Construction of the Implied Volatility Smile
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Schedule Rc-L – Derivatives and Off-Balance Sheet Items
FFIEC 031 and 041 RC-L – DERIVATIVES AND OFF-BALANCE SHEET SCHEDULE RC-L – DERIVATIVES AND OFF-BALANCE SHEET ITEMS General Instructions Schedule RC-L should be completed on a fully consolidated basis. In addition to information about derivatives, Schedule RC-L includes the following selected commitments, contingencies, and other off-balance sheet items that are not reportable as part of the balance sheet of the Report of Condition (Schedule RC). Among the items not to be reported in Schedule RC-L are contingencies arising in connection with litigation. For those asset-backed commercial paper program conduits that the reporting bank consolidates onto its balance sheet (Schedule RC) in accordance with ASC Subtopic 810-10, Consolidation – Overall (formerly FASB Interpretation No. 46 (Revised), “Consolidation of Variable Interest Entities,” as amended by FASB Statement No. 167, “Amendments to FASB Interpretation No. 46(R)”), any credit enhancements and liquidity facilities the bank provides to the programs should not be reported in Schedule RC-L. In contrast, for conduits that the reporting bank does not consolidate, the bank should report the credit enhancements and liquidity facilities it provides to the programs in the appropriate items of Schedule RC-L. Item Instructions Item No. Caption and Instructions 1 Unused commitments. Report in the appropriate subitem the unused portions of commitments. Unused commitments are to be reported gross, i.e., include in the appropriate subitem the unused amount of commitments acquired from and conveyed or participated to others. However, exclude commitments conveyed or participated to others that the bank is not legally obligated to fund even if the party to whom the commitment has been conveyed or participated fails to perform in accordance with the terms of the commitment. -
Lecture 7 Futures Markets and Pricing
Lecture 7 Futures Markets and Pricing Prof. Paczkowski Lecture 7 Futures Markets and Pricing Prof. Paczkowski Rutgers University Spring Semester, 2009 Prof. Paczkowski (Rutgers University) Lecture 7 Futures Markets and Pricing Spring Semester, 2009 1 / 65 Lecture 7 Futures Markets and Pricing Prof. Paczkowski Part I Assignment Prof. Paczkowski (Rutgers University) Lecture 7 Futures Markets and Pricing Spring Semester, 2009 2 / 65 Assignment Lecture 7 Futures Markets and Pricing Prof. Paczkowski Prof. Paczkowski (Rutgers University) Lecture 7 Futures Markets and Pricing Spring Semester, 2009 3 / 65 Lecture 7 Futures Markets and Pricing Prof. Paczkowski Introduction Part II Background Financial Markets Forward Markets Introduction Futures Markets Roles of Futures Markets Existence Roles of Futures Markets Futures Contracts Terminology Prof. Paczkowski (Rutgers University) Lecture 7 Futures Markets and Pricing Spring Semester, 2009 4 / 65 Pricing Incorporating Risk Profiting and Offsetting Futures Concept Lecture 7 Futures Markets and Buyer Seller Pricing Wants to buy Prof. Paczkowski Situation - but not today Introduction Price will rise Background Expectation before ready Financial Markets to buy Forward Markets 1 Futures Markets Buy today Roles of before ready Futures Markets Strategy 2 Buy futures Existence contract to Roles of Futures hedge losses Markets Locks in low Result Futures price Contracts Terminology Prof. Paczkowski (Rutgers University) Lecture 7 Futures Markets and Pricing Spring Semester, 2009 5 / 65 Pricing Incorporating -
FINANCIAL DERIVATIVES SAMPLE QUESTIONS Q1. a Strangle Is an Investment Strategy That Combines A. a Call and a Put for the Same
FINANCIAL DERIVATIVES SAMPLE QUESTIONS Q1. A strangle is an investment strategy that combines a. A call and a put for the same expiry date but at different strike prices b. Two puts and one call with the same expiry date c. Two calls and one put with the same expiry dates d. A call and a put at the same strike price and expiry date Answer: a. Q2. A trader buys 2 June expiry call options each at a strike price of Rs. 200 and Rs. 220 and sells two call options with a strike price of Rs. 210, this strategy is a a. Bull Spread b. Bear call spread c. Butterfly spread d. Calendar spread Answer c. Q3. The option price will ceteris paribus be negatively related to the volatility of the cash price of the underlying. a. The statement is true b. The statement is false c. The statement is partially true d. The statement is partially false Answer: b. Q 4. A put option with a strike price of Rs. 1176 is selling at a premium of Rs. 36. What will be the price at which it will break even for the buyer of the option a. Rs. 1870 b. Rs. 1194 c. Rs. 1140 d. Rs. 1940 Answer b. Q5 A put option should always be exercised _______ if it is deep in the money a. early b. never c. at the beginning of the trading period d. at the end of the trading period Answer a. Q6. Bermudan options can only be exercised at maturity a. -
Analysis of Securitized Asset Liquidity June 2017 an He and Bruce Mizrach1
Analysis of Securitized Asset Liquidity June 2017 An He and Bruce Mizrach1 1. Introduction This research note extends our prior analysis2 of corporate bond liquidity to the structured products markets. We analyze data from the TRACE3 system, which began collecting secondary market trading activity on structured products in 2011. We explore two general categories of structured products: (1) real estate securities, including mortgage-backed securities in residential housing (MBS) and commercial building (CMBS), collateralized mortgage products (CMO) and to-be-announced forward mortgages (TBA); and (2) asset-backed securities (ABS) in credit cards, autos, student loans and other miscellaneous categories. Consistent with others,4 we find that the new issue market for securitized assets decreased sharply after the financial crisis and has not yet rebounded to pre-crisis levels. Issuance is below 2007 levels in CMBS, CMOs and ABS. MBS issuance had recovered by 2012 but has declined over the last four years. By contrast, 2016 issuance in the corporate bond market was at a record high for the fifth consecutive year, exceeding $1.5 trillion. Consistent with the new issue volume decline, the median age of securities being traded in non-agency CMO are more than ten years old. In student loans, the average security is over seven years old. Over the last four years, secondary market trading volumes in CMOs and TBA are down from 14 to 27%. Overall ABS volumes are down 16%. Student loan and other miscellaneous ABS declines balance increases in automobiles and credit cards. By contrast, daily trading volume in the most active corporate bonds is up nearly 28%. -
Foreign Currency Derivatives
Chapter5 Foreign Currency Derivatives 7. 1 Currency Derivatives • Currency derivatives are financial instruments (e.g., futures, forwards, and options) prices of which are determined by the underlying value of the currency under consideration. • Currency derivatives therefore make sense only in a flexible/floating exchange rate system where the value of the underlying asset, i.e., the currency keeps changing. 7. 2 Key Objectives To explain how currency (1) forward contracts, (2) futures contracts, and (3) options contracts are used for hedging or speculation based on anticipated exchange rate movements. 7. 3 Forward Market • A forward contract is an agreement between a firm and a commercial bank to exchange a specified amount of a currency at a specified exchange rate (called the forward rate) on a specified date in the future. • Forward contracts are sold in volumes of $1 million or more, and are not normally used by consumers or small firms. 7. 4 Forward Market • When MNCs anticipate a future need (AP) or future receipt (AR) of a foreign currency, they can set up forward contracts with commercial banks to lock in the exchange rate. • The % by which the forward rate (F ) exceeds the spot rate (S ) at a given point in time is called the forward premium (p ). p = F – S S • F exhibits a discount when p < 0. 7. 5 Forward Market Example S = $1.681/£, 90-day F = $1.677/£ × annualized p = F – S 360 S n × = 1.677 – 1.681 360 = –.95% 1.681 90 The forward premium (discount) usually reflects the difference between the home and foreign interest rates, thus preventing arbitrage. -
MERTON JUMP-DIFFUSION MODEL VERSUS the BLACK and SCHOLES APPROACH for the LOG-RETURNS and VOLATILITY SMILE FITTING Nicola Gugole
International Journal of Pure and Applied Mathematics Volume 109 No. 3 2016, 719-736 ISSN: 1311-8080 (printed version); ISSN: 1314-3395 (on-line version) url: http://www.ijpam.eu AP doi: 10.12732/ijpam.v109i3.19 ijpam.eu MERTON JUMP-DIFFUSION MODEL VERSUS THE BLACK AND SCHOLES APPROACH FOR THE LOG-RETURNS AND VOLATILITY SMILE FITTING Nicola Gugole Department of Computer Science University of Verona Strada le Grazie, 15-37134, Verona, ITALY Abstract: In the present paper we perform a comparison between the standard Black and Scholes model and the Merton jump-diffusion one, from the point of view of the study of the leptokurtic feature of log-returns and also concerning the volatility smile fitting. Provided results are obtained by calibrating on market data and by mean of numerical simulations which clearly show how the jump-diffusion model outperforms the classical geometric Brownian motion approach. AMS Subject Classification: 60H15, 60H35, 91B60, 91G20, 91G60 Key Words: Black and Scholes model, Merton model, stochastic differential equations, log-returns, volatility smile 1. Introduction In the early 1970’s the world of option pricing experienced a great contribu- tion given by the work of Fischer Black and Myron Scholes. They developed a new mathematical model to treat certain financial quantities publishing re- lated results in the article The Pricing of Options and Corporate Liabilities, see [1]. The latter work became soon a reference point in the financial scenario. Received: August 3, 2016 c 2016 Academic Publications, Ltd. Revised: September 16, 2016 url: www.acadpubl.eu Published: September 30, 2016 720 N. Gugole Nowadays, many traders still use the Black and Scholes (BS) model to price as well as to hedge various types of contingent claims. -
307439 Ferdig Master Thesis
Master's Thesis Using Derivatives And Structured Products To Enhance Investment Performance In A Low-Yielding Environment - COPENHAGEN BUSINESS SCHOOL - MSc Finance And Investments Maria Gjelsvik Berg P˚al-AndreasIversen Supervisor: Søren Plesner Date Of Submission: 28.04.2017 Characters (Ink. Space): 189.349 Pages: 114 ABSTRACT This paper provides an investigation of retail investors' possibility to enhance their investment performance in a low-yielding environment by using derivatives. The current low-yielding financial market makes safe investments in traditional vehicles, such as money market funds and safe bonds, close to zero- or even negative-yielding. Some retail investors are therefore in need of alternative investment vehicles that can enhance their performance. By conducting Monte Carlo simulations and difference in mean testing, we test for enhancement in performance for investors using option strategies, relative to investors investing in the S&P 500 index. This paper contributes to previous papers by emphasizing the downside risk and asymmetry in return distributions to a larger extent. We find several option strategies to outperform the benchmark, implying that performance enhancement is achievable by trading derivatives. The result is however strongly dependent on the investors' ability to choose the right option strategy, both in terms of correctly anticipated market movements and the net premium received or paid to enter the strategy. 1 Contents Chapter 1 - Introduction4 Problem Statement................................6 Methodology...................................7 Limitations....................................7 Literature Review.................................8 Structure..................................... 12 Chapter 2 - Theory 14 Low-Yielding Environment............................ 14 How Are People Affected By A Low-Yield Environment?........ 16 Low-Yield Environment's Impact On The Stock Market........ -
The Equity Option Volatility Smile: an Implicit Finite-Difference Approach 5
The equity option volatility smile: an implicit finite-difference approach 5 The equity option volatility smile: an implicit ®nite-dierence approach Leif B. G. Andersen and Rupert Brotherton-Ratcliffe This paper illustrates how to construct an unconditionally stable finite-difference lattice consistent with the equity option volatility smile. In particular, the paper shows how to extend the method of forward induction on Arrow±Debreu securities to generate local instantaneous volatilities in implicit and semi-implicit (Crank±Nicholson) lattices. The technique developed in the paper provides a highly accurate fit to the entire volatility smile and offers excellent convergence properties and high flexibility of asset- and time-space partitioning. Contrary to standard algorithms based on binomial trees, our approach is well suited to price options with discontinuous payouts (e.g. knock-out and barrier options) and does not suffer from problems arising from negative branch- ing probabilities. 1. INTRODUCTION The Black±Scholes option pricing formula (Black and Scholes 1973, Merton 1973) expresses the value of a European call option on a stock in terms of seven parameters: current time t, current stock price St, option maturity T, strike K, interest rate r, dividend rate , and volatility1 . As the Black±Scholes formula is based on an assumption of stock prices following geometric Brownian motion with constant process parameters, the parameters r, , and are all considered constants independent of the particular terms of the option contract. Of the seven parameters in the Black±Scholes formula, all but the volatility are, in principle, directly observable in the ®nancial market. The volatility can be estimated from historical data or, as is more common, by numerically inverting the Black±Scholes formula to back out the level of Ðthe implied volatilityÐthat is consistent with observed market prices of European options. -
11 Option Payoffs and Option Strategies
11 Option Payoffs and Option Strategies Answers to Questions and Problems 1. Consider a call option with an exercise price of $80 and a cost of $5. Graph the profits and losses at expira- tion for various stock prices. 73 74 CHAPTER 11 OPTION PAYOFFS AND OPTION STRATEGIES 2. Consider a put option with an exercise price of $80 and a cost of $4. Graph the profits and losses at expiration for various stock prices. ANSWERS TO QUESTIONS AND PROBLEMS 75 3. For the call and put in questions 1 and 2, graph the profits and losses at expiration for a straddle comprising these two options. If the stock price is $80 at expiration, what will be the profit or loss? At what stock price (or prices) will the straddle have a zero profit? With a stock price at $80 at expiration, neither the call nor the put can be exercised. Both expire worthless, giving a total loss of $9. The straddle breaks even (has a zero profit) if the stock price is either $71 or $89. 4. A call option has an exercise price of $70 and is at expiration. The option costs $4, and the underlying stock trades for $75. Assuming a perfect market, how would you respond if the call is an American option? State exactly how you might transact. How does your answer differ if the option is European? With these prices, an arbitrage opportunity exists because the call price does not equal the maximum of zero or the stock price minus the exercise price. To exploit this mispricing, a trader should buy the call and exercise it for a total out-of-pocket cost of $74. -
Capital Markets
U.S. DEPARTMENT OF THE TREASURY A Financial System That Creates Economic Opportunities Capital Markets OCTOBER 2017 U.S. DEPARTMENT OF THE TREASURY A Financial System That Creates Economic Opportunities Capital Markets Report to President Donald J. Trump Executive Order 13772 on Core Principles for Regulating the United States Financial System Steven T. Mnuchin Secretary Craig S. Phillips Counselor to the Secretary Staff Acknowledgments Secretary Mnuchin and Counselor Phillips would like to thank Treasury staff members for their contributions to this report. The staff’s work on the report was led by Brian Smith and Amyn Moolji, and included contributions from Chloe Cabot, John Dolan, Rebekah Goshorn, Alexander Jackson, W. Moses Kim, John McGrail, Mark Nelson, Peter Nickoloff, Bill Pelton, Fred Pietrangeli, Frank Ragusa, Jessica Renier, Lori Santamorena, Christopher Siderys, James Sonne, Nicholas Steele, Mark Uyeda, and Darren Vieira. iii A Financial System That Creates Economic Opportunities • Capital Markets Table of Contents Executive Summary 1 Introduction 3 Scope of This Report 3 Review of the Process for This Report 4 The U.S. Capital Markets 4 Summary of Issues and Recommendations 6 Capital Markets Overview 11 Introduction 13 Key Asset Classes 13 Key Regulators 18 Access to Capital 19 Overview and Regulatory Landscape 21 Issues and Recommendations 25 Equity Market Structure 47 Overview and Regulatory Landscape 49 Issues and Recommendations 59 The Treasury Market 69 Overview and Regulatory Landscape 71 Issues and Recommendations 79 -
Straddles and Strangles to Help Manage Stock Events
Webinar Presentation Using Straddles and Strangles to Help Manage Stock Events Presented by Trading Strategy Desk 1 Fidelity Brokerage Services LLC ("FBS"), Member NYSE, SIPC, 900 Salem Street, Smithfield, RI 02917 690099.3.0 Disclosures Options’ trading entails significant risk and is not appropriate for all investors. Certain complex options strategies carry additional risk. Before trading options, please read Characteristics and Risks of Standardized Options, and call 800-544- 5115 to be approved for options trading. Supporting documentation for any claims, if applicable, will be furnished upon request. Examples in this presentation do not include transaction costs (commissions, margin interest, fees) or tax implications, but they should be considered prior to entering into any transactions. The information in this presentation, including examples using actual securities and price data, is strictly for illustrative and educational purposes only and is not to be construed as an endorsement, or recommendation. 2 Disclosures (cont.) Greeks are mathematical calculations used to determine the effect of various factors on options. Active Trader Pro PlatformsSM is available to customers trading 36 times or more in a rolling 12-month period; customers who trade 120 times or more have access to Recognia anticipated events and Elliott Wave analysis. Technical analysis focuses on market action — specifically, volume and price. Technical analysis is only one approach to analyzing stocks. When considering which stocks to buy or sell, you should use the approach that you're most comfortable with. As with all your investments, you must make your own determination as to whether an investment in any particular security or securities is right for you based on your investment objectives, risk tolerance, and financial situation. -
Payoffs from Neutral Option Strategies: a Study of USD-INR Market
Journal of Economics, Management and Trade 21(12): 1-11, 2018; Article no.JEMT.44988 ISSN: 2456-9216 (Past name: British Journal of Economics, Management & Trade, Past ISSN: 2278-098X) Payoffs from Neutral Option Strategies: A Study of USD-INR Market Avneet Kaur1*, Sandeep Kapur1 and Mohit Gupta1 1School of Business Studies, Punjab Agricultural University, India. Authors’ contributions This work was carried out in collaboration between all authors. Authors AK and SK designed the study. Authors AK and MG performed the statistical analysis. Author AK wrote the protocol and wrote the first draft of the manuscript. Authors AK, SK and MG managed the analyses of the study. Author AK managed the literature searches. All authors read and approved the final manuscript. Article Information DOI: 10.9734/JEMT/2018/44988 Editor(s): (1) Dr. Afsin Sahin, Professor, Department of Banking School of Banking and Insurance, Ankara Haci Bayram Veli University, Turkey. Reviewers: (1) Imoisi Anthony Ilegbinosa, Edo University, Iyamho, Nigeria. (2) R. Shenbagavalli, India. Complete Peer review History: http://www.sciencedomain.org/review-history/27321 Received 05 September 2018 Original Research Article Accepted 07 November 2018 Published 20 November 2018 ABSTRACT Aims: The present study has tried to assess the profitability of payoffs from adopting neutral option strategies on USD-INR. Study Design: The study was carried out using daily closing values of the US Dollar-Indian Rupee current future rate available on National Stock Exchange of India (NSE) for the period starting from 29th October 2010 (the start of currency options market in NSE) to 30th June 2016. Methodology: The present study has tried to fill the gap of assessing the profitability of payoffs from adopting neutral options strategies on USD-INR.