Streaming-Data Algorithms for High-Quality Clustering 1 Introduction

Total Page:16

File Type:pdf, Size:1020Kb

Streaming-Data Algorithms for High-Quality Clustering 1 Introduction StreamingData Algorithms For HighQuality Clustering Liadan OCallaghan Nina Mishra Adam Meyerson Sudipto Guha Ra jeev Motwani Octob er Abstract As data gathering grows easier and as researchers discover new ways to interpret data streaming data algorithms have b ecome essential in many elds Data stream computation precludes algo rithms that require random access or large memory In this pap er we consider the problem of clustering data streams which is imp ortant in the analysis a variety of sources of data streams such as routing data telephone records web do cuments and clickstreams We provide a new clus tering algorithms with theoretical guarantees on its p erformance We give empirical evidence of its sup eriority over the commonlyused k Means algorithm We then adapt our algorithm to b e able to op erate on data streams and exp erimentally demonstrate its sup erior p erformance in this context Intro duction For many recent applications the concept of a data stream is more appropriate than a data set By nature a stored data set is an appropriate mo del when signicant p ortions of the data are queried again and again and up dates are small andor relatively infrequent In contrast a data stream is an appropriate mo del when a large volume of data is arriving continuously and it is either unnecessary or impractical to store the data in some form of memory Data streams are also appropriate as a mo del of access to large data sets stored in secondary memory where p erformance requirements necessitate access via linear scans In the data stream mo del the data p oints can only b e accessed in the order in which they arrive Random access to the data is not allowed memory is assumed to b e small relative to the numb er of p oints and so only a limited amount of information can b e stored In general algorithms op erating on streams will b e restricted to fairly simple calculations b ecause of the time and space constraints The challenge facing algorithm designers is to p erform meaningful computation with these restrictions Some applications naturally generate data streams as opp osed to simple data sets Astronomers telecommunications companies banks sto ckmarket analysts and news organizations for example Contact author emaillo ccsstanfordedu other authors emails nmishrahplhpcom awmcsstanfordedu sudiptoresearchattcomra jeevcsstanfordedu have vast amounts of data arriving continuously In telecommunications for example cal l records are generated continuously Typically most pro cessing is done by examining a call record once after which records are archived and not examined again For example Cortes et al rep ort working with ATT long distance call records consisting of million records p er day for million customers There are also applications where traditional nonstreaming data is treated as a stream due to p erformance constraints For researchers mining medical or marketing data for example the volume of data stored on disk is so large that it is only p ossible to make one pass or p erhaps a very small numb er of passes over the data Research on data stream computation includes work on sampling nding quantiles of a stream of p oints and calculating the Ldierence of two streams A common form of data analysis in these applications involves clustering ie partitioning the data set into subsets clusters such that memb ers of the same cluster are similar and memb ers of distinct clusters are dissimilar Typically a cluster is characterized by a canonical element or representative called the cluster center The goal is either to determine cluster centers or to actually compute the clustered partition of the data set This pap er is concerned with the challenging problem of clustering data arriving in the form of stream We provide a new clustering algorithm with theoretical guarantees on its p erformance We give empirical evidence of its sup eriority over the commonlyused k Means algorithm We then adapt our algorithm to b e able to op erate on data streams and exp erimentally demonstrate its sup erior p erformance in this context In what follows we will rst describ e the clustering problem in greater detail then give a highlevel overview of our results and the organization of the pap er followed a discussion of earlier related work The Clustering Problem There are many dierent variants of the clustering problem and literature in this eld spans a large variety of application areas including data mining data compression pattern recognition and machine learning In our work we will fo cus on following version of the problem given an integer k and a collection N of n p oints in a metric space nd k medians cluster centers in the metric space so that each p oint in N is assigned to the cluster dened by the median p oint nearest to it The quality of the clustering is measured by the sum of squared distances SSQ of data p oints from their assigned medians The goal is to nd a set of k medians which minimize the SSQ measure The generalized optimization problem in which any distance metric substitutes for the squared Euclidean distance is known as the k Median problem Other variants of the clustering problem may not involve centers may employ a measure other than SSQ and may consider sp ecial cases of a metric space such as ddimensional Euclidean space Since most variants are known to b e NPhard the goal is to devise algorithms that pro duce solutions with nearoptimal solutions in nearlinear running time Although nding an optimal solution to the k Median problem is known to b e NPhard many useful heuristics including k Means have b een prop osed The k Means algorithm has enjoyed con siderable practical success although the solution it pro duces is only guaranteed to b e a lo cal optimum On the other hand in the algorithms literature several approximation algorithms have 1 Although squared Euclidean distance is not a metric it ob eys a relaxed triangle inequality and therefore b ehaves much like a metric b een prop osed for k Median A capproximation algorithm is guaranteed to nd a solution whose SSQ is within a factor c of the optimal SSQ even for a worstcase input Recently Jain and Vazirani and Charikar and Guha have provided such approximation algorithms for constants c These algorithms typically run in time and space n and require random access to the data Both space requirements and the need for random access render these algorithms inapplicable to data streams Most heuristics including k Means are also infeasible for data streams b ecause they require random access As a result several heuristics have b een prop osed for scaling clustering algorithms for exam ple In the database literature the BIRCH system is commonly considered to provide a comp etitive heuristic for this problem While these heuristics have b een tested on real and synthetic datasets there are no guarantees on their SSQ p erformance Overview of Results We will present a fast k Median algorithm called LOCALSEARCH that uses lo cal search techniques give theoretical justication for its success and present exp erimental results showing how it outp erforms k Means Next we will convert the algorithm into a streaming algorithm using the technique in This conversion will decrease the asymptotic running time drastically cut the memory usage and remove the randomaccess requirement making the algorithm suitable for use on streams We will also present exp erimental results showing how the stream algorithm p erforms against p opular heuristics The rest of this pap er is organized as follows We b egin in Section by formally dening the stream mo del and the k Median problem Our solution for k Median is obtained via a variant called facility lo cation which do es not sp ecify in advance the numb er of clusters desired and instead evaluates an algorithms p erformance by a combination of SSQ and the numb er of centers used To our knowledge this is the rst time this approach has b een used to attack the k Median problem Our discussion ab out streaming can b e found in Section The streaming algorithm given in this section is shown to enjoy theoretical quality guarantees As describ ed later our empirical results reveal that on b oth synthetic and real streams our theoretically sound algorithm achieves dramatically b etter clustering quality SSQ than BIRCH although it takes longer to run Section describ es new and critical conceptualizations that characterize which instances of facility lo cation we will solve to obtain a k Median solution and also what subset of feasible facilities is sucient to obtain an approximate solution LOCALSEARCH is also detailed in this section We p erformed an extensive series of exp eriments comparing LOCALSEARCH against the k Means algorithm on numerous low and highdimensional data The results presented in Section uncover an interesting tradeo b etween the cluster quality and the running time We found that SSQ for k means was worse than that for LOCALSEARCH and that LOCALSEARCH typically found near optimum if not the optimum solution Since b oth algorithms are randomized we ran each one several times on each dataset over the course of multiple runs there was a large variance in the p erformance of k Means whereas LOCALSEARCH was consistently go o d LOCALSEARCH to ok longer to run for each trial but for most datasets found a nearoptimal answer b efore k Means found an equally go o d solution On many datasets of course k Means never found a go o d solution We view b oth k Means and BIRCH as algorithms that do a quickanddirty job of obtaining
Recommended publications
  • Data Streams and Applications in Computer Science
    Data Streams and Applications in Computer Science David P. Woodruff IBM Research Almaden [email protected] Abstract This is a short survey of my work in data streams and related appli- cations, such as communication complexity, numerical linear algebra, and sparse recovery. The goal is give a non-technical overview of results in data streams, and highlight connections between these different areas. It is based on my Presburger lecture award given at ICALP, 2014. 1 The Data Stream Model Informally speaking, a data stream is a sequence of data that is too large to be stored in available memory. The data may be a sequence of numbers, points, edges in a graph, and so on. There are many examples of data streams, such as internet search logs, network traffic, sensor networks, and scientific data streams (such as in astronomics, genomics, physical simulations, etc.). The abundance of data streams has led to new algorithmic paradigms for processing them, which often impose very stringent requirements on the algorithm’s resources. Formally, in the streaming model, there is a sequence of elements a1;:::; am presented to an algorithm, where each element is drawn from a universe [n] = f1;:::; ng. The algorithm is allowed a single or a small number of passes over the stream. In network applications, the algorithm is typically only given a single pass, since if data on a network is not physically stored somewhere, it may be impossible to make a second pass over it. In other applications, such as when data resides on external memory, it may be streamed through main memory a small number of times, each time constituting a pass of the algorithm.
    [Show full text]
  • Efficient Semi-Streaming Algorithms for Local Triangle Counting In
    Efficient Semi-streaming Algorithms for Local Triangle Counting in Massive Graphs ∗ Luca Becchetti Paolo Boldi Carlos Castillo “Sapienza” Università di Roma Università degli Studi di Milano Yahoo! Research Rome, Italy Milan, Italy Barcelona, Spain [email protected] [email protected] [email protected] Aristides Gionis Yahoo! Research Barcelona, Spain [email protected] ABSTRACT Categories and Subject Descriptors In this paper we study the problem of local triangle count- H.3.3 [Information Systems]: Information Search and Re- ing in large graphs. Namely, given a large graph G = (V; E) trieval we want to estimate as accurately as possible the number of triangles incident to every node v 2 V in the graph. The problem of computing the global number of triangles in a General Terms graph has been considered before, but to our knowledge this Algorithms, Measurements is the first paper that addresses the problem of local tri- angle counting with a focus on the efficiency issues arising Keywords in massive graphs. The distribution of the local number of triangles and the related local clustering coefficient can Graph Mining, Semi-Streaming, Probabilistic Algorithms be used in many interesting applications. For example, we show that the measures we compute can help to detect the 1. INTRODUCTION presence of spamming activity in large-scale Web graphs, as Graphs are a ubiquitous data representation that is used well as to provide useful features to assess content quality to model complex relations in a wide variety of applica- in social networks. tions, including biochemistry, neurobiology, ecology, social For computing the local number of triangles we propose sciences, and information systems.
    [Show full text]
  • Streaming Quantiles Algorithms with Small Space and Update Time
    Streaming Quantiles Algorithms with Small Space and Update Time Nikita Ivkin Edo Liberty Kevin Lang [email protected] [email protected] [email protected] Amazon Amazon Yahoo Research Zohar Karnin Vladimir Braverman [email protected] [email protected] Amazon Johns Hopkins University ABSTRACT An approximate version of the problem relaxes this requirement. Approximating quantiles and distributions over streaming data has It is allowed to output an approximate rank which is off by at most been studied for roughly two decades now. Recently, Karnin, Lang, εn from the exact rank. In a randomized setting, the algorithm and Liberty proposed the first asymptotically optimal algorithm is allowed to fail with probability at most δ. Note that, for the for doing so. This manuscript complements their theoretical result randomized version to provide a correct answer to all possible by providing a practical variants of their algorithm with improved queries, it suffices to amplify the success probability by running constants. For a given sketch size, our techniques provably reduce the algorithm with a failure probability of δε, and applying the 1 the upper bound on the sketch error by a factor of two. These union bound over O¹ ε º quantiles. Uniform random sampling of ¹ 1 1 º improvements are verified experimentally. Our modified quantile O ε 2 log δ ε solves this problem. sketch improves the latency as well by reducing the worst-case In network monitoring [16] and other applications it is critical 1 1 to maintain statistics while making only a single pass over the update time from O¹ ε º down to O¹log ε º.
    [Show full text]
  • Turnstile Streaming Algorithms Might As Well Be Linear Sketches
    Turnstile Streaming Algorithms Might as Well Be Linear Sketches Yi Li Huy L. Nguyên˜ David P. Woodruff Max-Planck Institute for Princeton University IBM Research, Almaden Informatics [email protected] [email protected] [email protected] ABSTRACT Keywords In the turnstile model of data streams, an underlying vector x 2 streaming algorithms, linear sketches, lower bounds, communica- {−m; −m+1; : : : ; m−1; mgn is presented as a long sequence of tion complexity positive and negative integer updates to its coordinates. A random- ized algorithm seeks to approximate a function f(x) with constant probability while only making a single pass over this sequence of 1. INTRODUCTION updates and using a small amount of space. All known algorithms In the turnstile model of data streams [28, 34], there is an under- in this model are linear sketches: they sample a matrix A from lying n-dimensional vector x which is initialized to ~0 and evolves a distribution on integer matrices in the preprocessing phase, and through an arbitrary finite sequence of additive updates to its coor- maintain the linear sketch A · x while processing the stream. At the dinates. These updates are fed into a streaming algorithm, and have end of the stream, they output an arbitrary function of A · x. One the form x x + ei or x x − ei, where ei is the i-th standard cannot help but ask: are linear sketches universal? unit vector. This changes the i-th coordinate of x by an additive In this work we answer this question by showing that any 1- 1 or −1.
    [Show full text]
  • Finding Graph Matchings in Data Streams
    Finding Graph Matchings in Data Streams Andrew McGregor⋆ Department of Computer and Information Science, University of Pennsylvania, Philadelphia, PA 19104, USA [email protected] Abstract. We present algorithms for finding large graph matchings in the streaming model. In this model, applicable when dealing with mas- sive graphs, edges are streamed-in in some arbitrary order rather than 1 residing in randomly accessible memory. For ǫ > 0, we achieve a 1+ǫ 1 approximation for maximum cardinality matching and a 2+ǫ approxi- mation to maximum weighted matching. Both algorithms use a constant number of passes and O˜( V ) space. | | 1 Introduction Given a graph G = (V, E), the Maximum Cardinality Matching (MCM) problem is to find the largest set of edges such that no two adjacent edges are selected. More generally, for an edge-weighted graph, the Maximum Weighted Matching (MWM) problem is to find the set of edges whose total weight is maximized subject to the condition that no two adjacent edges are selected. Both problems are well studied and exact polynomial solutions are known [1–4]. The fastest of these algorithms solves MWM with running time O(nm + n2 log n) where n = V and m = E . | | | | However, for massive graphs in real world applications, the above algorithms can still be prohibitively computationally expensive. Examples include the vir- tual screening of protein databases. (See [5] for other examples.) Consequently there has been much interest in faster algorithms, typically of O(m) complexity, that find good approximate solutions to the above problems. For MCM, a linear time approximation scheme was given by Kalantari and Shokoufandeh [6].
    [Show full text]
  • Lecture 1 1 Graph Streaming
    CS 671: Graph Streaming Algorithms and Lower Bounds Rutgers: Fall 2020 Lecture 1 September 1, 2020 Instructor: Sepehr Assadi Scribe: Sepehr Assadi Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications. They may be distributed outside this class only with the permission of the Instructor. 1 Graph Streaming Motivation Massive graphs appear in most application domains nowadays: web-pages and hyperlinks, neurons and synapses, papers and citations, or social networks and friendship links are just a few examples. Many of the computing tasks in processing these graphs, at their core, correspond to classical problems such as reachability, shortest path, or maximum matching|problems that have been studied extensively for almost a century now. However, the traditional algorithmic approaches to these problems do not accurately capture the challenges of processing massive graphs. For instance, we can no longer assume a random access to the entire input on these graphs, as their sheer size prevents us from loading them into the main memory. To handle these challenges, there is a rapidly growing interest in developing algorithms that explicitly account for the restrictions of processing massive graphs. Graph streaming algorithms have been particularly successful in this regard; these are algorithms that process input graphs by making one or few sequential passes over their edges while using a small memory. Not only streaming algorithms can be directly used to address various challenges in processing massive graphs such as I/O-efficiency or monitoring evolving graphs in realtime, they are also closely connected to other models of computation for massive graphs and often lead to efficient algorithms in those models as well.
    [Show full text]
  • Streaming Algorithms
    3 Streaming Algorithms Great Ideas in Theoretical Computer Science Saarland University, Summer 2014 Some Admin: • Deadline of Problem Set 1 is 23:59, May 14 (today)! • Students are divided into two groups for tutorials. Visit our course web- site and use Doodle to to choose your free slots. • If you find some typos or like to improve the lecture notes (e.g. add more details, intuitions), send me an email to get .tex file :-) We live in an era of “Big Data”: science, engineering, and technology are producing in- creasingly large data streams every second. Looking at social networks, electronic commerce, astronomical and biological data, the big data phenomenon appears everywhere nowadays, and presents opportunities and challenges for computer scientists and mathematicians. Com- paring with traditional algorithms, several issues need to be considered: A massive data set is too big to be stored; even an O(n2)-time algorithm is too slow; data may change over time, and algorithms need to cope with dynamic changes of the data. Hence streaming, dynamic and distributed algorithms are needed for analyzing big data. To illuminate the study of streaming algorithms, let us look at a few examples. Our first example comes from network analysis. Any big website nowadays receives millions of visits every minute, and very frequent visit per second from the same IP address are probably gen- erated automatically by computers and due to hackers. In this scenario, a webmaster needs to efficiently detect and block those IPs which generate very frequent visits per second. Here, instead of storing all IP record history which are expensive, we need an efficient algorithm that detect most such IPs.
    [Show full text]
  • Anytime Algorithms for Stream Data Mining
    Anytime Algorithms for Stream Data Mining Von der Fakultat¨ fur¨ Mathematik, Informatik und Naturwissenschaften der RWTH Aachen University zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften genehmigte Dissertation vorgelegt von Diplom-Informatiker Philipp Kranen aus Willich, Deutschland Berichter: Universitatsprofessor¨ Dr. rer. nat. Thomas Seidl Visiting Professor Michael E. Houle, PhD Tag der mundlichen¨ Prufung:¨ 14.09.2011 Diese Dissertation ist auf den Internetseiten der Hochschulbibliothek online verfugbar.¨ Contents Abstract / Zusammenfassung1 I Introduction5 1 The Need for Anytime Algorithms7 1.1 Thesis structure......................... 16 2 Knowledge Discovery from Data 17 2.1 The KDD process and data mining tasks ........... 17 2.2 Classification .......................... 25 2.3 Clustering............................ 36 3 Stream Data Mining 43 3.1 General Tools and Techniques................. 43 3.2 Stream Classification...................... 52 3.3 Stream Clustering........................ 59 II Anytime Stream Classification 69 4 The Bayes Tree 71 4.1 Introduction and Preliminaries................. 72 4.2 Indexing density models.................... 76 4.3 Experiments........................... 87 4.4 Conclusion............................ 98 i ii CONTENTS 5 The MC-Tree 99 5.1 Combining Multiple Classes.................. 100 5.2 Experiments........................... 111 5.3 Conclusion............................ 116 6 Bulk Loading the Bayes Tree 117 6.1 Bulk loading mixture densities . 117 6.2 Experiments..........................
    [Show full text]
  • Regular Path Query Evaluation on Streaming Graphs
    Regular Path ery Evaluation on Streaming Graphs∗ Anil Pacaci Angela Bonifati M. Tamer Özsu University of Waterloo Lyon 1 University University of Waterloo [email protected] [email protected] [email protected] ABSTRACT on the entire stream. Most existing work focus on the snap- We study persistent query evaluation over streaming graphs, shot model, which assumes that graphs are static and fully which is becoming increasingly important. We focus on available, and adhoc queries reect the current state of the navigational queries that determine if there exists a path database (e.g., [24, 45, 62, 64, 68–70]). The dynamic graph between two entities that satises a user-specied constraint. model addresses the evolving nature of these graphs; how- We adopt the Regular Path Query (RPQ) model that species ever, algorithms in this model assume that the entire graph navigational patterns with labeled constraints. We propose is fully available and they compute how the output changes deterministic algorithms to eciently evaluate persistent as the graph is updated [15, 42, 47, 60]. RPQs under both arbitrary and simple path semantics in a In this paper, we study the problem of persistent query uniform manner. Experimental analysis on real and synthetic processing over streaming graphs, addressing the limitations streaming graphs shows that the proposed algorithms can of existing approaches. We adopt the Regular Path Query process up to tens of thousands of edges per second and (RPQ) model that focuses on path navigation, e.g., nding eciently answer RPQs that are commonly used in real- pairs of users in a network connected by a path whose label world workloads.
    [Show full text]
  • Stochastic Streams: Sample Complexity Vs. Space Complexity
    Stochastic Streams: Sample Complexity vs. Space Complexity Michael Crouch1, Andrew McGregor2, Gregory Valiant3, and David P. Woodruff4 1 Bell Labs Ireland 2 University of Massachusetts Amherst 3 Stanford University 4 IBM Research Almaden Abstract We address the trade-off between the computational resources needed to process a large data set and the number of samples available from the data set. Specifically, we consider the following abstraction: we receive a potentially infinite stream of IID samples from some unknown distribu- tion D, and are tasked with computing some function f(D). If the stream is observed for time t, how much memory, s, is required to estimate f(D)? We refer to t as the sample complexity and s as the space complexity. The main focus of this paper is investigating the trade-offs between the space and sample complexity. We study these trade-offs for several canonical problems stud- ied in the data stream model: estimating the collision probability, i.e., the second moment of a distribution, deciding if a graph is connected, and approximating the dimension of an unknown subspace. Our results are based on techniques for simulating different classical sampling proced- ures in this model, emulating random walks given a sequence of IID samples, as well as leveraging a characterization between communication bounded protocols and statistical query algorithms. 1998 ACM Subject Classification F.2.3 Tradeoffs between Complexity Measures Keywords and phrases data streams, sample complexity, frequency moments, graph connectivity, subspace approximation Digital Object Identifier 10.4230/LIPIcs.ESA.2016.258 1 Introduction Big data systems must process data at multiple levels of a hierarchy, starting at local per-process or per-container monitoring and extending up to aggregate statistics for entire databases or data centers.
    [Show full text]
  • Finding Matchings in the Streaming Model
    University of Pennsylvania ScholarlyCommons Technical Reports (CIS) Department of Computer & Information Science January 2004 Finding Matchings in the Streaming Model Andrew McGregor University of Pennsylvania Follow this and additional works at: https://repository.upenn.edu/cis_reports Recommended Citation Andrew McGregor, "Finding Matchings in the Streaming Model", . January 2004. University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-CIS-04-19. This paper is posted at ScholarlyCommons. https://repository.upenn.edu/cis_reports/21 For more information, please contact [email protected]. Finding Matchings in the Streaming Model Abstract This report presents algorithms for finding large matchings in the streaming model. In this model, applicable when dealing with massive graphs, edges are streamed-in in some arbitrary order rather than residing in randomly accessible memory. For ε > 0, we achieve a 1/(1+ε) approximation for maximum cardinality matching and a 1/(2+ε) approximation to maximum weighted matching. Both algorithms use a constant number of passes. Comments University of Pennsylvania Department of Computer and Information Science Technical Report No. MS- CIS-04-19. This technical report is available at ScholarlyCommons: https://repository.upenn.edu/cis_reports/21 Finding Matchings in the Streaming Model Andrew McGregor∗ Abstract This report presents algorithms for finding large matchings in the streaming model. In this model, applicable when dealing with massive graphs, edges are streamed-in in some arbitrary order rather than 1 residing in randomly accessible memory. For > 0, we achieve a 1+ approximation for maximum 1 cardinality matching and a 2+ approximation to maximum weighted matching. Both algorithms use a constant number of passes.
    [Show full text]
  • Suffix Tree, Minwise Hashing and Streaming Algorithms for Big Data Analysis in Bioinformatics
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Computer Science and Engineering: Theses, Computer Science and Engineering, Department Dissertations, and Student Research of Fall 12-4-2020 SUFFIX TREE, MINWISE HASHING AND STREAMING ALGORITHMS FOR BIG DATA ANALYSIS IN BIOINFORMATICS Sairam Behera University of Nebraska-Lincoln, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/computerscidiss Part of the Computer Engineering Commons, and the Computer Sciences Commons Behera, Sairam, "SUFFIX TREE, MINWISE HASHING AND STREAMING ALGORITHMS FOR BIG DATA ANALYSIS IN BIOINFORMATICS" (2020). Computer Science and Engineering: Theses, Dissertations, and Student Research. 201. https://digitalcommons.unl.edu/computerscidiss/201 This Article is brought to you for free and open access by the Computer Science and Engineering, Department of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Computer Science and Engineering: Theses, Dissertations, and Student Research by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. SUFFIX TREE, MINWISE HASHING AND STREAMING ALGORITHMS FOR BIG DATA ANALYSIS IN BIOINFORMATICS by Sairam Behera A DISSERTATION Presented to the Faculty of The Graduate College at the University of Nebraska In Partial Fulfilment of Requirements For the Degree of Doctor of Philosophy Major: Computer Science Under the Supervision of Professor Jitender S. Deogun Lincoln, Nebraska December, 2020 SUFFIX TREE, MINWISE HASHING AND STREAMING ALGORITHMS FOR BIG DATA ANALYSIS IN BIOINFORMATICS Sairam Behera, Ph.D. University of Nebraska, 2020 Adviser: Jitender S. Deogun In this dissertation, we worked on several algorithmic problems in bioinformatics using mainly three approaches: (a) a streaming model, (b) suffix-tree based indexing, and (c) minwise-hashing (minhash) and locality-sensitive hashing (LSH).
    [Show full text]