Towards Nanoscale Interconnect for System- On-Chip and Wireless Nanosensor Networks

Total Page:16

File Type:pdf, Size:1020Kb

Towards Nanoscale Interconnect for System- On-Chip and Wireless Nanosensor Networks Towards nanoscale interconnect for system-on-chip Olimjon Yalgashev To cite this version: Olimjon Yalgashev. Towards nanoscale interconnect for system-on-chip. Micro and nanotechnolo- gies/Microelectronics. Université de Technologie de Belfort-Montbeliard, 2015. English. NNT : 2015BELF0270. tel-01876088v3 HAL Id: tel-01876088 https://tel.archives-ouvertes.fr/tel-01876088v3 Submitted on 29 Mar 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Thèse présentée par Olimjon YALGASHEV pour obtenir le Grade de Docteur de l’Université de Technologie de Belfort-Montbéliard Spécialité : Informatique TOWARDS NANOSCALE INTERCONNECT FOR SYSTEM- ON-CHIP AND WIRELESS NANOSENSOR NETWORKS Soutenue le 29 octobre 2015 devant le Jury : M Tarek El-GHAZAWI Rapporteur George Washington University M Pascal LORENZ Rapporteur Université de Haute Alsace Mme Marie-Ange MANIER Directeur de thèse Université de Technologie de Belfort Montbeliard M Tarek AHMED ALI Examinateur Université de Caen Normandie M Chu-Min LI Examinateur Université de Picardie Jules Verne M Mohamed BAKHOUYA Examinateur Université Internationale de Rabat M Ahmed NAIT-SIDI-MOH Examinateur Université de Picardie Jules Verne M Jaafar GABER Examinateur Université de Technologie de Belfort Montbeliard Table of Contents Chapter 1: General Introduction ........................................................................................... 2 1.1 The research domain .......................................................................................................... 2 1.2 Background ........................................................................................................................ 2 1.3 Problem statement .............................................................................................................. 3 1.4 The contribution ................................................................................................................. 5 1.5 Organization of the dissertation ......................................................................................... 7 1.5.1 General presentation .................................................................................................... 7 1.5.2 Global view ................................................................................................................... 7 1.5.3 Chapter contents ........................................................................................................... 7 Chapter 2: State of the art review ........................................................................................ 10 2.1 Introduction ...................................................................................................................... 11 2.2 Wireless Ad hoc Networks ............................................................................................... 12 2.2.1 Wireless Sensor Networks .......................................................................................... 12 2.2.2 Mobile Ad hoc Networks ............................................................................................ 14 2.2.3 Vehicular Ad hoc Networks ........................................................................................ 15 2.2.4 Wireless Personal Area Networks .............................................................................. 17 2.2.5 Wireless Body Area Networks .................................................................................... 20 2.2.6 Wireless Nanosensor Networks .................................................................................. 23 2.2.7 Comparison of Ad hoc Wireless categories ............................................................... 27 2.3 An overview of Nanonetworking communication mechanisms ...................................... 29 2.3.1 Nanocommunication mechanisms .............................................................................. 30 2.3.2 Transmission process in nanoscale ............................................................................ 32 2.3.3 Spread Spectrum ......................................................................................................... 38 2.3.4 Transmission power ................................................................................................... 42 2.4 WNSN for embedded system design ................................................................................ 45 2.5 Simulation tools for nanonetworks ................................................................................... 47 2.6 Summary and discussion .................................................................................................. 50 Chapter 3: Efficient flooding algorithm .............................................................................. 52 3.1 Broadcasting mechanism .................................................................................................. 53 3.1.1 Geometric Based Protocols ........................................................................................ 55 3.1.2 Network topology-based protocols ............................................................................. 57 3.2 Efficient flooding algorithm ............................................................................................. 58 3.3 Performance evaluation .................................................................................................... 61 3.3.1 Simulation parameters and metrics ............................................................................ 61 3.3.2 Simulation results ....................................................................................................... 62 3.4 Conclusions ...................................................................................................................... 71 Chapter 4: Adaptive transmission range approach ............................................................ 72 4.1 Introduction ...................................................................................................................... 73 4.2 Transmission range control .............................................................................................. 73 4.3 Adaptive transmission range approach ............................................................................. 75 4.4 Performance evaluation .................................................................................................... 76 4.4.1 Simulation parameters and metrics ............................................................................ 76 4.4.2 Simulation results ....................................................................................................... 77 4.4 Conclusions ...................................................................................................................... 83 Chapter 5: Nano-NoC for SoC design .................................................................................. 84 5.1 NoC, a quick introduction ................................................................................................ 85 5.2 Wireless NoC ................................................................................................................... 87 5.3 Photonic NoC ................................................................................................................... 89 5.4 The design of on-chip interconnection via Terahertz band .............................................. 90 5.5 Evaluation study ............................................................................................................... 93 5.5.1 Simulation parameters and metrics ............................................................................ 94 5.5.2 Simulation results ....................................................................................................... 96 5.6 Conclusions .................................................................................................................... 104 Chapter 6: Conclusions and perspectives .......................................................................... 105 6.1 Summary ........................................................................................................................ 106 6.2 Future work .................................................................................................................... 109 List of personal publications ............................................................................................... 111 List of Tables ........................................................................................................................ 112 List of figures ........................................................................................................................ 113 References .............................................................................................................................. 115 Chapter 1: General Introduction Chapter 1: General Introduction ..................................................................................
Recommended publications
  • FULLTEXT01.Pdf
    Designing transparent display experience through the use of kinetic interaction A Master’s Thesis by Interaction Design Master’s Programme Rafael Rybczyński School of Arts and Communication (K3) Malmö University, Sweden August 2017 MSwedenugust 2017 Designing transparent display experience through the use of kinetic interaction Interaction Design Master’s Programme School of Arts and Communication (K3) Malmö University, Sweden August 2017 Author: Rafael Rybczyński Supervisor: Susan Kozel Examiner: Clint Heyer Thesis Project I 15 credits 2017 Acknowledgements Over the lengths of this thesis project I have received support and encouragement from a many people. First of all, I would like to thank my supervisor Susan Kozel for advising me to trust my own instinct. Moreover I would like humbly to thank all the participants without whom this project would not have been possible. Also humbly I thank Alvar, Sanna, and Susanne for shelter and feedback. For proofreading my thanks goes to Jan Felix Rybczyński and Sanna Minkkinen. Finally, my deepest gratitude is reserved to my father Dr. med. Jerzy Antoni Rybczyński. Rest in peace. I would have wished for you reading this paper. Author’s notes Often during the process of doing this study I was asked why transparent displays. What’s the point? Probably I would say this goes way back to my childhood when enjoying my father reading novel stories to us as good night stories. A good example of great stories was Scheerbart’s utopian architectural vision The Gray Cloth who told about the great Swiss architect who traveled by an airship. Wherever he went, he designed buildings made from brightly colored glass, including the roof.
    [Show full text]
  • Wireless Body Area Network for Health Monitoring
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by American Scientific Research Journal for Engineering, Technology, and Sciences... American Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS) ISSN (Print) 2313-4410, ISSN (Online) 2313-4402 © Global Society of Scientific Research and Researchers http://asrjetsjournal.org/ A Survey: Wireless Body Area Network for Health Monitoring Varsha Wahanea*, Dr. P. V. Ingoleb aResearch Scholar, Sant Gadge Baba Amravati University, Amravati bProf Ram Meghe Institute of Technology and Research, Badnera aEmail: [email protected] Abstract With an increasingly mobile society and the worldwide deployment of mobile and wireless networks, the wireless infrastructure can support many current and emerging health care applications. Citizens, being patients or non-patients, will not only be able to get medical advice from a distance but will also be able to send from any location full detailed and accurate vital signal measurements, as if they had been taken in medical centers. Towards this direction, the proposed system is highly customizable vital signal monitoring system based on Wireless Body Area Networks (WBAN). The proposed system allows the incorporation of diverse medical sensors via wireless connections and the live transmission of the measured vital signals over public wireless networks to healthcare providers. This paper discusses different scenarios where this wearable health monitoring system can be used and different types of sensors are used to measure the different parameters such as temperatures, glucose, heart beats, ECG, EEG, etc. Finally, through a case study, we demonstrate how the diabetic patient takes the advantage of this system.
    [Show full text]
  • Openfog Reference Architecture for Fog Computing
    OpenFog Reference Architecture for Fog Computing Produced by the OpenFog Consortium Architecture Working Group www.OpenFogConsortium.org February 2017 1 OPFRA001.020817 © OpenFog Consortium. All rights reserved. Use of this Document Copyright © 2017 OpenFog Consortium. All rights reserved. Published in the USA. Published February 2017. This is an OpenFog Consortium document and is to be used in accordance with the terms and conditions set forth below. The information contained in this document is subject to change without notice. The information in this publication was developed under the OpenFog Consortium Intellectual Property Rights policy and is provided as is. OpenFog Consortium makes no representations or warranties of any kind with respect to the information in this publication, and specifically disclaims implied warranties of fitness for a particular purpose. This document contains content that is protected by copyright. Copying or distributing the content from this document without permission is prohibited. OpenFog Consortium and the OpenFog Consortium logo are registered trademarks of OpenFog Consortium in the United States and other countries. All other trademarks used herein are the property of their respective owners. Acknowledgements The OpenFog Reference Architecture is the product of the OpenFog Architecture Workgroup, co-chaired by Charles Byers (Cisco) and Robert Swanson (Intel). It represents the collaborative work of the global membership of the OpenFog Consortium. We wish to thank these organizations for contributing
    [Show full text]
  • Swarm Robotics Applications Using Argos and Mavproxy |
    WHITE PAPER Autonomous Swarms in Active Services Abstract Robotics has evolved across multiple industry segments, from manufacturing to advanced technology, surveillance, and disaster management. Typically, robotics-driven processes are characterized by a set of pre-defined requirements and operations, carried out by individual robots (bots), and performed at an accelerated pace. However, collective decision making by autonomous intelligent robots, leveraging the concepts of machine learning and artificial intelligence (AI), is becoming increasingly important for agile operations. Technological advances have helped realize swarm operations, in which autonomous bots work in a coordinated manner to effectively execute tasks. In this paper, we propose the approach, design, and implementation of a robot swarm ecosystem that enables: n Active servicing: Collective decision making and execution to solve problems n Collaboration: Automated swarm response to priority services, without external directives n Automaticity: Leveraging blockchain for real- time processing of services being advertised as well as exchange of information WHITE PAPER Autonomous Swarms: Current Trends and Challenges The robotics landscape is rapidly evolving, with bots already being deployed for enterprise operations, commercial purposes, home automation and industrial applications. Robot swarms are being leveraged across segments including retail, travel, healthcare, manufacturing and semiconductors, for a variety of use cases. These swarms are being enabled with the autonomy to operate independently once a preset task or a passive service is assigned, leading to an evolved ecosystem of autonomous nodes or swarms. However, autonomous nodes/swarms executing passive services have two specific failure points. One is central management and the other is a non-configurable preset task. De-centralized management is a viable option, but it only scales down the risk and does not eliminate the point of failure.
    [Show full text]
  • Smart Dust Technology
    250, Mini-Project Report Amy Haas Smart Dust Technology Smart dust is an emerging technology with a huge potential for becoming an internationally successful commercial venture. Now is the best time to invest in smart dust – right at the point at which the scientific community is close to perfecting the technology and its applications but its potential has not yet been realized by the capitalist market. Fundamental Concept Smart dust is a theoretical concept of a tiny wireless sensor network, made up of microelectromechanical sensors (called MEMS), robots, or devices, usually referred to as motes, that have self-contained sensing, computation, communication and power1. According to the smart dust project design created by a team of UC Berkeley researchers2, within each of these motes is an integrated package of “MEMS sensors, a semiconductor laser diode and MEMS beam-steering mirror for active optical transmission, a MEMS corner-cube retroreflector for passive optical transmission, an optical receiver, signalprocessing and control circuitry, and a power source based on thick-film batteries and solar cells.” The intent is that these motes will eventually become the size of a grain of sand or a dust particle, hence the name “smart dust”, but the technology still has a long way to go to achieve its target size. In current sensor technology, the sensors are about the size of a bottle cap or small coin. As with most electronic devices or technologies, the biggest challenges in achieving actual smart dust are the power consumption issues and making the batteries small enough. Although there is a lot of work being done on solar cells to keep the motes self-sustaining, the components are just not small enough yet to actually be considered smart dust.
    [Show full text]
  • Supporting Mobile Swarm Robotics in Low Power and Lossy Sensor Networks 1 Introduction
    1 Supporting Mobile Swarm Robotics in Low Power and Lossy Sensor Networks Kevin Andrea [email protected] Robert Simon [email protected] Sean Luke [email protected] Department of Computer Science George Mason University 4400 University Drive MSN 4A5 Fairfax, VA 22030 USA Summary Wireless low-power and lossy networks (LLNs) are a key enabling technology for the deployment of massively scaled self-organizing sensor swarm systems. Supporting applications such as providing human users situational awareness across large areas requires that swarm-friendly LLNs effectively support communication between embedded and mobile devices, such as autonomous robots. The reason for this is that large scale embedded sensor applications such as unattended ground sensing systems typically do not have full end-to-end connectivity, but suffer frequent communication partitions. Further, it is desirable for many tactical applications to offload tasks to mobile robots. Despite the importance of support this communication pattern, there has been relatively little work in designing and evaluating LLN-friendly protocols capable of supporting such interactions. This paper addresses the above problem by describing the design, implementation, and evaluation of the MoRoMi system. MoRoMi stands for Mobile Robotic MultI-sink. It is intended to support autonomous mobile robots that interact with embedded sensor swarms engaged in activities such as cooperative target observation, collective map building, and ant foraging. These activities benefit if the swarm can dynamically interact with embedded sensing and actuator systems that provide both local environmental or positional information and an ad-hoc communication system. Our paper quantifies the performance levels that can be expected using current swarm and LLN technologies.
    [Show full text]
  • Survey on Terahertz Nanocommunication and Networking
    1 Survey on Terahertz Nanocommunication and Networking: A Top-Down Perspective Filip Lemic∗, Sergi Abadaly, Wouter Tavernierz, Pieter Stroobantz, Didier Collez, Eduard Alarcon´ y, Johann Marquez-Barja∗, Jeroen Famaey∗ ∗Internet Technology and Data Science Lab (IDLab), Universiteit Antwerpen - imec, Belgium yNaNoNetworking Center in Catalunya (N3Cat), Universitat Politecnica` de Catalunya, Spain zInternet Technology and Data Science Lab (IDLab), Ghent University - imec, Belgium Email: fi[email protected] Abstract—Recent developments in nanotechnology herald Communication and coordination among the nanodevices, nanometer-sized devices expected to bring light to a number of as well as between them and the macro-scale world, will groundbreaking applications. Communication with and among be required to achieve the full promise of such applications. nanodevices will be needed for unlocking the full potential of such applications. As the traditional communication approaches Thus, several alternative nanocommunication paradigms have cannot be directly applied in nanocommunication, several alter- emerged in the recent years, the most promising ones being native paradigms have emerged. Among them, electromagnetic electromagnetic, acoustic, mechanical, and molecular commu- nanocommunication in the terahertz (THz) frequency band is nication [2]. particularly promising, mainly due to the breakthrough of novel In molecular nanocommunication, a transmitting device materials such as graphene. For this reason, numerous research efforts are nowadays targeting THz band nanocommunication releases molecules into a propagation medium, with the and consequently nanonetworking. As it is expected that these molecules being used as the information carriers [3]. Acoustic trends will continue in the future, we see it beneficial to nanocommunication utilizes pressure variations in the (fluid summarize the current status in these research domains.
    [Show full text]
  • Robot Based Home Automation
    International Journal of Recent Technology and Engineering (IJRTE) ISSN: 2277-3878, Volume-8, Issue-1S4, June 2019 Robot based Home Automation L. Nikhil Manikanta, M. Pushpavalli, P. Saikumar, P. Sivagami, M. Vikram Reddy, P. Abirami Abstract--- Robot Based Home Automation, nowadays in the information for the security outside the home for potential society we cannot trust anyone compared to systems and robots. threats and smart control of things like main gates, garage By trusting robots and the internet of things is much more than and also scanning the person through facial recognition human beings. When it comes to our home, the concept is to outside the home [4]. The setup also contains the solar make it smarter, safer and automatic and with the security of a robot. This project looks on building smart wireless and robotic panels for lighting purpose in the garden at the night. There security system which sends second to second information to is a waterproof fire sensor for when the fire appears owners and that too stored in the cloud by using the internet of accidental in the home automatically it detects and sprinkler things in case of any raises an alarm. Home automation by will on and water will appear inside the home. Gas sensor making some set of sensors. Internet of things is growing more by also used in the kitchen due to detection of leakage of day by day. Internet of Things is a system that uses computers cooking gas and it gives the alarm. For old age people, the and mobile devices to control home functions through the internet from anywhere in the world.
    [Show full text]
  • A Literature Review on New Robotics: Automation from Love to War
    A literature review on new robotics : automation from love to war Citation for published version (APA): Royakkers, L. M. M., & Est, van, Q. C. (2015). A literature review on new robotics : automation from love to war. International Journal of Social Robotics, 7(5), 549-570. https://doi.org/10.1007/s12369-015-0295-x DOI: 10.1007/s12369-015-0295-x Document status and date: Published: 01/11/2015 Document Version: Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers) Please check the document version of this publication: • A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website. • The final author version and the galley proof are versions of the publication after peer review. • The final published version features the final layout of the paper including the volume, issue and page numbers. Link to publication General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal.
    [Show full text]
  • Toward a Wired Ad Hoc Nanonetwork
    Toward a Wired Ad Hoc Nanonetwork Oussama Abderrahmane Dambri and Soumaya Cherkaoui INTERLAB, Engineering Faculty, Universite´ de Sherbrooke, Canada Email: fabderrahmane.oussama.dambri, [email protected] Abstract—Nanomachines promise to enable new medical appli- safety to use terahertz frequencies inside the human body for cations, including drug delivery and real time chemical reactions’ medical applications is another problem of electromagnetic detection inside the human body. Such complex tasks need coop- communication at nanoscale, which needs further research. eration between nanomachines using a communication network. Wireless Ad hoc networks, using molecular or electromagnetic- Molecular communication is a bioinspired paradigm that uses based communication have been proposed in the literature to cre- molecules as information carriers instead of electromagnetic ate flexible nanonetworks between nanomachines. In this paper, waves. Molecular communication is used by nature and can we propose a Wired Ad hoc NanoNETwork (WANNET) model be leveraged safely inside the human body. In [4], the authors design using actin-based nano-communication. In the proposed proposed a mobile ad hoc nanonetwork with collision-based model, actin filaments self-assembly and disassembly is used to create flexible nanowires between nanomachines, and electrons molecular communication. This Mobile Ad hoc Molecular are used as carriers of information. We give a general overview of NETwork (MAMNET) employs infectious disease spreading the application layer, Medium Access Control (MAC) layer and a principles using the electrochemical collision between mobile physical layer of the model. We also detail the analytical model nanomachines to transfer information. Another MAMNET of the physical layer using actin nanowire equivalent circuits, system is proposed in [5], by using Forster¨ Resonance Energy and we present an estimation of the circuit component’s values.
    [Show full text]
  • What About Near Field Communication Technology? an Overview with Possible Future Telemedicine Applications
    What about Near Field Communication technology? An overview with possible future telemedicine applications. Enrico M. Staderini Norwegian Centre for Telemedicine, Tromsø, Norway Correspondence: Nasjonalt Senter for Telemedisin, Postboks 35, N-9038 Tromsø, Norway (Fax: +47 7775 4098; Email: [email protected]) Summary Near Field Communication (NFC), jointly developed by giant players in the consumer elec- tronics arena such as Philips and Sony, is the last in a series of ever evolving wireless network- ing technologies for data transfer. The impacts and the potential uses of this technology (ECMA-340 standard) in the medical device field, and telemedicine as well, are analyzed and compared with existing wireless technologies for data and signal transfer. The intrinsically very short range of NFC is all but a limiting factor indeed. Having the communicating devices to be placed intentionally close to communicate, an higher level of security is obtained: a must for medical privacy sensible data exchange. Furthermore, NFC data rate can go as fast as a few hundreds of thousands of bits per second so to provide a channel wide enough for real time biomedical signal transmission. The extremely low power required for NFC operation, which reaches zero on the target in the passive communication mode, is an extra bonus in modern battery operated, and very much battery life concerned, medical devices. It seems that NFC technology may enable new products having new functionalities and new man-machine inter- faces in the future telemedicine systems to come. Introduction Wireless technology started being appreciated by health care providers and medical devices manufacturers in the late ‘90s, just when mobile phone communications began skyrocketing.
    [Show full text]
  • Wireless Body Area Network: an Overview and Various Applications
    Journal of Computer and Communications, 2017, 5, 53-64 http://www.scirp.org/journal/jcc ISSN Online: 2327-5227 ISSN Print: 2327-5219 Wireless Body Area Network: An Overview and Various Applications Md. Taslim Arefin1*, Mohammad Hanif Ali1, A. K. M. Fazlul Haque2 1Department of Computer Science and Engineering, Jahangirnagar University, Dhaka, Bangladesh 2Department of Electronics and Telecommunication Engineering, Daffodil International University, Dhaka, Bangladesh How to cite this paper: Arefin, Md.T., Ali, Abstract M.H. and Haque, A.K.M.F. (2017) Wireless Body Area Network: An Overview and Over the past years a booming interest is comprehended in the field of wire- Various Applications. Journal of Computer less communication for the development of a monitoring system to observe and Communications, 5, 53-64. human vital organs activities remotely. Wireless Body Area Network (WBAN) https://doi.org/10.4236/jcc.2017.57006 is such network that provides a continuous monitoring over or inside human Received: March 21, 2017 body for a long period and can support transmission of real time traffic such Accepted: May 14, 2017 as data, voice, video to observe the status of vital organs functionalities. In this Published: May 17, 2017 paper an overview of WBAN technology and its requirements has been nar- rated. The aim of this paper was to offer a suitable and appropriate wireless Copyright © 2017 by authors and Scientific Research Publishing Inc. technology for deploying WBAN. Several suitable short range wireless com- This work is licensed under the Creative munication technologies that can be adopted in WBAN have also been dis- Commons Attribution International cussed.
    [Show full text]