Giants Invading the Tropics: the Oriental Vessel Fern, Angiopteris Evecta (Marattiaceae)

Total Page:16

File Type:pdf, Size:1020Kb

Giants Invading the Tropics: the Oriental Vessel Fern, Angiopteris Evecta (Marattiaceae) Biol Invasions (2008) 10:1215–1228 DOI 10.1007/s10530-007-9197-7 ORIGINAL PAPER Giants invading the tropics: the oriental vessel fern, Angiopteris evecta (Marattiaceae) Maarten J. M. Christenhusz Æ Tuuli K. Toivonen Received: 26 October 2007 / Accepted: 26 November 2007 / Published online: 7 December 2007 Ó Springer Science+Business Media B.V. 2007 Abstract The Oriental vessel fern, Angiopteris species could be cultivated over a much wider range evecta (G.Forst.) Hoffm. (Marattiaceae), has its than where it currently is grown. The escape of native range in the South Pacific. This species has cultivated plants into nature is probably due to been introduced into other localities since the 18th distance from natural areas and is limited by local century and is now listed as an invasive species in ecological factors, such as soil conditions or compet- several regions (Jamaica, Hawaii and Costa Rica). itors. The predicted distribution in Asia and The purpose of our study is (1) to trace the Madagascar is similar to the native distribution of distributional history of the species, and (2) to model the entire genus Angiopteris. It can therefore be its potential future range based on climatic condi- assumed that most Angiopteris species have similar tions. The native range and the history of introduction climatic preferences, and the absence of A. evecta in are based on the existing literature and on 158 this predicted region may be due to dispersal specimens from 15 herbaria, together with field limitation. In the Americas there is no native observations. As there are taxonomic problems Angiopteris, but our climatic model predicts a vast surrounding A. evecta, we limited our analysis to potential habitat in tropical America; an invasion of samples from the Pacific, most closely resembling the A. evecta should be anticipated here in localities type from Tahiti. We modelled the potential range where the species is cultivated. Vessel ferns are using GARP species distribution modelling with known to alter the natural environment, which may basic climatic variables, elevation, and location in reduce local biodiversity. Since A. evecta is not yet relation to the coast. Analysis of past records shows widely cultivated, it is advisable to restrict the trade that the species is able to colonise new ecosystems and spread of the species and to discourage its with relative ease. The modelling reveals that the cultivation as an ornamental. The global climate data available for modelling is however not detailed enough to predict the spread of A. evecta on a local or regional scale. M. J. M. Christenhusz (&) Department of Biology, Section Biodiversity, University of Turku, 20014 Turku, Finland Keywords Alien flora Á Angiopteris evecta Á e-mail: maarten.christenhusz@utu.fi Caribbean Á Conservation Á Ferns Á GARP Á Hawaii Á Invasive plant species Á T. K. Toivonen Islands Á Jamaica Á Marattiaceae Á Pacific Á Department of Geography, University of Helsinki, P.O. Box 64, 00014 Helsinki, Finland Species distribution modelling Á Neotropics Á e-mail: tuuli.k.toivonen@helsinki.fi Vessel ferns 123 1216 M. J. M. Christenhusz, T. K. Toivonen Introduction Innis (2004) reported that the ability of this vine to rapidly overtop trees, fix nitrogen and emit isopro- Species introductions by humans to new areas have pene has a highly negative effect on natural nitrogen become more common due to increased transport, cycles, forest biodiversity, freshwater eutrophication trade, travel, tourism, and the demand for exotic new and local air quality. species for horticulture. All of these provide path- The giant hogweed (Heracleum mantegazzianum ways for organisms to cross biogeographical borders Sommier and Levier, Apiaceae), a species originally that they would never be able to cross on their own from the Caucasian mountains, has spread throughout (Vitousek et al. 1996). Some introduced species Europe as a garden plant. According to Pysek and become invasive and have negative effects on the Pysek (1995), this species can invade a variety of local biodiversity, economy and even public health vegetation types, although disturbed habitats are (Mack et al. 2000; Forseth and Innis 2004; Reaser more easily invaded. The same study also showed et al. 2007). Globally, biological invasion by alien that vegetation invaded by H. mantegazzianum has a species is a major threat to natural ecosystems and much lower species diversity than similar adjacent biodiversity. An alien plant becomes invasive if it is vegetation that has not been invaded; many herbs and able to maintain its population spread and take over shrubs are unable to survive when overshadowed by suitable habitats from native plants (Williamson the large leaves of this Heracleum. 1996). In the tropics various alien plants are found as Exotic plant species have been introduced both well, which invade natural ecosystems in a similar intentionally, as garden or crop plants, and uninten- fashion, altering local ecosystems and reducing tionally, with agricultural practices or the moving of biodiversity; an example is Miconia calvescens soil. The effects of an introduction on the ecosystem DC. (Melastomataceae), which forms dense stands are usually irreversible (Wittenberg and Cock 2001). crowding out the native flora of the Pacific There are various ways in which invasive plants can islands (Meyer and Florence 1996). Bamboo alter their environment; these are summarised by (Bambusa vulgaris Schrad., Poaceae), the rose apple Reaser et al. (2007). Approximately 39–64% of (Syzygium jambos (L.) Alston, Myrtaceae) and the invasive plant species alter the hydrology and African tulip tree (Spathodea campanulata Pal., biochemistry of the natural ecosystem (Gordon Bignoniaceae) are well known examples of species 1998). These may negatively affect native species, invading tropical forests. Their slowly decomposing resulting in a lower local biodiversity. In Finland, for leaf litter prevents the regeneration of native instance, vegetational formations invaded by lupine species, and may change nutrient cycles. The dense (Lupinus polyphyllus Lindl., Fabaceae) were found to thickets formed by bamboo and rose apple prevent have a substantially lower diversity of both plants and the penetration of native species (O’Connor et al. butterflies than adjacent vegetations (Valtonen et al. 2000; Bito 2007). 2006). Valtonen et al. (2006) also showed that Even though most invasive plants are seed plants, invasive plants could affect the diversity of higher a few alien ferns are also known to be invasive and to trophic levels as well, especially when invading present serious problems for conservation. Examples species occur in high densities. of invasive ferns are Angiopteris evecta and Cya- Some invasive species, such as the infamous thea cooperi (F.Muell.) Domin, both from the South Japanese knotweed (Fallopia japonica (Houtt.) Pacific, but now forming major infestations on the Ronse Decr., Polygonaceae), alter ecosystems by Hawaiian Islands, threatening the endemic flora forming dense stands, crowding out native species. (Wilson 1996). In this article we model the potential This knotweed was introduced into Europe as an distribution of one of these, known variously as ornamental in the 19th century (Christenhusz and ‘Oriental vessel fern’, ‘mule’s foot fern’, ‘giant fern’ Uffelen 2001), and soon became a pest. It has a broad or ‘king fern’: Angiopteris evecta, a species native to ecological tolerance and invades various habitats. An New Guinea, coastal Australia, Melanesia, Microne- even more dramatic invasion was the introduction of sia, and Polynesia (Rolleri 2003). This species was kudzu (Pueraria lobata (Willd.) Ohwi, Fabaceae) to brought into cultivation soon after it was discovered North America to prevent soil erosion. Forseth and (Forster 1786); it is now known to be invasive in 123 Giants invading the tropics 1217 several tropical regions, most notably in Hawaii, Material and methods Jamaica and Costa Rica (http://plants.usda.gov/ &nbsp, and http://www.hear.org). Data collection Ferns of the genus Angiopteris are of evolutionary interest, because they are eusporangiate and have a Distribution data for A. evecta were obtained from fossil history dating back to the Jurassic (Konijnen- several sources. We have identified 141 specimens of burg-van Cittert 1975). In addition, the plants are of A. evecta in 15 herbaria (BISH, CANB, CR, DUKE, H, ornamental value, due to their large rhizomes and HVNP, IJ, MO, MT, NSW, NY, P, TUR, UCWI, US; gigantic leaves. For these reasons they are commonly herbarium acronyms according to Holmgren and cultivated in (botanical) gardens worldwide. The Holmgren 1998), and this data set was supplemented genus consists of some 200 microspecies, occurring with 17 field observations. Specimen images and throughout (sub-) tropical Asia, the Pacific and information from the Global Biodiversity Information Madagascar (Mabberley 1997). Facility (http://www.gbif.org/) and the database of the Angiopteris evecta is a species with large, globular Hawaiian Ecosystems at Risk project (http:// rhizomes that can grow up to 1.5 m tall and about www.hear.org/) were evaluated, 35 of whose records 1 m across. The starchy rhizomes are sometimes were included in our database. A total of 158 records consumed or used to perfume coconut oil (Mabberley included 128 from Australia, the Cook Islands, Fiji, 1997), which may have led to early cultivation in French Polynesia, Guam, Indonesia (Papua), the Ma- tropical Asia. The enormous bipinnate leaves sprout riana Islands, Micronesia, New Caledonia, Niue, spirally from the rhizome and can grow up to 6 m Palau, Papua New Guinea, Samoa, the Solomon long and 3 m wide. At the base of every petiole there Islands, Tonga and Vanuatu, where the species is are fleshy stipules, which have proliferous buds that native, and 30 from Costa Rica, Hawaii, Indonesia can grow into new plants when the stipules break off (Java, Ambon) and Jamaica, where the species is and find suitable ground (Uffelen 1994; Hoshizaki introduced (Fig. 1). All records were georeferenced and Moran 2001). This vegetative reproduction using maps, Google Earth (http://www.earth.
Recommended publications
  • Medicinal Plants in Papua New Guinea
    ___________________________________________________________________________ 2015/CSA/014 Agenda Item: 7b PNG Traditional Knowledge System and Science Advice: PNG Perspective Purpose: Information Submitted by: Papua New Guinea Third APEC Chief Science Advisors and Equivalents Meeting Kuala Lumpur, Malaysia 14-16 October 2015 19/10/2015 PNG Traditional Knowledge System and Science Advice: PNG Perspective Teatulohi Matainaho Chairman/ CEO and Chief Science Advisor PNG Science and Technology Council/ Secretariat Traditional (Indigenous) Knowledge System “Traditional Knowledge System (TKS) is the basis upon which many indigenous communities survive on. Indigenous people value their unique knowledge systems, their languages, their agriculture, folklore, arts, medicinal knowledge, and their philosophies of life as important systems of knowledge” Steven Winduo (2009) 1 19/10/2015 • In Papua New Guinea, like many Pacific Islands societies, indigenous knowledge systems continue to remain the strength of survival, for many groups of people living within their tribal boundaries in the islands, in the valleys, in the mountains, or along rivers. • Indigenous knowledge may not necessarily be in its original form, but transformed in a form that has incorporated aspects of the introduced knowledge together with the inherited knowledge. PNG Traditional knowledge systems Agriculture and Foods Health and Navigation Wellbeing PNG Fishing Forestry and Traditional Methods and Botanicals Knowledge Harvest Systems Biodiversity Building and and Construction Conservation Cultural Expression and Language 2 19/10/2015 PNG Traditional Medical Knowledge • Documentation of herbs used in traditional medicine in PNG including traditional medical practices • A systematic survey conducted throughout the country over 16 years • Leading to establishment of Traditional Medicine Database PNG Traditional Medicine Database A national repository of medicinal plants usage in PNG.
    [Show full text]
  • Epidermal Morphology of the Pinnae of Angiopteris, Danaea, and Maraffia
    American Fern Journal 81(2]:44-62 (1991) Epidermal Morphology of the Pinnae of Angiopteris, Danaea, and Maraffia CRISTINAROLLERI,AMVIBLIA DEFERRARI, AND MAR~ADEL CARMENLAVALLE Laboratory of Botany, Museo de La Plata, Paseo del Bosque, 1900 La Plata, Argentina This is a study of adult epidermis morphology in 17 species of Angiopteris Hoffm., Danaea J. E. Smith, and Marattia Swartz. Epidermal patterns, adult stomata, indument, and idioblasts were studied. Hill and Camus (1986) made an overview of characters of some extant species of Marattiales as part of a cladistic study of extant and fossil members of the order. The epidermal characters they used were subsidiary cells of the stomata, dimensions of the stomata, walls of epidermal cells, and idioblasts. The only character of indument they included in their study was the presence or absence of scales. Rolleri et al. (1987) made the first detailed study dealing with pinna and pinnule indument in the Marattiaceae, although Holttum (1978) had made some general comments on petiole and rhizome scales of Angiopteris, illustrating two species. He suggested that Angiopteris pinna trichomes were diagnostic but needed detailed study. Rolleri et al. (1987) strongly pointed out that epidermal characters are diagnostic at the species level in the Marattiaceae and speculated on generic affinities within the Marattiales. Adult epidermis was described according to the terminology of Rolleri and Deferrari (1986) and Rolleri et al. (1987). Adult stomata were described following the criteria of Stace (1965),van Cotthem (1970, 1971),and Wilkinson (1979). Lellinger's (1985) concept of trichomes was adopted, as well as the terminology of Theobald et al.
    [Show full text]
  • Efficient Regeneration of Hedychium Coronarium Through Protocorm-Like Bodies
    agronomy Article Efficient Regeneration of Hedychium coronarium through Protocorm-Like Bodies Xiu Hu 1, Jiachuan Tan 1, Jianjun Chen 2,* , Yongquan Li 1,* and Jiaqi Huang 1 1 Department of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; [email protected] (X.H.); [email protected] (J.T.); [email protected] (J.H.) 2 Department of Environmental Horticulture and Mid-Florida Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Apopka, FL 32703, USA * Correspondence: jjchen@ufl.edu (J.C.); [email protected] (Y.L.) Received: 1 July 2020; Accepted: 22 July 2020; Published: 24 July 2020 Abstract: Hedychium coronarium J. Koenig is a multipurpose plant with significant economic value, but it has been overexploited and listed as a vulnerable, near threatened or endangered species. In vitro culture methods have been used for propagating disease-free propagules for its conservation and production. However, explant contamination has been a bottleneck in in vitro propagation due to the use of rhizomes as the explant source. Plants in the family Zingiberaceae have pseudostems that support inflorescences, while rhizomes are considered true stems. The present study, for the first time, reported that the pseudostem bears nodes and vegetative buds and could actually be true stems. The evaluation of different sources of explants showed that mature node explants derived from the stem were the most suitable ones for in vitro culture because of the lowest contamination and the highest bud break rates. Culture of mature node explants on MS medium supplemented with 13.32, 17.76, and 22.20 µM 6-benzylaminopurine (BA), each in combination with 9.08 µM thidiazurin (TDZ) and 0.05 µM α-naphthaleneacetic acid (NAA) induced the conversion of buds to micro-rhizomes in six weeks.
    [Show full text]
  • Chapter 23: the Early Tracheophytes
    Chapter 23 The Early Tracheophytes THE LYCOPHYTES Lycopodium Has a Homosporous Life Cycle Selaginella Has a Heterosporous Life Cycle Heterospory Allows for Greater Parental Investment Isoetes May Be the Only Living Member of the Lepidodendrid Group THE MONILOPHYTES Whisk Ferns Ophioglossalean Ferns Horsetails Marattialean Ferns True Ferns True Fern Sporophytes Typically Have Underground Stems Sexual Reproduction Usually Is Homosporous Fern Have a Variety of Alternative Means of Reproduction Ferns Have Ecological and Economic Importance SUMMARY PLANTS, PEOPLE, AND THE ENVIRONMENT: Sporophyte Prominence and Survival on Land PLANTS, PEOPLE, AND THE ENVIRONMENT: Coal, Smog, and Forest Decline THE OCCUPATION OF THE LAND PLANTS, PEOPLE, AND THE The First Tracheophytes Were ENVIRONMENT: Diversity Among the Ferns Rhyniophytes Tracheophytes Became Increasingly Better PLANTS, PEOPLE, AND THE Adapted to the Terrestrial Environment ENVIRONMENT: Fern Spores Relationships among Early Tracheophytes 1 KEY CONCEPTS 1. Tracheophytes, also called vascular plants, possess lignified water-conducting tissue (xylem). Approximately 14,000 species of tracheophytes reproduce by releasing spores and do not make seeds. These are sometimes called seedless vascular plants. Tracheophytes differ from bryophytes in possessing branched sporophytes that are dominant in the life cycle. These sporophytes are more tolerant of life on dry land than those of bryophytes because water movement is controlled by strongly lignified vascular tissue, stomata, and an extensive cuticle. The gametophytes, however still require a seasonally wet habitat, and water outside the plant is essential for the movement of sperm from antheridia to archegonia. 2. The rhyniophytes were the first tracheophytes. They consisted of dichotomously branching axes, lacking roots and leaves. They are all extinct.
    [Show full text]
  • Curitiba, Southern Brazil
    data Data Descriptor Herbarium of the Pontifical Catholic University of Paraná (HUCP), Curitiba, Southern Brazil Rodrigo A. Kersten 1,*, João A. M. Salesbram 2 and Luiz A. Acra 3 1 Pontifical Catholic University of Paraná, School of Life Sciences, Curitiba 80.215-901, Brazil 2 REFLORA Project, Curitiba, Brazil; [email protected] 3 Pontifical Catholic University of Paraná, School of Life Sciences, Curitiba 80.215-901, Brazil; [email protected] * Correspondence: [email protected]; Tel.: +55-41-3721-2392 Academic Editor: Martin M. Gossner Received: 22 November 2016; Accepted: 5 February 2017; Published: 10 February 2017 Abstract: The main objective of this paper is to present the herbarium of the Pontifical Catholic University of Parana’s and its collection. The history of the HUCP had its beginning in the middle of the 1970s with the foundation of the Biology Museum that gathered both botanical and zoological specimens. In April 1979 collections were separated and the HUCP was founded with preserved specimens of algae (green, red, and brown), fungi, and embryophytes. As of October 2016, the collection encompasses nearly 25,000 specimens from 4934 species, 1609 genera, and 297 families. Most of the specimens comes from the state of Paraná but there were also specimens from many Brazilian states and other countries, mainly from South America (Chile, Argentina, Uruguay, Paraguay, and Colombia) but also from other parts of the world (Cuba, USA, Spain, Germany, China, and Australia). Our collection includes 42 fungi, 258 gymnosperms, 299 bryophytes, 2809 pteridophytes, 3158 algae, 17,832 angiosperms, and only one type of Mimosa (Mimosa tucumensis Barneby ex Ribas, M.
    [Show full text]
  • Marattiaceae)
    FERN GAZ. 20(1):15-18. 2015 15 NOTE ON THE REDISCOVERED TYPE SPECIMEN OF ANGIOPTERIS INDICA DESV. (MARATTIACEAE) J. MAZUMDAR Department of Biological Sciences, Burdwan Town School, Burdwan-713101, India Email: [email protected] Key words: Angiopteris indica , Herb. Desvaux, India, Marattiaceae, type. ABSTRACT The type of the tree fern Angiopteris indica Desv. (Marattiaceae) was rediscovered in Herb. Desvaux at P and its status is discussed. INTRODUCTION Three species of the marattioid fern genus Angiopteris Hoffm. (Marattiaceae) are generally accepted to occur in India (Fraser-Jenkins, 2008; Fraser-Jenkins & Benniamin 2010), namely Angiopteris indica Desv., A. helferiana C.Presl, and A. palmiformis (Cav.) C.Chr. Fraser-Jenkins (2008) accepted A. indica as the oldest available name for plants characterized by the combination of the following characters: the soral lines are located close or at the margin, the lamina segments possess prominent teeth near their tips, the lamina colour is darker than in other Indian species, and with the false (recurrent) veins reaching the soral line or just passing beyond it. In contrast, A. helferiana is distinguishable from A. indica by its inframarginal sori, whereas A. palmiformis has long false veins extended up to the pinnule-midrib. Angiopteris indica was described by Desvaux in 1813 (Desvaux 1813: 267) and not in 1811 (Desvaux 1811: 207), as misquoted by Moore (1857: 75) and Christensen (1906: 57), but see Hooker & Greville (1831) for the correct citation of the name. In the protologue, Desvaux (1813: 267) described the plants as “frondibus pinnatis, pinnis lanceolatis utrinque attenuates” and mentioned the area of origin as “Habitat in India orientali”.
    [Show full text]
  • Angiopteris Evecta)
    Approved NSW Recovery Plan Recovery Plan for the Giant Fern (Angiopteris evecta) 0 0.5 1.0 1.5 2.0 2.5 Metres NSW NATIONAL PARKS AND October 2001 WILDLIFE © NSW National Parks and Wildlife Service, 2001. This work is copyright, however material presented in this Plan may be copied for personal use or published for educational purposes, providing that any extracts are fully acknowledged. Apart from this and any other use as permitted under the Copyright Act 1968, no part may be reproduced without prior written permission from NPWS. NSW National Parks and Wildlife Service 43 Bridge Street (PO Box 1967) Hurstville NSW 2220 Tel: 02 95856444 www.npws.nsw.gov.au Requests for information or comments regarding the recovery program for Angiopteris evecta are best directed to: Threatened Species Unit, Northern Directorate. NSW National Parks and Wildlife Service Locked Bag 914 Coffs Harbour NSW 2450 Cover illustration: Angiopteris evecta Illustrator: Frances Blines This recovery plan should be cited as follows: NSW National Parks and Wildlife Service (2001) Recovery Plan for the Giant Fern (Angiopteris evecta). NSW National Parks & Wildlife Service, Hurstville NSW. ISBN 0 7313 6379 5 Recovery Plan for the Giant Fern (Angiopteris evecta) Foreword This document constitutes the formal New South Wales State recovery plan for the Giant Fern (Angiopteris evecta) and, as such, considers the conservation requirements of the species in NSW. It identifies the actions to be taken to ensure the long-term viability of the Giant Fern in nature and the parties who will undertake these actions. The Giant Fern is included as endangered under the NSW Threatened Species Conservation Act 1995.
    [Show full text]
  • Botrychium Hesperium Barneby (Western Moonwort) a Technical Conservation Assessment
    Botrychium hesperium Barneby (western moonwort) A Technical Conservation Assessment Prepared for the USDA Forest Service, Rocky Mountain Region, Species Conservation Project April 12, 2004 David G. Anderson and Dan Cariveau Colorado Natural Heritage Program Colorado State University Fort Collins, CO 80523 Peer Review Administered by Center for Plant Conservation Anderson, D.G. and D. Cariveau (2004, April 12). Botrychium hesperium Barneby (western moonwort): a technical conservation assessment. [Online]. USDA Forest Service, Rocky Mountain Region. Available: http:// www.fs.fed.us/r2/projects/scp/assessments/botrychiumhesperium.pdf [date of access]. ACKNOWLEDGEMENTS This research was greatly facilitated by the helpfulness and generosity of many experts, particularly Reed Crook, Don Farrar, Warren Hauk, Cindy Johnson-Groh, Peter Root, Dave Steinmann, Florence Wagner, and Loraine Yeatts. Their interest in the project and their time spent answering our questions were extremely valuable. Dr. Kathleen Ahlenslager also provided valuable assistance and literature. The Natural Heritage Program/Natural Heritage Inventory/Natural Diversity Database Botanists we consulted (Craig Freeman, Joyce Gould, Bonnie Heidel, Dave Ode, Gerry Steinauer) were also extremely helpful. Greg Hayward, Gary Patton, Jim Maxwell, Andy Kratz, Beth Burkhart, and Joy Bartlett assisted with questions and project management. Jane Nusbaum, Carmen Morales, Betty Eckert, Candyce Jeffery, and Barbara Brayfield provided crucial financial oversight. Others who provided information and assistance include Annette Miller, Janet Wingate, and Loraine Yeatts. Loraine provided the excellent photo of Botrychium hesperium. We are grateful to the Colorado Natural Heritage Program staff (Jim Gionfriddo, Jill Handwerk, and Susan Spackman) who reviewed the first draft of this document, and to the two anonymous peer reviewers for their excellent suggestions.
    [Show full text]
  • Chapter 6 ENUMERATION
    Chapter 6 ENUMERATION . ENUMERATION The spermatophytic plants with their accepted names as per The Plant List [http://www.theplantlist.org/ ], through proper taxonomic treatments of recorded species and infra-specific taxa, collected from Gorumara National Park has been arranged in compliance with the presently accepted APG-III (Chase & Reveal, 2009) system of classification. Further, for better convenience the presentation of each species in the enumeration the genera and species under the families are arranged in alphabetical order. In case of Gymnosperms, four families with their genera and species also arranged in alphabetical order. The following sequence of enumeration is taken into consideration while enumerating each identified plants. (a) Accepted name, (b) Basionym if any, (c) Synonyms if any, (d) Homonym if any, (e) Vernacular name if any, (f) Description, (g) Flowering and fruiting periods, (h) Specimen cited, (i) Local distribution, and (j) General distribution. Each individual taxon is being treated here with the protologue at first along with the author citation and then referring the available important references for overall and/or adjacent floras and taxonomic treatments. Mentioned below is the list of important books, selected scientific journals, papers, newsletters and periodicals those have been referred during the citation of references. Chronicles of literature of reference: Names of the important books referred: Beng. Pl. : Bengal Plants En. Fl .Pl. Nepal : An Enumeration of the Flowering Plants of Nepal Fasc.Fl.India : Fascicles of Flora of India Fl.Brit.India : The Flora of British India Fl.Bhutan : Flora of Bhutan Fl.E.Him. : Flora of Eastern Himalaya Fl.India : Flora of India Fl Indi.
    [Show full text]
  • Naturalised Species May Hold Key to Managing Invasive Aliens
    Special Issue 6 20 June 2008 Naturalised species may hold key to managing invasive aliens Alien species, introduced outside their natural range, can become invasive with the potential to cause damage to the ecosystem of the invaded area. Researchers have suggested that more intercontinental collaboration and funding could provide needed research on under- studied countries and ‘naturalised’ species across the world. Invasion biologists are particularly concerned with understanding the common principles that determine how introduced species turn into invasive species. Such information could be used to develop more effective policies to control invasions. However, researchers suggest that there are important knowledge gaps, as not all invasive species have been thoroughly studied and some geographic areas have received little research attention. The study1 found a clear bias towards research on North American and European species. Almost half of all invasive species studied were in North America. Fewer studies have been conducted in Australasia and on oceanic islands, although these areas contain high numbers of naturalised species. An alien species may become naturalised if it forms populations that can survive without human-help. However, it may not yet be ‘invasive’. To be classified as invasive, a species must adapt to overcome barriers in the new environment, such as, for example, a lack of its natural food source or dispersal agents. Naturalisation is therefore an important intermediary stage in the invasion process. Except in South Africa, relatively few detailed studies have been conducted in Asia and Africa, although these regions have many naturalised species. The researchers suggest that thorough studies from a wide variety of habitats around the world are important, because different processes may determine whether species become naturalised in different regions.
    [Show full text]
  • Conservation and Management Plans for Angiopteris Evecta (Forst.) Hoffm
    http://www.siu.edu/~ebl/leaflets/pteris.htm 11/13/08 11:01 AM Ethnobotanical Leaflets 12: 23-28, 2008. Conservation and Management Plans for Angiopterisevecta (Forst.) Hoffm. (Marattiaceae: Pteridophyta): An Endangered Species KAMINI SRIVASTAVA, M.Sc, D.Phil. Department of Botany, University of Allahabad, Allahabad-211002, India E-mail: [email protected] Issued 22 January 2008 Abstract Angiopteris evecta, due to its rarity, is potentially a species of high value for fern enthusiasts. This is a threatened species which is included in the endangered categories in the ‘Red Data Book’ of International Union for Conservation of Nature and Natural Resources. Since this species is also known to be of importance for its ethnomedicinal uses, this is a matter of great concern. If we do not think about its conservation and protection, this species could very well disappear from the face of this earth. For these reasons, the present paper deals with the habitat, cultural value and medicinal uses of Angiopteris evecta. It also presents a plan for its recovery, conservation and management. Key Words: Angiopteris evecta, habitat, uses, exploitation, proper management. Introduction Ferns, at one time, were regarded primarily as ornamental plants. More recently, however, people have come to realize the wide- spectrum utility of ferns. A lot of work is being done on both the harmful and useful aspects of ferns. Although a large variety of ferns are available on the earth, there are some ferns that are slowly and gradually becoming extinct. Day by day the number of ferns is dwindling and this is a matter of great concern.
    [Show full text]
  • Bulletin of the Natural History Museum
    ISSN 0968-044 Bulletin of The Natural History Museum THE NATURAL HISTORY 22 KOV 2000 Q6NEKAI LIBRARY THE NATURAL HISTORY MUSEUM VOLUME 30 NUMBER 2 30 NOVEMBER 2000 The Bulletin of The Natural History Museum (formerly: Bulletin of the British Museum (Natural History) ), instituted in 1949, is issued in four scientific series, Botany, Entomology, Geology (incorporating Mineralogy) and Zoology. The Botany Series is edited in the Museum's Department of Botany Keeper of Botany: Dr R. Bateman Editor of Bulletin: Ms M.J. Short Papers in the Bulletin are primarily the results of research carried out on the unique and ever- growing collections of the Museum, both by the scientific staff and by specialists from elsewhere who make use of the Museum's resources. Many of the papers are works of reference that will remain indispensable for years to come. All papers submitted for publication are subjected to external peer review for acceptance. A volume contains about 160 pages, made up by two numbers, published in the Spring and Autumn. Subscriptions may be placed for one or more of the series on an annual basis. Individual numbers and back numbers can be purchased and a Bulletin catalogue, by series, is available. Orders and enquiries should be sent to: Intercept Ltd. P.O. Box 7 16 Andover Hampshire SP 10 1YG Telephone: (01 264) 334748 Fax: (01264) 334058 Email: [email protected] Internet: http://www.intercept.co.uk Claims for non-receipt of issues of the Bulletin will be met free of charge if received by the Publisher within 6 months for the UK, and 9 months for the rest of the world.
    [Show full text]