Quaternary Fault and Fold Database of the United States
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Structure Preliminary Geotechnical Report
I NITIAL S TUDY/MITIGATED N EGATIVE D ECLARATION Y ORBA L INDA B OULEVARD W IDENING I MPROVEMENTS P ROJECT S EPTEMBER 2020 Y ORBA L INDA, C ALIFORNIA APPENDIX F STRUCTURE PRELIMINARY GEOTECHNICAL REPORT P:\HNT1901.02 - Yorba Linda\Draft ISMND\Draft ISMND_Yorba Linda Blvd Widening Improvements Project_9.18.20.docx «09/18/20» Y ORBA L INDA B OULEVARD W IDENING I MPROVEMENTS P ROJECT I NITIAL S TUDY/MITIGATED N EGATIVE D ECLARATION Y ORBA L INDA, C ALIFORNIA S EPTEMBER 2020 This page intentionally left blank P:\HNT1901.02 - Yorba Linda\Draft ISMND\Draft ISMND_Yorba Linda Blvd Widening Improvements Project_9.18.20.docx «09/18/20» Earth Mechanics, Inc. Geotechnical & Earthquake Engineering November 13, 2019 EMI Project No. 19-143 HNTB 200 E. Sandpointe Avenue, Suite 200 Santa Ana, California 92707 Attention: Mr. Patrick Somerville Subject: Structure Preliminary Geotechnical Report Yorba Linda Blvd Bridge over Santa Ana River (Widen), Bridge No. 55C-0509 Yorba Linda Boulevard and Savi Ranch Parkway Widening Project City of Yorba Linda, California Dear Mr. Somerville: Attached is our Structure Preliminary Geotechnical Report (SPGR) for the proposed widening of the Yorba Linda Boulevard Bridge over the Santa Ana River (Bridge No. 55C-0509) in the City of Yorba Linda, California. The bridge widening is part of the Yorba Linda Boulevard and Savi Ranch Parkway Widening Project. This report was prepared to support the Project Approval and Environmental Document (PA-ED) phase of the project. The SPGR includes information required by the 2017 California Department of Transportation (Caltrans) Foundation Reports for Bridges document. -
5.4 Geology and Soils
BEACH BOULEVARD SPECIFIC PLAN DRAFT EIR CITY OF ANAHEIM 5. Environmental Analysis 5.4 GEOLOGY AND SOILS This section of the Draft Environmental Impact Report (DEIR) evaluates the potential for implementation of the Beach Boulevard Specific Plan (Proposed Project) to impact geological and soil resources in the City of Anaheim. 5.4.1 Environmental Setting Regulatory Setting California Alquist-Priolo Earthquake Fault Zoning Act The Alquist-Priolo Earthquake Fault Zoning Act was signed into state law in 1972. Its primary purpose is to mitigate the hazard of fault rupture by prohibiting the location of structures for human occupancy across the trace of an active fault. The act delineates “Earthquake Fault Zones” along faults that are “sufficiently active” and “well defined.” The act also requires that cities and counties withhold development permits for sites within an earthquake fault zone until geologic investigations demonstrate that the sites are not threatened by surface displacement from future faulting. Pursuant to this act, structures for human occupancy are not allowed within 50 feet of the trace of an active fault. Seismic Hazard Mapping Act The Seismic Hazard Mapping Act (SHMA) was adopted by the state in 1990 to protect the public from the effects of nonsurface fault rupture earthquake hazards, including strong ground shaking, liquefaction, seismically induced landslides, or other ground failure caused by earthquakes. The goal of the act is to minimize loss of life and property by identifying and mitigating seismic hazards. The California Geological Survey (CGS) prepares and provides local governments with seismic hazard zone maps that identify areas susceptible to amplified shaking, liquefaction, earthquake-induced landslides, and other ground failures. -
General Plan Amendment No. 1208 Lakeland Village Community Plan
FINAL INITIAL STUDY/MITIGATED NEGATIVE DECLARATION General Plan Amendment No. 1208 Lakeland Village Community Plan State Clearinghouse No. 2020050501 Lead Agency: RIVERSIDE COUNTY Planning Department 4080 Lemon Street, 12th Floor, Riverside, CA 92501 Contact: Mr. Robert Flores 951.955.1195 Prepared by: MICHAEL BAKER INTERNATIONAL 3536 Concours Street Ontario, California 91764 Contact: Mr. Peter Minegar, CEP-IT 951.506.3523 June 2020 JN 155334 This document is designed for double-sided printing to conserve natural resources. Section I Initial Study/ Mitigated Negative Declaration General Plan Amendment No. 1208 Lakeland Village Community Plan COUNTY OF RIVERSIDE ENVIRONMENTAL ASSESSMENT FORM: INITIAL STUDY Environmental Assessment (CEQ / EA) Number: N/A Project Case Type (s) and Number(s): General Plan Amendment No. 1208 (GPA No. 1208) Lead Agency Name: Riverside County Planning Department Address: 4080 Lemon Street, P.O. Box 1409, Riverside, CA 92502-1409 Contact Person: Robert Flores (Urban and Regional Planner IV) Telephone Number: 951-955-1195 Applicant’s Name: N/A Applicant’s Address: N/A I. PROJECT INFORMATION Project Description: BACKGROUND AND CONTEXT The County of Riverside is composed of approximately 7,300 square miles, bounded by Orange County to the west, San Bernardino County to the north, the State of Arizona to the east, and San Diego and Imperial Counties to the south. Development for the unincorporated County is guided by the Riverside County General Plan, which was last comprehensively updated and adopted in December 2015. The Riverside County General Plan is divided into 19 Area Plans covering most of the County (refer to Exhibit 1, Riverside County Area Plans). -
Notice Concerning Copyright Restrictions
NOTICE CONCERNING COPYRIGHT RESTRICTIONS This document may contain copyrighted materials. These materials have been made available for use in research, teaching, and private study, but may not be used for any commercial purpose. Users may not otherwise copy, reproduce, retransmit, distribute, publish, commercially exploit or otherwise transfer any material. The copyright law of the United States (Title 17, United States Code) governs the making of photocopies or other reproductions of copyrighted material. Under certain conditions specified in the law, libraries and archives are authorized to furnish a photocopy or other reproduction. One of these specific conditions is that the photocopy or reproduction is not to be "used for any purpose other than private study, scholarship, or research." If a user makes a request for, or later uses, a photocopy or reproduction for purposes in excess of "fair use," that user may be liable for copyright infringement. This institution reserves the right to refuse to accept a copying order if, in its judgment, fulfillment of the order would involve violation of copyright law. Geothermal Resources Council, TRANSACTIONS, Vol. 10, September 1986 GEOTHERMAL EXPLORATION IN THE VICINITY OF LAKE ELSINORE, SOUTHERN CALIFORNIA Brian N. Damiata and Tien-Chang Lee Institute of Geophysics and Planetary Physics University of California, Riverside, CA 92521 ABSTRACT Geothermal exploration in the Lake Elsinore area has primarily focused near a cross fault which acts as a conduit for thermal water. Flow testing of an exploratory hole indicates an ani- sotropic aquifer with a maximum transmissivity IO mi axis oriented along the fault striking N 11" E. Thermal water migrates laterally throughout the downtown area along a zone of enhanced transmissivity associated with the fault. -
Potential for a Large Earthquake Near Los Angeles Inferred from the 2014
PUBLICATIONS Earth and Space Science RESEARCH ARTICLE Potential for a large earthquake near Los Angeles 10.1002/2015EA000113 inferred from the 2014 La Habra earthquake Key Points: Andrea Donnellan1,2, Lisa Grant Ludwig3, Jay W. Parker1, John B. Rundle4, Jun Wang5, Marlon Pierce5, • UAVSAR and GPS results of the M5.1 6 1 La Habra earthquake show broad Geoffrey Blewitt , and Scott Hensley deformation 1 2 • Concurrent slip on several shallow Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA, Department of Earth Sciences, 3 structures best explains the University of Southern California, Loa Angeles, California, USA, Program in Public Health, University of California, Irvine, observations California, USA, 4Departments of Physics and Geology, University of California, Davis, California, USA, 5University • We show a time-independent Information Technology Services, Indiana University, Bloomington, Indiana, USA, 6Nevada Geodetic Laboratory, Nevada means of estimating the potential for future events Bureau of Mines and Geology, University of Nevada, Reno, Nevada Abstract Tectonic motion across the Los Angeles region is distributed across an intricate network of strike-slip Correspondence to: and thrust faults that will be released in destructive earthquakes similar to or larger than the 1933 M6.4 Long A. Donnellan, Beach and 1994 M6.7 Northridge events. Here we show that Los Angeles regional thrust, strike-slip, and [email protected] oblique faults are connected and move concurrently with measurable surface deformation, even in moderate magnitude earthquakes, as part of a fault system that accommodates north-south shortening and westerly Citation: tectonic escape of northern Los Angeles. The 28 March 2014 M5.1 La Habra earthquake occurred on a Donnellan,A.,L.GrantLudwig,J.W.Parker, J. -
1. NEOGENE TECTONICS of SOUTHERN CALIFORNIA . the Focus of This Research Project Is to Investigate the Timing of Rotation of T
1. NEOGENE TECTONICS OF SOUTHERN CALIFORNIA. The focus of this research project is to investigate the timing of rotation of the Transverse Ranges and the evolution of the 3-D architecture of the Los Angeles basin. Objectives are to understand better the seismicity of the region and the relationships between petroleum accumulations and the structure and stratigraphic evolution of the basin. Figure 1 shows the main physiographic and structural features of the Los Angeles basin region, the epicenter of recent significant earthquakes and the our initial study area in the northeastern Los Angeles basin. Los Angeles basin tectonic model: Most tectonic models attribute the opening of the Los Angeles basin to lithospheric extension produced by breakaway of the Western Transverse Ranges from the Peninsular Ranges and 90 degrees or more of clockwise rotation from ca. 18 Ma to the present. Evidence of this extension includes crustal thinning on tomographic profiles between the Santa Ana Mountains and the Santa Monica Mountains and the presence in the Los Angeles basin of Middle Miocene volcanic rocks and proto-normal faults. Detailed evidence of the 3-D architecture of the rift created by the breakaway and the timing of the rift phase has remained elusive. The closing of the Los Angeles basin in response to N-S contraction began at ca. 8 Ma and continues today (Bjorklund, et al., 2002). A system of active faults has developed that pose significant seismic hazards for the greater Los Angeles region. Crustal heterogeneities that developed during the extension phase of basin development may have strongly influenced the location of these faults. -
Using Local Knowledge Graph Construction to Scale Seq2seq Models to Multi-Document Inputs
Using Local Knowledge Graph Construction to Scale Seq2Seq Models to Multi-Document Inputs Angela Fan Claire Gardent Chloe´ Braud Antoine Bordes FAIR / LORIA CNRS / LORIA CNRS / LORIA FAIR angelafan,[email protected] claire.gardent,[email protected] Abstract Query-based open-domain NLP tasks require information synthesis from long and diverse web results. Current approaches extrac- tively select portions of web text as input to Sequence-to-Sequence models using meth- ods such as TF-IDF ranking. We propose constructing a local graph structured knowl- edge base for each query, which compresses the web search information and reduces re- dundancy. We show that by linearizing the graph into a structured input sequence, models can encode the graph representations within a standard Sequence-to-Sequence setting. For two generative tasks with very long text in- put, long-form question answering and multi- document summarization, feeding graph rep- resentations as input can achieve better perfor- mance than using retrieved text portions. 1 Introduction Effective information synthesis is at the core of many Natural Language Processing applica- Figure 1: Multi-Document Input to Linearized Graph tions, such as open-domain question answering Multi-document input resulting from web search queries are converted to a graph structured knowledge base using coref- and multi-document summarization. In such tasks, erence resolution and information extraction, then linearized a fundamental challenge is the ability to distill rel- into a sequence for Seq2Seq models. Color indicates coref- evant knowledge from hundreds of thousands of erence resolution. Node weight is indicated by circle radius and edge weight by line thickness. -
4.6 Geology and Seismicity
City of Azusa General Plan & Development Code 4.6 Geology & Seismicity Draft EIR 4.6 GEOLOGY AND SEISMICITY SCOPE AND METHODOLOGY This section identifies the potential for geologic and seismic hazards to occur in and near the City of Azusa. Issues of concern include soils and their suitability for development; geologic faults; direct and indirect seismic hazards; potential hazards such as subsidence, liquefaction, and landslides. Impact assessments were performed based on criteria established by the CEQA Guidelines (discussed below under “Significance Criteria”). The follow ing documents and maps are referenced for this section: · City of Azusa, Analysis of Existing Conditions and Trends report, December 2001 · United States Department of Agriculture Soil Conservation Service, “Report and General Soil Map, Los Angeles County, California,” 1969 · Department of Conservation, Division of Mines and Geology, Special Publication 42, “Fault-Rupture Hazard Zones in California,” 1997 GEOLOGIC SETTING Topography Existing topography in the City can be quite variable. The steep mountains have slopes commonly in the range of 50 to 60 percent. The foothills slopes are more moderate generally 5 to 10 percent, with the alluvial fan surface sloping away from the San Gabriel Mountains at a gradient of approximately 50 feet per mile (about one percent).1 The open pit mines have also created local artificial topographical features. The elevation of land surfaces in the city range from about 2,080 feet at the north edge of Azusa along the National Forest boundary to about 475 feet at Arrow Highway and Vicent Avenue. The Vulcan gravel pit has elevations below 350 feet, but occupies only a very small area of the City near its southwestern edge. -
San Onofre Nuclear Generating Station Seismic Hazard Assessment Program 2010 Probabilistic Seismic Hazard Analysis Report
SAN ONOFRE NUCLEAR GENERATING STATION SEISMIC HAZARD ASSESSMENT PROGRAM 2010 PROBABILISTIC SEISMIC HAZARD ANALYSIS REPORT Prepared for Southern California Edison December 2010 SAN ONOFRE NUCLEAR GENERATING STATION SEISMIC HAZARD ASSESSMENT PROGRAM 2010 PROBABILISTIC SEISMIC HAZARD ANALYSIS REPORT PROBABILISTIC SEISMIC HAZARD ANALYSIS OUTLINE 1.0 INTRODUCTION 1.1 Purpose 1.2 Site Information 1.3 Approach 1.4 Acknowledgements 2.0 SEISMIC SOURCE CHARACTERIZATION 2.1 Strike‐slip Seismic Source Characterization Model 2.2 Blind Thrust Seismic Source Characterization Model 2.3 Base‐case Regional Fault Sources and Background Source Zones 2.4 Weighting of Alternative Models 2.4.1 Discussion of Alternative Models 2.4.2 Assigned Weights 3.0 PROBABILISTIC SEISMIC HAZARD ANALYSIS 3.1 PSHA Methodology 3.1.1 General 3.1.2 Attenuation Relationships 3.1.3 Uncertainties 3.1.3.1 GMPE Uncertainty 3.1.3.2 Uncertainty Regarding Strike‐Slip and Blind Thrust Sources 3.1.3.3 Recurrence Relationships 3.2 PSHA Results 3.2.1 Effects of Seismic Sources 3.2.2 Deaggregation Results 3.2.3 Comparison with 1995 PSHA Results 4.0 SUMMARY AND CONCLUSIONS 5.0 REFERENCES 5.1 Publicly Available Publications and Data 5.2 Personal Communication 6.0 GLOSSARY APPENDIX A – SEISMIC SOURCE CHARACTERIZATION APPENDIX B – 2010 PSHA GROUND MOTION CHARACTERIZATION December 2010 Page i SAN ONOFRE NUCLEAR GENERATING STATION SEISMIC HAZARD ASSESSMENT PROGRAM 2010 PROBABILISTIC SEISMIC HAZARD ANALYSIS REPORT 1.0 INTRODUCTION 1.1 Purpose A seismic hazard analysis update was performed for the San Onofre Nuclear Generating Station (SONGS) to evaluate if the most recent or current available seismic, geologic, and ground motion information in the vicinity of SONGS has affected the seismic hazard at SONGS. -
U.S. Geological Survey Final Technical Report Award No
U.S. Geological Survey Final Technical Report Award No. G12AP20066 Recipient: University of California at Santa Barbara Mapping the 3D Geometry of Active Faults in Southern California Craig Nicholson1, Andreas Plesch2, John Shaw2 & Egill Hauksson3 1Marine Science Institute, UC Santa Barbara 2Department of Earth & Planetary Sciences, Harvard University 3Seismological Laboratory, California Institute of Technology Principal Investigator: Craig Nicholson Marine Science Institute, University of California MC 6150, Santa Barbara, CA 93106-6150 phone: 805-893-8384; fax: 805-893-8062; email: [email protected] 01 April 2012 - 31 March 2013 Research supported by the U.S. Geological Survey (USGS), Department of the Interior, under USGS Award No. G12AP20066. The views and conclusions contained in this document are those of the authors, and should not be interpreted as necessarily representing the official policies, either expressed or implied, of the U.S. Government. 1 Mapping the 3D Geometry of Active Faults in Southern California Abstract Accurate assessment of the seismic hazard in southern California requires an accurate and complete description of the active faults in three dimensions. Dynamic rupture behavior, realistic rupture scenarios, fault segmentation, and the accurate prediction of fault interactions and strong ground motion all strongly depend on the location, sense of slip, and 3D geometry of these active fault surfaces. Comprehensive and improved catalogs of relocated earthquakes for southern California are now available for detailed analysis. These catalogs comprise over 500,000 revised earthquake hypocenters, and nearly 200,000 well-determined earthquake focal mechanisms since 1981. These extensive catalogs need to be carefully examined and analyzed, not only for the accuracy and resolution of the earthquake hypocenters, but also for kinematic consistency of the spatial pattern of fault slip and the orientation of 3D fault surfaces at seismogenic depths. -
Quaternary Fault and Fold Database of the United States
Jump to Navigation Quaternary Fault and Fold Database of the United States As of January 12, 2017, the USGS maintains a limited number of metadata fields that characterize the Quaternary faults and folds of the United States. For the most up-to-date information, please refer to the interactive fault map. Elsinore fault zone, Temecula section (Class A) No. 126d Last Review Date: 1998-12-01 citation for this record: Treiman, J.A., compiler, 1998, Fault number 126d, Elsinore fault zone, Temecula section, in Quaternary fault and fold database of the United States: U.S. Geological Survey website, https://earthquakes.usgs.gov/hazards/qfaults, accessed 12/14/2020 02:16 PM. Synopsis General: A major dextral strike-slip fault zone that is part of the San Andreas fault system. Research studies have been done to assess faulting on most of the sections, and have documented Holocene activity for the length of the fault zone with a slip rate around 4–5 mm/yr. Multiple events have only been dated on the Whittier fault and Glen Ivy North fault strand, so interaction between faults and adjacent sections is not well-known. Multiple strands within several sections mean that the studies are not always fully representative of the whole section. Numerous consulting reports (not summarized herein) that have addressed location and recency of faulting are on file with the State of California, California Geological Survey, as part of the records of their Alquist-Priolo Earthquake Fault Zoning Program. Sections: This fault has 7 sections. Sections are selected following -
Title: Subsurface Structural Evolution Along the Northern Whittier Fault Zone of the Eastern Los Angeles Basin, Southern California
AN ABSTRACT OF THE THESIS OF David W. Herzog for the degree of Master of Science in Geology presentedon January 26, 1998. Title: Subsurface Structural Evolution along the Northern Whittier Fault Zone of the Eastern Los Angeles Basin, Southern California Abstract S. Yeats The Whittier fault forms the central part of a fault system extending from the East Montebello fault at Whittier Narrows to the Elsinore fault, which is traced as far as the Mexican border. The Whittier fault formsa restraining bend in this fault system, resulting in uplift of the Puente Hills. The northwestern part of the Whittier fault in the Whittier oil field in the eastern Los Angeles basin strikes approximately N65°W and dips 70-75° northeast. The fault is near the range front of the Puente Hills northwest of Turnbull Canyon, and within the Puente Hills to the southeast. The central reach of the Whittier fault had normal separation in the Relizian and Luisian stages of the middle Miocene. From the Mohnian through Repettian stages of the late Miocene and early Pliocene, little, ifany, offset occurred until the initiation of reverse offset in the Venturianstage of the late Pliocene. A component of right-lateral strike-slipmay have been added near the end of the Pliocene, coinciding with the formation of the Elsinore fault. The Workman Hill and Whittier Heights faultsmay have formed in the late Pliocene to early Pleistocene, coinciding with the possible initiation of strike-slip on the Whittier fault. The presentsense of slip on the Whittier fault southeast of the studyarea is nearly pure right-lateral strike- slip, with a slip rate of 2-3 mm/yr.