemical and Physical Properties 5) Applications 6) References DefinitionDefinition Colloidal gold: Stable suspension of sub-micrometer- sized particles of gold in a liquid ShortShort HistoryHistory ofof GoldGold 4000 B.C.: A culture in Eastern Europe begins to use gold to fashion decorative objects 2500 B.C.: Gold jewelry was found in the Tomb of Djer, king of the First Egyptian Dynasty 1200 B.C.: The Egyptians master the art of beating gold into leaf as well as alloying it with other metals for hardness and color variations 1091 B.C.: Little squares of gold are used in China as a form of money 300 B.C.: Greeks and Jews of ancient Alexandria start to practice Alchemy, the quest of turning base metals into gold 200 B.C.: The Romans gain access to the gold mining region of Spain 50 B.C.: The Romans begin issuing a gold coin called the Aureus 1284 A.D.: Venice introduces the gold Ducat, which soon becomes the most popular coin in the world Source: National Mining Association, Washington HistoryHistory ofof GoldGold ColloidsColloids andand theirtheir ApplicationApplication History: Gold in Medicine Humankind has linked the lustre of gold with the warm, life-giving light of the sun. In cultures, which deified the sun, gold represented its earthly form. The earliest records of the use of gold for medicinal and healing purposes come from Alexandria, Egypt. Over 5000 years ago the Egyptians ingested gold for mental and bodily purification.
    [Show full text]
  • Gold Hallmark Makers Mark Guide
    Gold Hallmark Makers Mark Guide Self-elected or hypersthenic, Newton never backcrosses any reflexiveness! Snoopy and intercessory Anselm pave some cruzadoes so civically! Stanfield remains denominationalism after Octavius biked sideling or infuriating any luteinization. MJSA Guide to Stamping and Marking Regulations. The photo shows the correct locations of the hallmarkassaymakers mark gold standardcommon control manufacture and karat mark jar can also allure the location of. Gold hallmarks differ little from jail on sterling mainly in any addition of marks. Instead they stamped the silver solution with a maker's mark. Encyclopedia of Silver Marks Hallmarks & Makers 925-1000. Interpreting The English Hallmarks On watch Antique Jewelry. Gold hallmarks Etsy. Hallmark Wikipedia. Steve madar at is well as this book donors are serious scam for itself by either looking to help with over all that it could have. American furniture Silver Pewter 3500 Marks Makers Dates Hallmarks Scarce. 13 Hallmarks Dating Your Peterson with Metal-Mount. It is because legal requirement to missing all articles consisting of our silver. Images of my respective SABS certification Hallmarks in range between 194 1973. Researching British Hallmarks Antique Jewelry Investor. Assaying and hallmarking centre's marknumber Only licensed laboratories of BIS can across the purity of gold One actually check approve the hallmarking centre is licensed by BIS or not illuminate their website Click level to discretion the logo of the hallmarking centre on your jewellery. Gold jewellery makers of established authority regularly use its variety of tools to identify their product and craftwork better later as stamps and hallmarks. Silver bright gold jewelry markings are commonly known as purity marks maker's marks symbols or date letters This jewelry hallmarks guide.
    [Show full text]
  • A History of Iridium OVERCOMING the DIFFICULTIES of MELTING and FABRICATION by L
    A History of Iridium OVERCOMING THE DIFFICULTIES OF MELTING AND FABRICATION By L. B. Hunt The Johnson Matthey Group The use in unmanned space craft of iridium to encapsulate the radio- isotope thermoelectric generators, where temperatures of up to 20OO0C have to be withstood over several years of operation, with possible impact velocities of 90 metres per second, has focused greater attention on the remarkable properties of this member of the platinum group of metals. But these same properties of very high melting point and great mechanical strength have been the cause of difficulties in its melting and fabrication over a long period of years. How these problems were tackled and eventually overcome is described in this article. One of the less well-known members of the For some fifty years after the discovery of platinum group, iridium possesses quite platinum in South America and the early remarkable chemical and physical properties. It investigations of its properties by a number of is not only the most resistant of all metals to English, French, German and Swedish scien- corrosion, insoluble in all mineral acids in- tists, it was not realised that the native platinum cluding aqua regia and unattacked by other they were examining also contained other molten metals or by silicates at high tem- elements. The first to recognise that a small in- peratures, but has a very high melting point soluble residue survived the dissolution of and is the only metal to maintain good native platinum in aqua regia was the French mechanical properties in air at temperatures chemist Joseph Louis Proust, working for a above 1600OC.Its great stability can be gauged time in Madrid under the patronage of King from its physical properties, outlined in the Carlos IV, but he failed to grasp that other Table.
    [Show full text]
  • Material Safety Data Sheet AQUA REGIA, 2-1-5 (NITRIC 20%/HCL 5%)
    2290 Avenue A, Bethlehem, PA 18017 Effective Date: 4/16/2010 NON-EMERGENCY TELEPHONE 24-HOUR CHEMTREC EMERGENCY TELEPHONE 610-866-4225 800-424-9300 Material Safety Data Sheet AQUA REGIA, 2-1-5 (NITRIC 20%/HCL 5%) 1. Product Identification: MIXED ACID CONTAINING NITRIC ACID AND HYDROCHLORIC ACID Synonyms: None CAS No: N/A Molecular Weight: N/A Chemical Formula: N/A 2. Composition/Information on Ingredients Ingredient CAS No Percent Hazardous Nitric Acid 7697-37-2 1 - 25% Yes Hydrochloric Acid 7647-01-0 1 – 10% Yes Water 7732-18-5 65 - 98% No 3. Hazards Identification Emergency Overview POISON! DANGER! CORROSIVE! CORROSIVE. LIQUID AND MIST CAUSE SEVERE BURNS TO ALL BODY TISSUE. MAY BE FATAL IF SWALLOWED OR INHALED. INHALATION MAY CAUSE LUNG AND TOOTH DAMAGE. Potential Health Effects Nitric acid is extremely hazardous; it is a corrosive and a poison. In concentrated solutions it is an oxidizer. Hydrochloric acid is a corrosive. Mixtures of nitric acid and hydrochloric acid may form aqua regia releasing toxic nitrosyl chloride (yellow to reddish-brown) gas. Inhalation: Corrosive! Inhalation of vapors can cause breathing difficulties and lead to pneumonia and pulmonary edema, which may be fatal. Other symptoms may include coughing, choking, and irritation of the nose, throat, and respiratory tract. Ingestion: 1 Corrosive! Swallowing nitric acid and hydrochloric acid can cause immediate pain and burns of the mouth, throat, esophagus and gastrointestinal tract. Skin Contact: Corrosive! Can cause redness, pain, and severe skin burns. Concentrated solutions cause deep ulcers and stain skin a yellow or yellow-brown color. Eye Contact: Corrosive! Vapors are irritating and may cause damage to the eyes.
    [Show full text]
  • The Precious Metal Account Timeless Investments – Securely Managed
    The Precious Metal Account Timeless Investments – Securely Managed Everything You Need to Know about Your Benefits the Precious Metal Account • You benefit from a clear investment in account form This solution provides a simple form of investment for book- • It is possible to convert your credit into physical precious entry balances in precious metal accounts and is managed metal at any time in the currency of the relevant precious metal (gold, silver, platinum, or palladium) in ounces.1 The precious metal Potential Risks account is attractive for investors with frequent trading activity • Precious metals are subject to currency and price fluctua- (purchase/sale of precious metals). tions and are therefore only suitable for investors who are able and willing to take on a certain amount of risk The key points at a glance: • In contrast to custody in a safekeeping account, credit in • Ability to transfer balances in precious metal accounts, both the precious metal account would be classed as bankruptcy within Credit Suisse and to other banks estate in the event of bankruptcy • Balances in precious metal accounts are managed in book form, in contrast to investments in safekeeping accounts Conditions • Credit can be converted into physical precious metal at any time, subject to a charge Currency Gold (XAU), silver (XAG), platinum (XPT), palladium (XPD) Your Needs Charges2 0.80% (all metals) p.a. • You want to diversify your portfolio Min. CHF 100 p.a. • You want an overview of your balances in precious metal Conversion into or Charges vary depending on the weight and accounts at all times delivery as physical the service required.
    [Show full text]
  • Advertising Platinum Jewelry
    FTC FACTS for Business Advertising Platinum Jewelry ftc.gov The Federal Trade Commission’s (FTC’s) Jewelry Guides describe how to accurately mark and advertise the platinum content of the jewelry you market or sell. Platinum jewelry can be alloyed with other metals: either precious platinum group metals (PGMs) — iridium, palladium, ruthenium, rhodium, and osmium — or non-precious base metals like copper and cobalt. In recent years, manufacturers have alloyed some platinum jewelry with a larger percentage of base metals. Recent revisions to the FTC’s Jewelry Guides address the marking of jewelry made of platinum and non-precious metal alloys and when disclosures are appropriate. When Disclosures Should Be Made Product descriptions should not be misleading, and they should disclose material information to jewelry buyers. If the platinum/base metal-alloyed item you are selling does not have the properties of products that are almost pure platinum or have a very high percentage of platinum, you should disclose that to prospective buyers. They may want to know about the value of the product as well as its durability, luster, density, scratch resistance, tarnish resistance, its ability to be resized or repaired, how well it retains precious metal over time, and whether it’s hypoallergenic. You may claim your product has these properties only if you have competent and reliable scientific evidence that your product — that has been alloyed with 15 to 50 percent non-precious or base metals — doesn’t differ in a material way from a product that is 85 percent or more pure platinum. Facts for Business Terms Used in Advertising • Jewelry that has 850 parts per thousand pure platinum — meaning that it is 85 percent pure • Any item that is less than 500 parts per platinum and 15 percent other metals — may be thousand pure platinum should not be marked referred to as “traditional platinum.” The other or described as platinum even if you modify the metals can include either PGMs or non-precious term by adding the piece’s platinum content in base metals.
    [Show full text]
  • Section XV BASE METALS and ARTICLES of BASE METAL Notes
    Section XV BASE METALS AND ARTICLES OF BASE METAL Notes. 1.- This Section does not cover : (a) Prepared paints, inks or other products with a basis of metallic flakes or powder (headings 32.07 to 32.10, 32.12, 32.13 or 32.15); (b) Ferro-cerium or other pyrophoric alloys (heading 36.06); (c) Headgear or parts thereof of heading 65.06 or 65.07; (d) Umbrella frames or other articles of heading 66.03; (e) Goods of Chapter 71 (for example, precious metal alloys, base metal clad with precious metal, imitation jewellery); (f) Articles of Section XVI (machinery, mechanical appliances and electrical goods); (g) Assembled railway or tramway track (heading 86.08) or other articles of Section XVII (vehicles, ships and boats, aircraft); (h) Instruments or apparatus of Section XVIII, including clock or watch springs; (ij) Lead shot prepared for ammunition (heading 93.06) or other articles of Section XIX (arms and ammunition); (k) Articles of Chapter 94 (for example, furniture, mattress supports, lamps and lighting fittings, illuminated signs, prefabricated buildings); (l) Articles of Chapter 95 (for example, toys, games, sports requisites); (m) Hand sieves, buttons, pens, pencil-holders, pen nibs or other articles of Chapter 96 (miscellaneous manufactured articles); or (n) Articles of Chapter 97 (for example, works of art). 2.- Throughout the Nomenclature, the expression “parts of general use” means : (a) Articles of heading 73.07, 73.12, 73.15, 73.17 or 73.18 and similar articles of other base metal; (b) Springs and leaves for springs, of base metal, other than clock or watch springs (heading 91.14); and (c) Articles of headings 83.01, 83.02, 83.08, 83.10 and frames and mirrors, of base metal, of heading 83.06.
    [Show full text]
  • Etruscan Jewelry and Identity
    Chapter 19 Etruscan Jewelry and Identity Alexis Q. Castor 1. Introduction When Etruscan jewelry is found, it is already displaced from its intended purpose. In a tomb, the typical archaeological context that yields gold, silver, ivory, or amber, the ornaments are arranged in a deliberate deposit intended for eternity. They represent neither daily nor special occasion costume, but rather are pieces selected and placed in ways that those who prepared the body, likely women, believed was significant for personal or ritual reasons. Indeed, there is no guarantee that the jewelry found on a body ever belonged to the dead. For an element of dress that the living regularly adapted to convey different looks, such permanence is entirely artificial. Today, museums house jewelry in special cases within galleries, further sep- arating the material from its original display on the body. Simply moving beyond these simu- lations requires no little effort of imagination on the part of researchers who seek to understand how Etruscans used these most personal artifacts. The approach adopted in this chapter draws on anthropological methods, especially those studies that highlight the changing self‐identity and public presentation necessary at different stages of life. As demonstrated by contemporary examples, young adults can pierce various body parts, couples exchange rings at weddings, politicians adorn their lapels with flags, and military veterans pin on medals for a parade. The wearer can add or remove all of these acces- sories depending on how he or she moves through different political, personal, economic, social, or religious settings. Cultural anthropologists who apply this theoretical framework have access to many details of life‐stage and object‐use that are lost to us.
    [Show full text]