2011 Assessment of Four Potential Common Murre Restoration Projects

Total Page:16

File Type:pdf, Size:1020Kb

2011 Assessment of Four Potential Common Murre Restoration Projects Assessment of Four Potential Common Murre Restoration Projects in Northern California A Report to the Stuyvesant Trustee Council and U.S Department of the Interior, Bureau of Land Management, Arcata Field Office, Arcata, California Fulfillment, in part, of Agreements BAA080012 and L08AC13270 Between the Humboldt State Sponsored Programs Foundation and U.S. Bureau of Land Management, Arcata Field Office Prepared by Humboldt State University, Department of Wildlife U.S. Fish and Wildlife Service, San Francisco Bay National Wildlife Refuge Complex Carter Biological Consulting Michael W. Parker1,4, Gerard J. McChesney2, Harry R. Carter3 and Richard T. Golightly1 1Humboldt State University, Department of Wildlife, 1 Harpst Street, Arcata, California 95521 USA 2U.S. Fish and Wildlife Service, San Francisco Bay National Wildlife Refuge Complex 9500 Thornton Avenue, Newark, California 94560 USA 3Carter Biological Consulting, 1015 Hampshire Road, Victoria, British Columbia V8S 4S8 Canada 4Current Address: 39913 Sharon Avenue, Davis, California 95521 USA FINAL REPORT October 2011 Suggested Citation: Parker, M.W., G.J. McChesney, H.R. Carter, and R.T. Golightly. 2011. Assessment of four potential Common Murre restoration projects in northern California. Unpublished Report, Humboldt State University, Department of Wildlife, Arcata, California; U.S. Fish and Wildlife Service, San Francisco Bay National Wildlife Refuge Complex, Newark, California; and Carter Biological Consulting, Victoria, British Columbia. ii TABLE OF CONTENTS ACKNOWLEDGMENTS ............................................................................................................... 1 EXECUTIVE SUMMARY .............................................................................................................. 2 INTRODUCTION .......................................................................................................................... 3 PROJECT ASSESSMENTS ......................................................................................................... 4 Trinidad Seabird Colonies – Re-colonization of Common Murre at Sea Lion Rock .................. 4 Brief Colony History ............................................................................................................... 4 Restoration Considerations ................................................................................................... 4 Sea Lion Rock Social Attraction Project ............................................................................. 4 Potential Benefits ............................................................................................................ 5 Potential Concerns ......................................................................................................... 6 Potential for Success ...................................................................................................... 6 Whaler Island Restoration (Crescent City Harbor) ................................................................... 6 Brief Colony History ............................................................................................................... 6 Restoration Considerations ................................................................................................... 8 Potential Benefits ............................................................................................................... 8 Potential Concerns ............................................................................................................. 8 Potential for Success ......................................................................................................... 9 Cape Vizcaino Area seabird colonies - Acquisition and Management ...................................... 9 Brief Colony History ............................................................................................................... 9 Current Status of Murres and Brandt’s Cormorants at Vizcaino Complex ........................... 10 Methods ........................................................................................................................... 10 Results ............................................................................................................................. 11 Common Murre ............................................................................................................. 11 Cape Vizcaino ........................................................................................................... 11 Rockport Rocks ......................................................................................................... 11 Brandt’s Cormorant ...................................................................................................... 12 Cape Vizcaino ........................................................................................................... 12 Rockport Rocks ......................................................................................................... 12 Restoration Considerations ................................................................................................. 12 Land Acquisition - Option A .............................................................................................. 13 Land Protection via Acquisition – Option B ...................................................................... 14 Potential Benefits ............................................................................................................. 15 iii Potential Concerns ........................................................................................................... 15 Potential for Success ....................................................................................................... 15 Human Disturbance Reduction Program - Del Norte and Humboldt Counties ........................ 15 Brief History of Recent Human Disturbance Reduction Programs in California .................. 15 Restoration Considerations ................................................................................................. 16 Human Disturbance Reduction Program ......................................................................... 16 Restoration Actions .......................................................................................................... 18 Potential Benefits ............................................................................................................. 19 Potential Concerns ........................................................................................................... 19 Potential for Success ....................................................................................................... 19 CONCLUSIONS .......................................................................................................................... 19 LITERATURE CITED .................................................................................................................. 21 APPENDICES ............................................................................................................................. 42 iv ACKNOWLEDGMENTS The Stuyvesant Trustee Council sponsored this report. Members of the Trustee Council include: U.S. Fish and Wildlife Service (Lead representative, Carolyn Marn, Sacramento Field Office; alternate representative, Lynn Roberts, Arcata Fish and Wildlife Office); and California Department of Fish and Game (Lead representative, Laird Henkel, Office of Spill Prevention and Response; alternate representative Steve Hampton, Office of Spill Prevention and Response). This report also satisfies, in part, agreement numbers BAA080012 and L08AC13270 between the Humboldt State University Sponsored Programs Foundation and Bureau of Land Management – Arcata Field Office. Additional administrative support was provided by staff at the USFWS – San Francisco Bay National Wildlife Refuge Complex and Humboldt State University Sponsored Programs Foundation. In particular, we thank Pia Gabriel (Humboldt State University), Mendel Stewart (USFWS – SFBNWRC), John Bradley (USFWS – SFBNWRC) and David Fuller (BLM, Arcata Field Office) for administrative support. Special thanks go to several individuals who assisted with the development and refinement of the assessments contained in this report: Rick Hanks (BLM – California Coastal National Monument), Dave Fuller (BLM – Arcata Field Office), Eric Nelson (USFWS – Humboldt Bay National Wildlife Refuge Complex), Lynn Roberts (USFWS – Arcata Fish and Wildlife Office), Richard Young (Crescent City Harbor District), Robert Douglas (Mendocino Redwood Company), Paul Violett (Soper-Wheeler Company), and Maryellen Sheppard (Property Appraiser and Real Estate Consultant, Fort Bragg, California). Aerial Surveys from 2005 to 2010 were conducted by the following people: Pilot: Wayne Burnett (CDFG – Air Services; Photographers: Phil Capitolo (all years except 2009), Gerry McChesney (2005-2008), Lisa Eigner (2009-2010); and Data Recorders: Danielle LeFer (2005, 2006), Deasy Lontoh (2007), Zach Coffman (2008), Phil Capitolo (2009), Gerry McChesney (2010). 1 EXECUTIVE SUMMARY In response to difficulties with implementing a Common Murre (Uria aalge) restoration project at Redding (or Reading) Rock, Humboldt County, the Stuyvesant Trustee Council commissioned an assessment of the general feasibility of implementing four other potential murre restoration projects in northern California that were included in the Stuyvesant Restoration
Recommended publications
  • Population Status, Reproductive Ecology, and Trophic Relationships of Seabirds in Northwestern Alaska
    POPULATION STATUS, REPRODUCTIVE ECOLOGY, AND TROPHIC RELATIONSHIPS OF SEABIRDS IN NORTHWESTERN ALASKA by Alan M. Springer, Edward C. Murphy, David G. Roseneau, and Martha 1. Springer LGL Alaska Research Associates, Inc. P. O. BOX 80607 Fairbanks, Alaska 99708 Final Report Outer Continental Shelf Environmental Assessment Program Research Unit 460 April 1982 127 TABLE OF CONTENTS ~ I. SUMMARY OF OBJECTIVES, CONCLUSIONS, AND IMPLICATIONS WITH RESPECT TO OCS OIL AND GAS DEVELOPMENT. 131 II. INTRODUCTION. 131 III. CURRENT STATEOFKNOWLEDGE . 133 IV. STUDY AREAS. 133 Va. MURRE NUMBERS - METHODS. 135 VIa. MURRE NUMBERS-RESULTS.. 140 VIIa. MURRE NUMBERS-DISCUSSION . 145 VIIb. FOOD HABITS-METHODS. 162 VIIb . FOOD HABITS-RESULTS. 163 VIIb . FOOD HABITS -DISCUSSION. , . 168 VIIc . KITTIWAKES -METHODS. 203 VIIc . KITTIWAKES -RESULTS. 204 VIIC . KITTIWAKES -DISCUSSION. 206 VIId . OTHER SPECIES-METHODS.. 209 VId & VIId. OTHER SPECIES - RESULTS AND DISCUSSION . 209 VIII. CONCLUSIONS. 231 IX. NEEDS FORFUTURESTUDY . 232 x. LITEMITURECITED. 233 129 I. SUMMARY OF OBJECTIVES, CONCLUSIONS AND IMPLICATIONS WITH REGARD TO OCS OIL AND GAS DEVELOPMENT A. Objectives The objective of RU 460 is to describe important components of the biology of seabirds in northern Alaska, including relationships among seabirds, their supporting food webs and the physical environment. To accomplish this objective we have concentrated on studies of thick-billed murres (Uris lomvia), common murres (U. aazge) and black-legged kittiwakes (Rissa tridactyZa), the most wide-spread, and among the most numerous, of all seabird species in the region. Moreover, murres and kittiwakes are easily studied compared to other species, and are sensitive indicators of environmental change. B: Conclusions Our principal conclusions are that numbers of murres at two major breeding colonies in northern Alaska are declining and that annual vari- ability is high in a variety of elements of murre and kittiwake breeding biology.
    [Show full text]
  • Population Estimates and Temporal Trends of Pribilof Island Seabirds
    POPULATION ESTIMATES AND TEMPORAL TRENDS OF PRIBILOF ISLAND SEABIRDS by F. Lance Craighead and Jill Oppenheim Alaska Biological Research P.O. BOX 81934 Fairbanks, Alaska 99708 Final Report Outer Continental Shelf Environmental Assessment Program Research Unit 628 November 1982 307 ACKNOWLEDGEMENTS Dan Roby and Karen Brink, University of Pennsylvania, Philadelphia, were especially helpful to us during our stay on St. George and shared their observations with us. Bob Day, University of Alaska, Fairbanks, also provided comparative data from his findings on St. George in 1981. We would like to thank the Aleut communities of St. George and St. Paul and Roger Gentry and other NMFS biologists on St. George for their hospitality and friendship. Bob Ritchie and Jim Curatolo edited an earlier version of this report. Mary Moran drafted the figures. Nancy Murphy and Patty Dwyer-Smith typed drafts of this report. Amy Reges assisted with final report preparation. Finally, we’d like to thank Dr. J.J. Hickey for initiating seabird surveys on the Pribi of Islands, which were the basis for this study. This study was funded by the Bureau of Land Management through interagency agreement with the National Oceanic and Atmospheric Administra- tion, as part of the Outer Continental Shelf Environmental Assessment Program. 308 TABLE OF CONTENTS ~ ACKNOWLEDGEMENTS. ● . ● . ● . ● . 308 EXECUTIVE SUMMARY . ✎ . ● ✎ . ● . ● ● . ✎ . ● ● . 311 INTRODUCTION. ✎ . ● ✎ . ✎ . ✎ ✎ . ● ✎ ● . ● ✎ . 313 STUDY AREA. ● . ✎ ✎ . ✎ . ✎ ✎ . ✎ ✎ ✎ . , . ● ✎ . ● . 315 METHODS . ● . ✎
    [Show full text]
  • Specimen Record of a Long-Billed Murrelet from Eastern Washington, with Notes on Plumage and Morphometric Differences Between Long-Billed and Marbled Murrelets
    SPECIMEN RECORD OF A LONG-BILLED MURRELET FROM EASTERN WASHINGTON, WITH NOTES ON PLUMAGE AND MORPHOMETRIC DIFFERENCES BETWEEN LONG-BILLED AND MARBLED MURRELETS CHRISTOPER W. THOMPSON, WashingtonDepartment of Fish and Wildlife, 16018 Mill Creek Blvd., Mill Creek, Washington98012, and Burke Museum,Box 353100, Universityof Washington,Seattle, Washington 98195 KEVIN J. PULLEN, ConnerMuseum, Washington State University, Pullman, Wash- ington 99164 RICHARD E. JOHNSON, Conner Museumand School of BiologicalSciences, WashingtonState University,Pullman, Washington 99164 ERICB. CUMMINS, WashingtonDepartment of Fishand Wildlife, 600 CapitolWay North, Olympia,Washington 98501 ABSTRACT:On 14 August2001, RobertDice found a Brachyramphusmurrelet approximately12 mileseast of Pomeroyin easternWashington state more than 200 milesfrom the nearestmarine waters. The bird died later that day. It had begun definitiveprebasic body molt, but not flightfeather molt. Necropsy indicated that the birdwas a female,probably in her secondcalendar year. Johnson and Thompson identifiedthe birdas a Long-billedMurrelet, Brachyramphus perdix, on the basisof plumageand measurements;it is the firstspecimen of thisspecies for Washington state. Contrary to many recent publicationsstating that Long-billedand Marbled Murreletshave white and brownunder wing coverts, respectively, we confirmedthat bothspecies typically have white under wing coverts prior to definitiveprebasic molt andbrown under wing coverts after this molt. Absence of anyextensive storm systems in the North Pacificin
    [Show full text]
  • A Review of the Fossil Seabirds from the Tertiary of the North Pacific
    Paleobiology,18(4), 1992, pp. 401-424 A review of the fossil seabirds fromthe Tertiaryof the North Pacific: plate tectonics,paleoceanography, and faunal change Kenneth I. Warheit Abstract.-Ecologists attempt to explain species diversitywithin Recent seabird communities in termsof Recent oceanographic and ecological phenomena. However, many of the principal ocean- ographic processes that are thoughtto structureRecent seabird systemsare functionsof geological processes operating at many temporal and spatial scales. For example, major oceanic currents,such as the North Pacific Gyre, are functionsof the relative positions of continentsand Antarcticgla- ciation,whereas regional air masses,submarine topography, and coastline shape affectlocal processes such as upwelling. I hypothesize that the long-termdevelopment of these abiotic processes has influencedthe relative diversityand communitycomposition of North Pacific seabirds. To explore this hypothesis,I divided the historyof North Pacific seabirds into seven intervalsof time. Using published descriptions,I summarized the tectonicand oceanographic events that occurred during each of these time intervals,and related changes in species diversityto changes in the physical environment.Over the past 95 years,at least 94 species of fossil seabirds have been described from marine deposits of the North Pacific. Most of these species are from Middle Miocene through Pliocene (16.0-1.6 Ma) sediments of southern California, although species from Eocene to Early Miocene (52.0-22.0 Ma) deposits are fromJapan,
    [Show full text]
  • Biological Assessment
    BIOLOGICAL ASSESSMENT BETA UNIT GEOPHYSICAL SURVEY OFFSHORE HUNTINGTON BEACH, CALIFORNIA Project No. 1602-1681 Prepared for: Beta Operating Company, LLC 111 W. Ocean Blvd., Suite 1240 Long Beach, CA 90802 Prepared by: Padre Associates, Inc. 1861 Knoll Drive Ventura, California 93003 SEPTEMBER 2017 Beta Unit Geophysical Survey Biological Assessment 1602-1681 TABLE OF CONTENTS Page 1.0 EXECUTIVE SUMMARY ................................................................................... 1 2.0 PROJECT DESCRIPTION ................................................................................. 3 2.1 LOCATION ............................................................................................ 3 2.2 PROPOSED ACTION ........................................................................... 3 2.2.1 Project Vessel Configuration and Mobilization .......................... 3 2.2.2 Offshore Survey Operations ...................................................... 6 2.3 PROJECT SCHEDULE ......................................................................... 13 3.0 SPECIES ACCOUNTS AND STATUS OF THE SPECIES IN THE ACTION AREA 15 3.1 INVERTEBRATES ................................................................................ 16 3.1.1 White Abalone (Haliotis sorenseni) ............................................ 16 3.2 FISH ...................................................................................................... 17 3.2.1 Steelhead (Oncorhynchus mykiss) ............................................ 17 3.3 MARINE BIRDS ...................................................................................
    [Show full text]
  • Status Review of the Marbled Murrelet (Brachyramphus Marmoratus)
    Final Report DRAFT for Public and Peer Review Status Review of the Marbled Murrelet (Brachyramphus marmoratus) in Oregon and Evaluation of Criteria to Reclassify the Species from Threatened to Endangered under the Oregon Endangered Species Act Oregon Department of Fish and Wildlife September January 20187 Foreword The Oregon Department of Fish and Wildlife is investigating the status of the Marbled Murrelet (Brachyramphus marmoratus) in Oregon in response to a petition from several conservation groups. The petition requests that the seabird be reclassified from threatened to endangered (uplisted) under the Oregon Endangered Species Act. This draft report has been prepared by the Department for the Oregon Fish and Wildlife Commission, as a guide to the requirements of the Oregon Endangered Species Act and, as an draft assessment of the biological status of the species, and as a document for public and peer review. Prior Marbled Murrelet status reviews by the Department (ODFW 1995, 2013) served as the starting point for this report, and new or updated information was incorporated wherever possible. A draft of this document A final report will beunderwent peer and public review in fall 2017 produced following completion of the public comment and peer review processes. All comments received were considered in the preparation of this final report.. The Department expects to present the final status review and reclassification analysis to the Commission in February 2018. Cover Photo: Martin Raphael, U.S. Forest Service. Available from Flickr. Suggested Citation: ODFW. 20187. Draft sStatus review of the Marbled Murrelet (Brachyramphus marmoratus) in Oregon and evaluation of criteria to reclassify the species from threatened to endangered under the Oregon Endangered Species Act.
    [Show full text]
  • Common Murre •.• Thick-Billed Murre
    j. Field Ornithol., 54(3):266-274 THE FLEDGING OF COMMON AND THICK-BILLED MURRES ON MIDDLETON ISLAND, ALASKA BY SCOTT A. HATCH Three speciesof alcids,Common and Thick-billed murres (Uria aalge and U. lornvia)and the Razorbill (Alca torda),have post-hatchingdevel- opmental patterns intermediate to precocialand semi-precocialmodes (Sealy1973). The youngleave their cliff nestsites at aboutone quarter of adult weight and completetheir growth at sea.At departure, an event here looselyreferred to as "fledging," neither primary nor secondary flight feathersare grown, but well-developedwing covertsenable lim- ited, descendingflight. The adaptivesignificance of thispattern maybe that leadingthe young to distantfeeding areasis more efficientthan lengthy foraging flights by adultsonce the chicks'energetic requirements exceed some critical level (Sealy 1973, Birkhead 1977). The risk to predation is probably greater in exposednest sitesthan at sea, contributing further to the selectiveadvantage of earlyfledging (Cody 1971, Birkhead1977). Given these constraints,however, larger chickswould be expected to better survivethe rigorsof fledging,increased activity at sea,and the vagaries of weather. Hedgren (1981) analyzed278 recoveriesof CommonMurres banded as fledglingsand found no significantrelationship between fledging weight and subsequentsurvival. This result is paradoxicalin view of a strong expectationto the contrary and evidencethat such an effect occursin other speciesof birds (Perrins 1965, Perrinset al. 1973, O'Con- ner 1976). Hedgren suggestedthe nestlingperiod of murres,averaging about3 weeks,is determinednot by a thresholdin bodysize, but by the relativelyconstant time requiredto completefeather growth.Birkhead (1977) alsoemphasized the need for chicksto attain a critical weight: wing-arearatio prior to fledging. Clearly, however,body weight and feather developmentare not mutuallyexclusive factors affecting fledg- ling survival.
    [Show full text]
  • Alcid Identification in Massachusetts
    ALCID IDENTIFICATION IN MASSACHUSETTS by Richard R. Veit, Tuckernuck The alcldae, a northern circvimpolar family of sesbirds, are memhers of the order Charadrilformes and thus most closely related to the gulls, skuas, and shorehirds. All alcids have approximately elliptical bodies and much reduced appendages, adaptations for insulation as well as a streamlined trajectory under water. Their narrow flipperlike wings are modified to reduce drag durlng underwater propulsión, and are, therefore, comparatively inefficient for flight. Razorbills, murres, and puffins feed predominately on fish, such as the sand launce, capelin, Arctic cod, herring, and mackerel. The Dovekie, by far the smallest Atlantic alcid, eats zooplankton exclusively, such as the superabundant "krill." The Black Guillemot, unique.in its con- finement to the shallow littoral zone, feeds largely on rock eels or gunnel. As with many pelagic birds, the alcids' dependence on abundant marine food restricts them to the productive vaters of the high latitudes. Bio- logical productivity of the oceans increases markedly towards the poles, largely because the low surface temperaturas there maintain convection currents which serve to raise large quantities of dissolved mineral nu­ triente to the siirface. The resultant high concentration of nutriente near the surface of polar seas supports enormous populations of plankton and, ultimately, the fish upon which the largar alcids feed. Alcids are comparatively weak flyers and are not regularly migratory, but rather disperse from their breeding ranga only when forced to do so by freezing waters or food scarcity. Massachusetts lies at the periphery of the ranges of these birds, with the exception of the Razorbill. It i& only under exceptional circumstances, such as southward irruptions coupled with strong northeasterly storms that substantial numbers of alcids are observad along the Massachusetts coastline.
    [Show full text]
  • Marbled Murrelet Fact Sheet
    Marbled Murrelet Fact Sheet Marbled Murrelet – Brachyramphus marmoratus Listing status: Federally listed threatened species in Washington, Oregon, and California Marbled murrelets are pigeon-sized seabirds that live along the Pacific coast of North America from California to Alaska. The marbled murrelet is a secretive seabird that nests in older forests and forages in nearby marine waters. They are adapted for both underwater (to pursue prey) and aerial flights. In Washington, they have been seen up to 50 miles from marine waters but primarily use suitable habitat within 40 miles of the coast. Washington’s populations occur mainly in the northern Puget Sound, the Strait of Juan de Fuca, and along the northern Pacific Coast. While at-sea distribution varies Marbled murrelet with winter plumage. Photo: Rich MacIntosh over time and location, there is a general shift in winter abundance eastward from the Strait of Juan de Fuca to the Puget Sound and the San Juan Islands. In fall and winter, British Columbia's populations move south to the Puget Sound. Breeding plumage. Photo: Aaron Barna Juvenile (hatch-year) marbled murrelet just before fledging from nest. Photo: Tom Hamer Marbled Murrelet Plumage and Breeding Season Males and females have identical plumage that varies seasonally. When breeding, they have a dark upper body with rust-color tips on the back feathers, and are heavily mottled on the lower body. This “marbled” pattern is thought to protect breeding birds from detection by predators in forested habitats. In winter, adults have a brown-grey upper body, and white lower body. Juvenile and adult birds only can be distinguished from each other for a brief period in late summer and early fall.
    [Show full text]
  • Marbled Murrelet (Brachyramphus Marmoratus) 5-Year Review
    Marbled Murrelet (Brachyramphus marmoratus) 5-Year Review U.S. Fish and Wildlife Service Washington Fish and Wildlife Office Lacey, WA June 12, 2009 FINAL Final 2009 5-Year Review for the Marbled Murrelet June 12, 2009 5-YEAR REVIEW Species reviewed: Marbled murrelet (Brachyramphus marmoratus) TABLE OF CONTENTS 1.0 GENERAL INFORMATION............................................................................................. 1 2.0 REVIEW ANALYSIS........................................................................................................ 3 2.1 Application of the 1996 Distinct Population Segment (DPS) policy ......... 3 2.2 Recovery Criteria...................................................................................... 12 2.2.1 Does the species have a final, approved recovery plan containing objective, measurable criteria? ........................................................................................... 12 2.2.2 Adequacy of recovery criteria.............................................................................. 12 2.3 Updated Information and Current Species Status..................................... 14 2.3.1 Biology and Habitat ............................................................................................. 14 2.3.1.1 New information on the species’ biology and life history:...................... 14 2.3.1.2 Abundance, population trends (e.g. increasing, decreasing, stable), demographic features (e.g., age structure, sex ratio, family size, birth rate, age at mortality, mortality rate, etc.),
    [Show full text]
  • Changes in Breeding Population Size of Brandt's and Double-Crested
    Changes in Breeding Population Size of Brandt’s and Double-crested Cormorants in California, 1975-2003 Phillip J. Capitolo1, Harry R. Carter1,4, Richard J. Young1, Gerard J. McChesney2, William R. McIver1,5, Richard T. Golightly1, and Franklin Gress3 1Department of Wildlife, Humboldt State University, Arcata, California 95521 USA 2San Francisco Bay National Wildlife Refuge Complex, U.S. Fish and Wildlife Service, P.O. Box 524, Newark, California 94560 USA 3California Institute of Environmental Studies, 3408 Whaler Avenue, Davis, California 95616 USA Final Report for Contract # 10154-2-G106 between Humboldt State University Foundation and U.S. Fish and Wildlife Service July 2004 4Current Address: 5700 Arcadia Road, Apt. #219, Richmond, British Columbia V6X2G9 Canada 5Current Address: U.S. Fish and Wildlife Service, Ecological Services, 2493 Portola Road, Suite B, Ventura, California 93003 USA Suggested Citation: Capitolo, P. J., H. R. Carter, R. J. Young, G. J. McChesney, W. R. McIver, R. T. Golightly, and F. Gress. 2004. Changes in breeding population size of Brandt’s and Double- crested Cormorants in California, 1975-2003. Unpublished report, Department of Wildlife, Humboldt State University, Arcata, California. TABLE OF CONTENTS ABSTRACT........................................................................................................................ 1 INTRODUCTION .............................................................................................................. 2 METHODS ........................................................................................................................
    [Show full text]
  • Sixteen Vetted Fossil Calibrations for Divergence Dating of Charadriiformes (Aves, Neognathae)
    Palaeontologia Electronica palaeo-electronica.org Sixteen vetted fossil calibrations for divergence dating of Charadriiformes (Aves, Neognathae) N. Adam Smith ABSTRACT The Charadriiformes (shorebirds and allies) are an ecologically and morphologi- cally diverse clade with a global geographic distribution. The perceived antiquity of this lineage and the cryptic plumage and morphology of some charadriiforms have made them a frequent focus of study by ornithologists. Likewise, with the relatively recent advent of molecular sequence based divergence estimation methods, no less than seven studies have estimated the timing of cladogenetic events in Charadriiformes. Unfortunately, all of those studies have suffered from poor choice and characterization (i.e., age and taxonomic assignment) of fossil calibrations used for divergence time analysis. Given that studies of both real and simulated data have demonstrated the potential for calibration choice to bias node age estimates, the results of previously published analyses of divergence times for Charadriiformes must, accordingly, be viewed with caution. To alleviate introduction of fossil calibration bias with respect to future analyses of divergence times including Charadriiformes, 16 rigorously evaluated charadriiform fossil calibrations are reported herein. N. Adam Smith. The National Evolutionary Synthesis Center, 2024 W. Main St., Suite A200, Durham, NC, 27705, U.S.A., adam_smith@utexas.edu KEYWORDS: Charadrii; minimum age constraints; Pan-Alcidae; Lari; Scolopaci; seabirds and shorebirds INTRODUCTION forms were previously considered a basal neorni- thine lineage and were influential in the Charadriiformes (shorebirds and allies) are a development of the largely refuted ‘transitional globally distributed clade including more than 360 shorebird’ hypothesis (Olson, 1985; Feduccia, morphologically and ecologically diverse species 1996), dating cladogenetic events in Charadrii- (del Hoyo et al., 1996).
    [Show full text]