Pneumoperitoneum from Subcutaneous Emphysema After Blunt Chest Injury

Total Page:16

File Type:pdf, Size:1020Kb

Pneumoperitoneum from Subcutaneous Emphysema After Blunt Chest Injury CASE REPORT Pneumoperitoneum from Subcutaneous Emphysema after Blunt Chest Injury Byung Hee Kang, M.D., Jonghwan Moon, M.D. Division of Trauma Surgery, Department of Surgery, Ajou University School of Medicine, Suwon, Korea Correspondence to: Pneumothorax and pneumomediastinum can cause pneumoperitoneum, which does not Jonghwan Moon, M.D. require surgery. There are unverified theories pertaining to how air passes through the dia- Division of Trauma Surgery, phragm. We report a case of pneumoperitoneum caused by blunt chest injury that was Department of Surgery, Ajou successfully managed with conservative care. Although the pneumoperitoneum was caused University School of Medicine, by thoracic injury, we believe that the air did not pass through the diaphragm, but instead 164 WorldCup-ro, Yeongtong- came from the abdominal wall, as in subcutaneous emphysema. (J Acute Care Surg 2017;7: gu, Suwon 16499, Korea 30-33) Tel: +82-31-219-7764 Fax: +82-31-219-7781 Key Words: Pneumoperitoneum, Subcutaneous emphysema, Pneumothorax, Pneumomediastinum E-mail: [email protected] Received June 14, 2016, Revised September 24, 2016, Accepted September 28, 2016 Copyright © 2017 by Korean Society of Acute Care Surgery cc This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. ISSN 2288-5862(Print), ISSN 2288-9582(Online) https://doi.org/10.17479/jacs.2017.7.1.30 Introduction to the retroperitoneum and peritoneum. In massive subcutaneous emphysema, air could travel through Pneumoperitoneum following blunt force trauma usually indi- the tissue from the face to the buttocks and scrotum [5]. However, cates the need for an emergency laparotomy. However, 5~15% subcutaneous emphysema in the scalp was rarely reported. Here, of pneumoperitoneum cases do not require surgical management, we report subcutaneous emphysema in the scalp and pneumo- because the air comes from sources other than the hollow viscus peritoneum caused by a blunt chest injury. This case also suggests [1]. Pneumothorax or pneumomediastinum could lead to non- the existence of a new passageway via which air passes between surgical pneumoperitoneum, and several hypotheses have been the thorax and the abdomen exist. proposed on how the air passes from the thorax to the abdomen. Air could also directly pass through the diaphragm via dia- Case Report phragmatic defects [2]. Moreover, Lantsberg and Rosenzweig [3] suggested that communication between the thorax and abdominal A 46-year-old man, who had been beaten mainly in the chest cavity could exist through a weak site in the diaphragm (cor- region, visited a local clinic. Despite being intoxicated, he could responding to Bochdalek and Morgagni hernia). Romero and follow the doctor’s instructions. Initial oxygen saturation was 65% Trujillo [4] demonstrated that the air from the alveoli travels and dyspnea soon developed. After intubation, he was transferred through the perivascular connective tissue in the mediastinum to the trauma center. On arrival, his vital signs were as follows: 30 J Acute Care Surg Vol. 7 No. 1, April 2017 Byung Hee Kang and Jonghwan Moon: Pneumoperitoneum after Blunt Chest Injury blood pressure of 135/92 mm Hg, heart rate of 121 beats/min, emphysema. A small amount of hemothorax was also found on o oxygen saturation of 99%, and body temperature of 35.9 C. the chest radiograph pneumomediastinum was detected on a chest Crackling sensation of subcutaneous emphysema was palpated computed tomography (CT) (Fig. 1). An abdominal CT revealed from the head to the lower legs, and abrasions were seen on pneumoperitoneum in the liver dome and upper abdomen (Fig. both knees and on the right elbow. Some bruising was observed 2A). Air was dissected between the external and internal oblique on the chest and back; however, the abdomen wall was clear. muscles, and some air was present behind the rectus muscle. The abdomen was soft and presented with no muscle guarding. In the lower abdomen, much air was seen around both the psoas A chest radiograph showed pneumothorax, with multiple rib muscle and erecter spinae muscles. The region filled with air fractures on both sides of the chest and extensive subcutaneous was bigger than for the perivascular plane in the diaphragm level Fig. 1. Chest computed tomography revealed pneumothorax (white arrow), pneumomediastinum and rib fracture (black arrow) from blunt thoracic injury. Collapsed lung and subcutaneous emphysema Fig. 3. Brain computed tomography revealed subcutaneous emphy- were shown. sema in scalp and air in temporalis muscle (white arrows). Fig. 2. (A) Pnemoperitoneum (black arrows) and small retroperitoneal air in perivascular space (posterior black arrow) were present. Subcu- taneous emphysema was shown (white arrows). (B) Air existed behind rectus muscle (anterior black arrows) and around psoas muscle (posterior black arrows). Air dissected intermuscular layer (white arrows). www.jacs.or.kr 31 J Acute Care Surg Vol. 7, No. 1, Apr. 2017 Fig. 4. (A) Follow up abdominal computed tomography revealed improved pneumoperitoneum (black arrow) and subcutaneous emphysema (white arrows). (B) New pneumoperitoneum was appeared (black arrow) and subcutaneous emphysema was improved (white arrow). Air around psoas muscle was disappeared. (Fig. 2B). Brain CT revealed that subcutaneous emphysema was air, body temperature, leukocyte count, and physical examination. present throughout the scalp and that there was air inside the If a patient is stable and non-surgical causes of pneumothorax right temporalis muscle; however, pneumocephalus was not seen or pneumomediastinum exist, the patient can be observed. Marek (Fig. 3). A 28-Fr chest tube was inserted into both sides, and et al.[7] demonstrated that pneumoperitoneum in CT scan was the patient was admitted to the intensive care unit (ICU). In not sufficient for laparotomy, but additional findings were nece- the ICU, he was stable and extubation was performed the ssary (e.g., free fluid, bowel wall thickening, bowel wall discon- following day. Two days after admission, a follow-up CT was tinuity, solid organ injury, mesenteric injury, diaphragmatic rup- performed, which revealed that the extent of subcutaneous ture). However, both algorithms emphasized the importance of emphysema and pneumoperitoneum had decreased (Fig. 4A). physical examination or a patient’s complaint. Indeed, in patients However, the pneumoperitoneum was newly developed in the with multiple trauma, vital signs or laboratory findings can easily lower abdomen (Fig. 4B). A brain CT revealed that subcutaneous deteriorate. Even a physical examination or complaint could be emphysema had also improved, and air had disappeared from inaccurate due to a distracting injury. Therefore, examination inside the temporalis muscle. Due to a lack of signs of peritonitis, should be followed up frequently and the physician should always the patient was started on a diet of soft foods and was moved consider an emergency laparotomy if it is suspected to be to the general ward. He was discharged nine days following necessary. In this case, the patient was admitted to the ICU and admission. was monitored by an intensivist throughout the day. Since he was stable and did not develop any other symptoms, we continued Discussion conservative care, even though a follow-up CT scan revealed that pneumoperitoneum had newly developed. We demonstrated that extensive subcutaneous emphysema and There were several mechanisms proposed for the development pneumoperitoneum caused by traumatic pneumothorax were of pneumoperitoneum from thoracic injury; however, these were cured successfully by conservative care methods. only focused on diaphragm [2-4]. In our case, air was dissected Laparotomy is a difficult choice when pneumoperitoneum and in the inter-muscular space in the abdominal wall and erecter pneumothorax exist after blunt injury. Hoover et al.[6] suggested spinae muscle, and air was shown behind the rectus muscle and an algorithm that was composed of chest radiograph for free around the psoas muscle. We proposed that the newly developed 32 www.jacs.or.kr Byung Hee Kang and Jonghwan Moon: Pneumoperitoneum after Blunt Chest Injury pneumoperitoneum originated from these spaces for several was not suspected. However, extensive subcutaneous emphysema reasons. First, the location of the pneumoperitoneum was near was found, and in such a condition, the high pressure of air the rectus muscle, where air had been detected previously. Second, could possibly tear the peritoneum. Therefore, air may not pass on abdominal CT, pneumoperitoneum was associated with the the peritoneum in classic subcutaneous emphysema. air located between the extraperitoneal space and the abdominal Air from thoracic injury could directly pass through the wall. Third, the patient was bed-ridden in the ICU; hence, the abdominal wall and cause pneumoperitoneum. Surgical interven- pneumoperitoneum could not translocate and the air over the tion is not needed in such a case. liver could not travel to the lower abdomen. Fourth, there was much more air in the lower abdominal wall and psoas muscle Conflicts of Interest than perivascular space at the diaphragmatic level. Therefore, air passed over the diaphragm and penetrated the intraperitoneum No potential conflict of interest relevant to this article
Recommended publications
  • Pneumomediastinum After Cervical Stab Wound
    Pneumomediastinum After Cervical Stab Wound * ^ Chad Correa, BS and Emily Ma, MD *University of California, Riverside, School of Medicine, Riverside, CA ^University of California, Irvine, Department of Emergency Medicine, Orange, CA Correspondence should be addressed to Chad Correa, BS at [email protected] Submitted: October 1, 2017; Accepted: November 20, 2017; Electronically Published: January 15, 2018; https://doi.org/10.21980/J87P79 Copyright: © 2018 Correa, et al. This is an open access article distributed in accordance with the terms of the Creative Commons Attribution (CC BY 4.0) License. See: http://creativecommons.org/licenses/by/4.0/ Empty Line Calibri Size 12 Video Link: https://youtu.be/c8IYed1fnoE Video Link: https://youtu.be/q_cFK1atwlE Return: Calibri Size 10 9 mpty Line Calibri Siz History of present illness: A 21-year old female presented to the emergency department with a stab wound to the left neck. She reported that her boyfriend had fallen off a ladder and subsequently struck her in the back of the neck with the scissors he had been working with. She was alert and in minimal distress, speaking in full sentences, and lungs were clear to auscultation bilaterally. Examination of the neck showed a 0.5cm linear wound at the base of the proximal left clavicle (Zone 1). Cranial nerves were grossly intact, and the patient was moving all extremities spontaneously. Significant findings: Anteroposterior (AP) chest X-ray showed subcutaneous emphysema of the neck, surrounding the trachea (red arrows), right side greater than left, and a streak of gas adjacent to the aortic arch (white arrow).
    [Show full text]
  • The Management of Childhood Drowning in a Tertiary Hospital in Indonesia: a Case Report
    J Med Sci, Volume 53, Number 2, 2021 April: 199-205 Journal of the Medical Sciences (Berkala Ilmu Kedokteran) Volume 53, Number 2, 2021; 199-205 http://dx.doi.org/10.19106/JMedSci005302202111 The management of childhood drowning in a tertiary hospital in Indonesia: a case report Dyah Kanya Wati,1* I Gde Doddy Kurnia Indrawan, 2Nyoman Gina Henny Kristianti,3 Felicia Anita Wijaya,3 Desak Made Widiastiti Arga3, Arya Krisna Manggala3 1Department of Child Health, Faculty of Medicine Universitas Udayana/Sanglah General Hospital, Denpasar, Bali, 2Department of Child Health, Wangaya General Hospital, Denpasar, Bali, 3Faculty of Medicine Universitas Udayana, Denpasar, Bali, Indonesia ABSTRACT Submited: 2020-10-09 The World Health Organization (WHO) stated that drowning becomes the Accepted : 2021-01-28 third leading cause of death from unintentional injury. Furthermore it was reported more than 372,000 cases of death annually among children due to drowning accident. Inappropriate of resuscitation attempt, delay in early management, inappropriate monitoring and evaluation lead to drowning complications riks even death. However, studies concerning the management of childhood drowning in Indonesia is limited. Here, we reported a case of childhood drowning in Sanglah General Hospital in Denpasar, Bali. An 8 years old girl arrived at the hospital with deterioration of consciousness after found drowning in the swimming pool. The management of the case was performed according to the recent literature guidelines. The first attempt was performed by resuscitation, followed by pharmacological interventions using corticosteroids, non-invasive ventilation and series of laboratory examination. With regular follow up, patient showed good recovery and prognosis. ABSTRAK Badan Kesehatan Dunia (WHO) menyatakan bahwa tenggelam merupakan penyebab kematian ketiga terbanyak akibat trauma yang tidak disengaja.
    [Show full text]
  • An Unusual Cause of Subcutaneous Emphysema, Pneumomediastinum and Pneumoperitoneum
    Eur Respir J CASE REPORT 1988, 1, 969-971 An unusual cause of subcutaneous emphysema, pneumomediastinum and pneumoperitoneum W.G. Boersma*, J.P. Teengs*, P.E. Postmus*, J.C. Aalders**, H.J. Sluiter* An unusual cause of subcutaneous emphysema, pneumomediastinum and Departments of Pulmonary Diseases* and Obstetrics pneumoperitoneum. W.G. Boersma, J.P. Teengs, P.E. Postmus, J.C. Aalders, and Gynaecology**, State University Hospital, H J. Sluiter. Oostersingel 59, 9713 EZ Groningen, The Nether­ ABSTRACT: A 62 year old female with subcutaneous emphysema, pneu­ lands. momediastinum and pneumoperitoneum, was observed. Pneumothorax, Correspondence: W.G. Boersma, Department of however, was not present. Laparotomy revealed a large Infiltrate In the Pulmonary Diseases, State University Hospital, Oos­ left lower abdomen, which had penetrated the anterior abdominal wall. tersingel 59, 9713 EZ Groningen, The Nether­ Microscopically, a recurrence of previously diagnosed vulval carcinoma lands. was demonstrated. Despite Intensive treatment the patient died two months Keywords: Abdominal inftltrate; necrotizing fas­ later. ciitis; pneumomediastinum; pneumoperitoneum; Eur Respir ]., 1988, 1, 969- 971. subcutaneous emphysema; vulval carcinoma. Accepted for publication August 8, 1988. The main cause of subcutaneous emphysema is a defect 38·c. There were loud bowel sounds and abdominal in the continuity of the respiratory tract. Gas in the soft distension. The left lower quadrant of the abdomen was tissues is sometimes of abdominal origin. The most fre­ tender, with dullness on examination. Recto-vaginal quent source of the latter syndrome is perforation of a examination revealed no abnonnality. The left upper leg hollow viscus [1]. In this case report we present a patient had increased in circumference.
    [Show full text]
  • Barotrauma Or Lung Frailty?
    ORIGINAL ARTICLE COVID-19 Pneumomediastinum and subcutaneous emphysema in COVID-19: barotrauma or lung frailty? Daniel H.L. Lemmers 1,2,6, Mohammed Abu Hilal1,6, Claudio Bnà3, Chiara Prezioso4,5, Erika Cavallo4,5, Niccolò Nencini 4,5, Serena Crisci4,5, Federica Fusina 4 and Giuseppe Natalini4 ABSTRACT Background: In mechanically ventilated acute respiratory distress syndrome (ARDS) patients infected with the novel coronavirus disease (COVID-19), we frequently recognised the development of pneumomediastinum and/or subcutaneous emphysema despite employing a protective mechanical ventilation strategy. The purpose of this study was to determine if the incidence of pneumomediastinum/subcutaneous emphysema in COVID-19 patients was higher than in ARDS patients without COVID-19 and if this difference could be attributed to barotrauma or to lung frailty. Methods: We identified both a cohort of patients with ARDS and COVID-19 (CoV-ARDS), and a cohort of patients with ARDS from other causes (noCoV-ARDS). Patients with CoV-ARDS were admitted to an intensive care unit (ICU) during the COVID-19 pandemic and had microbiologically confirmed severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. NoCoV-ARDS was identified by an ARDS diagnosis in the 5 years before the COVID-19 pandemic period. Results: Pneumomediastinum/subcutaneous emphysema occurred in 23 out of 169 (13.6%) patients with CoV-ARDS and in three out of 163 (1.9%) patients with noCoV-ARDS (p<0.001). Mortality was 56.5% in CoV-ARDS patients with pneumomediastinum/subcutaneous emphysema and 50% in patients without pneumomediastinum (p=0.46). CoV-ARDS patients had a high incidence of pneumomediastinum/subcutaneous emphysema despite the − use of low tidal volume (5.9±0.8 mL·kg 1 ideal body weight) and low airway pressure (plateau pressure 23±4 cmH2O).
    [Show full text]
  • Title: Recognizing Barotrauma As an Unexpected Complication of High Flow Nasal Cannula
    Title: Recognizing barotrauma as an unexpected complication of high flow nasal cannula Introduction: Spontaneous pneumomediastinum (SPM) is a rare condition defined as free air in the mediastinum without an apparent trauma. It is commonly associated with barotrauma in asthma and COPD patients. High flow nasal cannula (HFNC) has been routinely used for hypoxemic respiratory failure. We present a case of the development of SPM with extensive subcutaneous emphysema with the use of HFNC for hypoxic respiratory failure. Case Presentation: 78 year old Caucasian female with history of interstitial pulmonary fibrosis and COPD was discharged to LTACH after prolonged hospitalization for influenza-A infection complicated by acute on chronic respiratory failure. She was started on supplemental oxygen using HFNC that was progressively increased to 60 liters/min with 100% FiO2 for persistent hypoxia. Over the next four days, she was noted to have worsening facial and neck swelling with progressive dyspnea leading to transfer to the hospital. CT scan of chest noted for extensive pneumomediastinum involving the middle and anterior mediastinum with extensive subcutaneous emphysema throughout the anterior and moderately posterior chest wall extending to lower neck. Lung parenchyma revealed underlying interstitial with patchy airspace disease without evident pneumothorax. She was started on 100% FIO2 with non- rebreather mask. For symptomatic relief, Cardiothoracic surgery performed bilateral anterior chest blowhole incisions and application of negative vacuum-assisted closure on anterior chest with dramatic improvement in subcutaneous emphysema and facial swelling with persistent pneumomediastinum. Patent’s pneumomediastinum and respiratory failure persisted with high oxygen requirement with non- rebreather mask. Due to underlying advanced lung disease and persistent respiratory failure , patient’s family opted for palliative management with comfort measure and patient was transferred to hospice care.
    [Show full text]
  • Inhalation of 1-1-Difluoroethane: a Rare Cause of Pneumopericardium
    Open Access Case Report DOI: 10.7759/cureus.3503 Inhalation of 1-1-difluoroethane: A Rare Cause of Pneumopericardium Erika L. Faircloth 1 , Jose Soriano 2 , Deep Phachu 1 1. Internal Medicine, University of Connecticut, Farmington, USA 2. Internal Medicine, Saint Francis Hosptial and Medical Center, Hartford, USA Corresponding author: Erika L. Faircloth, [email protected] Disclosures can be found in Additional Information at the end of the article Abstract We report a case of a 32-year-old man with a past medical history of ethanol use disorder who was brought in unresponsive after inhaling six to 10 cans of the computer cleaning product, Dust-Off. After regaining consciousness, he endorsed severe, pleuritic chest and anterior neck pain. Labs were notable for elevated cardiac enzymes, acute kidney injury, and his initial electrocardiogram (ECG) revealed a partial right bundle branch block with a prolonged corrected QT interval (QTc). On chest X-ray as well as chest computed tomography, the patient was found to have pneumomediastinum, pneumopericardium, and subcutaneous emphysema. The patient’s course was uneventful and he was discharged home two days later after extensive substance abuse cessation counseling. Intentionally inhaling toxic substances, also known as “huffing,” is a dangerous new trend with significant consequences that clinicians need to be aware of and suspect in young patients presenting with chest pain. We present a rare case of pneumopericardium induced by inhalation of Dust-Off (1-1-difluoroethane). Categories: Cardiac/Thoracic/Vascular Surgery, Cardiology, Internal Medicine Keywords: 1-1-difluoroethane, fluorinated hydrocarbon, cardiology, pneumopericardium, pneumomediastinum, inhalant abuse Introduction 1-1-difluoroethane is a colorless, odorless gas [1].
    [Show full text]
  • Tracheal Rupture Resulting in Life-Threatening Subcutaneous Emphysema
    Case Reports Tracheal Rupture Resulting in Life-Threatening Subcutaneous Emphysema Cynthia J Gries MD and David J Pierson MD FAARC We present a case of a patient with severe chronic obstructive pulmonary disease who developed dramatic mediastinal and subcutaneous emphysema, without pneumothorax, following a difficult intubation. Misdiagnosis of tracheal rupture as barotrauma from alveolar overdistention initially delayed intervention and caused persistence of subcutaneous emphysema. Despite efforts to mini- mize tidal volume and airway pressure, the large airway disruption and positive-pressure ventila- tion resulted in tension subcutaneous emphysema with near-fatal hemodynamic compromise, oli- guria, and respiratory acidosis. Decompression with subcutaneous vents immediately reversed the life-threatening circulatory and respiratory compromise and stabilized the patient until surgical correction of the tracheal tear could be accomplished. Key words: tracheal laceration, difficult intu- bation, mechanical ventilation, pneumomediastinum, subcutaneous emphysema, barotrauma, chronic obstructive pulmonary disease, COPD, intrinsic positive end-expiratory pressure. [Respir Care 2007; 52(2):191–195. © 2007 Daedalus Enterprises] Introduction tubation attempts in the field. Tracheal rupture was ini- tially misdiagnosed as barotrauma in a mechanically ven- Subcutaneous emphysema in patients receiving posi- tilated patient with severe chronic obstructive pulmonary tive-pressure mechanical ventilation is generally consid- disease (COPD). ered a benign condition that does not require specific mea- sures to vent the subcutaneous gas.1,2 Rarely, however, Case Summary this form of extra-alveolar air can be a threat to life re- quiring immediate intervention.3,4 We present a patient who developed hypotension, oliguria, and increased air- A 64-year-old woman presented with a 2-week history way pressure that prevented effective ventilation, due to of increased dyspnea, cough, and yellow sputum produc- massive subcutaneous emphysema.
    [Show full text]
  • Pulmonary Barotrauma Including Orbital Emphysema Following Inhalation of Toxic Gas
    Intensive Care Med (1988) 14:241-243 Intensive Care Medicine © Springer-Verlag 1988 Pulmonary barotrauma including orbital emphysema following inhalation of toxic gas D. Shulman, D. Reshef, R. Nesher, Y. Donchin and S. Cotev Intensive Care Unit, Department of Anesthesia, and Department of Ophthalmology, Hadassah University Hospital and the Hebrew University Hadassah Medical School, Jerusalem, Israel Received: 15 December 1986; accepted: 1 Juli 1987 Abstract. Severe pulmonary barotrauma occurred supplemental oxygen therapy by mask, iv penicillin following smoke and toxic gas inhalation in a 20-year- and fluids. On the second day, he became febrile and old male. He developed pneumothorax, pneumome- his heart rate increased to 140 beat/min and respira- diastinum, and extensive facial subcutaneous em- tions to 40 breath/min. Expiration was prolonged and physema which intensified during treatment with posi- wheezing was heard on auscultation. Subcutaneous tive pressure ventilation. Following the appearance of emphysema was noted on the anterior chest and ab- diplopia and exotropia, orbital emphysema was dem- dominal wall. Chest x-ray now showed pneumomedia- onstrated radiologically. The diplopia and exotropia stinum and a diffuse micronodular infiltrate in both were manifestations of mechanical interference in ex- lung fields. Arterial blood gases were PO 2 93 torr, tra-ocular muscle function by the intra-orbital air, an PCO2 50 torr, and pH 7.31 using a mask supplied unusual expression of pulmonary barotrauma. with an FidE of 0.5. Intravenous aminophylline and aerosolized salbutamol were then administered with Key words: Pulmonary Barotrauma - Smoke Inhala- no improvement. On the third hospital day despite tion - Intra-orbital Emphysema nasotracheal intubation and mechanical ventilation, PaCO2 increased and reached a peak of 121 torr with- out significant hypoxemia.
    [Show full text]
  • Blast Injuries
    4/6/2020 Guidelines for Burn Care Under Austere Conditions Special Etiologies: Blast, Radiation, and Chemical Injuries 1 BLAST INJURIES 2 1 4/6/2020 Introduction • Recent events, such as terrorist attacks in Boston, Madrid, and London, highlight the growing threat of explosions as a cause of mass casualty disasters. • Several major burn disasters around the world have been caused by accidental explosions. • During the recent conflicts in Iraq and Afghanistan, explosions were the primary mechanism of injury (74% in one review). • Furthermore, explosions were the leading cause of injury in burned combat casualties admitted to the U.S. Army Burn Center during these wars, who frequently manifested other consequences of blast injury. • Thus, providers responding to burn care needs in austere environments should be familiar with the array of blast injuries which may accompany burns following an explosion. 3 Classification of Blast Injuries • Blast injuries are classified as follows: • Primary: Direct effects of blast wave on the body (e.g., tympanic membrane rupture, blast lung injury, intestinal injury) • Secondary: Penetrating trauma from fragments • Tertiary: Blunt trauma from translation of the casualty against an object • Quaternary: Burns and inhalation injury • Quinary: Bacterial, chemical, radiological contamination (e.g., “dirty bomb”) • In any given explosion, these types of injuries overlap. • Primary blast injury is more common in explosion survivors inside structures or vehicles because of blast-wave physics. • By far, secondary blast injury is more common. 4 2 4/6/2020 Classification of Blast Injuries (cont.) • A study of 4623 explosion episodes in a Navy database identified the following injuries among U.S.
    [Show full text]
  • Management of Extensive Subcutaneous Emphysema and Pneumomediastinum by Micro-Drainage
    Case Report Singapore Med J 2007; 48(12) : e323 Management of extensive subcutaneous emphysema and pneumomediastinum by micro-drainage:.. time for a re-think? Srinivas R, Singh N, Agarwal R, Aggarwal A N ABSTRACT Extensive subcutaneous emphysema (ESE) is not only disfiguring, uncomfortable and alarming for the patient, but can rarely be associated with airway compromise, respiratory failure and death. Traditionally considered a cosmetic nuisance, few reports on interventions to relieve ESE exist. Most interventions are too invasive and have not been widely used. Fenestrated catheters have been reported to be effective in ESE. We report our experience on micro- drainage with a fenestrated catheter and compressive massage in a 50-year-old man with ESE following pigtail insertion for drainage of lung abscess. The apparatus is easily constructed and the procedure is Fig. 1 Frontal chest radiograph shows extensive right- simple, painless, minimally invasive, highly sided cavity with air-fluid level and pigtail in-situ. Extensive effective and cosmetically aesthetic. subcutaneous air and pneumomediastinum are also evident. Placement of an underwater trap and visualisation of bubbling can be used as Department end-points for adequate compressive of Pulmonary massage. Routine management with this the abscess. Extensive SE (ESE), pneumomediastinum Medicine, Postgraduate catheter can be considered as the procedure and pneumoperitoneum without pneumothorax Institute of Medical of choice for ESE. developed at 48 hours post-procedure. Insertion of a Education and Research, fenestrated catheter with underwater seal and compressive Sector 12, Chandigarh 160012, Keywords: chronic obstructive pulmonary massage was done in view of the minimally invasive India disease, extensive subcutaneous emphysema, nature of the procedure,(1) with dramatic reduction Srinivas R, MBBS, micro-drainage, pigtail catheter, pneumo- of SE.
    [Show full text]
  • Pneumothorax, Pneumomediastinum, Cambridge.Org/Hyg Subcutaneous Emphysema and Haemothorax
    Epidemiology and Infection Serious complications in COVID-19 ARDS cases: pneumothorax, pneumomediastinum, cambridge.org/hyg subcutaneous emphysema and haemothorax şı Original Paper Bulent Baris Guven , Tuna Erturk , Özge Kompe and Ay n Ersoy Cite this article: Guven BB, Erturk T, Kompe Department of Anesthesia and Reanimation, University of Health Sciences Turkey, Sultan 2. Abdulhamid Han Ö, Ersoy A (2021). Serious complications in Training and Research Hospital, Istanbul, Turkey COVID-19 ARDS cases: pneumothorax, pneumomediastinum, subcutaneous Abstract emphysema and haemothorax. Epidemiology and Infection 149, e137, 1–8. https://doi.org/ The novel coronavirus identified as severe acute respiratory syndrome-coronavirus-2 causes 10.1017/S0950268821001291 acute respiratory distress syndrome (ARDS). Our aim in this study is to assess the incidence of life-threatening complications like pneumothorax, haemothorax, pneumomediastinum and Received: 1 March 2021 Revised: 5 May 2021 subcutaneous emphysema, probable risk factors and effect on mortality in coronavirus Accepted: 1 June 2021 disease-2019 (COVID-19) ARDS patients treated with mechanical ventilation (MV). Data from 96 adult patients admitted to the intensive care unit with COVID-19 ARDS diagnosis Key words: from 11 March to 31 July 2020 were retrospectively assessed. A total of 75 patients abiding ARDS; Coronavirus; COVID-19; Pneumothorax; SARS Cov-2 by the study criteria were divided into two groups as the group developing ventilator-related barotrauma (BG) (N = 10) and the group not developing ventilator-related barotrauma (NBG) Author for correspondence: (N = 65). In 10 patients (13%), barotrauma findings occurred 22 ± 3.6 days after the onset of Bulent Baris Guven, symptoms. The mortality rate was 40% in the BG-group, while it was 29% in the NBG-group E-mail: [email protected] with no statistical difference identified.
    [Show full text]
  • Pneumomediastinum in a Surf Lifesaver Br J Sports Med: First Published As 10.1136/Bjsm.30.4.359 on 1 December 1996
    BrJ'Sports Med 1996;30:359-360 359 Pneumomediastinum in a surf lifesaver Br J Sports Med: first published as 10.1136/bjsm.30.4.359 on 1 December 1996. Downloaded from K E Fallon, K Foster Abstract Three days following the initial consultation he Pneumomediastinum is an uncommon complained of left sided chest pain on very complication ofsporting activity. The case deep inspiration and the surgical emphysema of a young asthmatic surf lifesaver is had clinically resolved. Chest x ray two weeks reported in which several factors are later was normal. thought to have been involved in the aetiology of his condition. Treatment was expectant and a full recovery was made Discussion over a short period. This is the first Pneumomediastinum is a relatively rare condi- reported case of pneumomediastinum tion which has been associated with mechani- occurring following training for a surfbelt cal ventilation, childbirth, marked vomiting race. and coughing,' marijuana smoking,2 asthma, (BrJ7 Sports Med 1996;30:359-360) closed tracheal injury, and anorexia nervosa. In relation to athletic activity it has been de- Key terms: pneumomediastinum; surf lifesaving; scribed following swimming,"7 tennis,' weight asthma lifting,"4 football,57 mountain climbing,6 rugby training,8 fast bowling in cricket,9 scuba Case report diving,112 and kendo." A 20 year old professional lifeguard and In a general population study the mean age competitive surf club swimmer presented with ofpatients with spontaneous pneumomediasti- a four hour history of sore throat which he had num was 18.8 years and 84% were male. The noticed upon wakening.
    [Show full text]