Advances in Management of Precious Corals to Address Unsustainable 46 and Destructive Harvest Techniques
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Information Review for Protected Deep-Sea Coral Species in the New Zealand Region
INFORMATION REVIEW FOR PROTECTED DEEP-SEA CORAL SPECIES IN THE NEW ZEALAND REGION NIWA Client Report: WLG2006-85 November 2006 NIWA Project: DOC06307 INFORMATION REVIEW FOR PROTECTED DEEP-SEA CORAL SPECIES IN THE NEW ZEALAND REGION Authors Mireille Consalvey Kevin MacKay Di Tracey Prepared for Department of Conservation NIWA Client Report: WLG2006-85 November 2006 NIWA Project: DOC06307 National Institute of Water & Atmospheric Research Ltd 301 Evans Bay Parade, Greta Point, Wellington Private Bag 14901, Kilbirnie, Wellington, New Zealand Phone +64-4-386 0300, Fax +64-4-386 0574 www.niwa.co.nz © All rights reserved. This publication may not be reproduced or copied in any form without the permission of the client. Such permission is to be given only in accordance with the terms of the client's contract with NIWA. This copyright extends to all forms of copying and any storage of material in any kind of information retrieval system. Contents Executive Summary iv 1. Introduction 1 2. Corals 1 3. Habitat 3 4. Corals as a habitat 3 5. Major taxonomic groups of deep-sea corals in New Zealand 5 6. Distribution of deep-sea corals in the New Zealand region 9 7. Systematics of deep-sea corals in New Zealand 18 8. Reproduction and recruitment of deep-sea corals 20 9. Growth rates and deep-sea coral ageing 22 10. Fishing effects on deep-sea corals 24 11. Other threats to deep-sea corals 29 12. Ongoing research into deep-sea corals in New Zealand 29 13. Future science and challenges to deep-sea coral research in New Zealand 30 14. -
Ecosystem Approach to Fisheries Management (EAFM) Country Position Paper—Malaysia
CORAL TRIANGLE INITIATIVE: EcOSYSTEM APPROACH TO FISHERIES MANAGEMENT (EAFM) Country Position Paper—Malaysia May 2013 This publication was prepared for Malaysia’s National Coordinating Committee with funding from the United States Agency for International Development’s Coral Triangle Support Partnership (CTSP). Coral Triangle Initiative: Ecosystem Approach to Fisheries Management (EAFM): Country Position Paper – Malaysia AUTHOR: Kevin Hiew EDITOR: Jasmin Saad, OceanResearch KEY CONTRIBUTORS: Gopinath Nagarai, Fanli Marine Consultancy USAID PROJecT NUMBER: GCP LWA Award # LAG-A-00-99-00048-00 CITATION: Hiew, K., J. Saad, and N. Gopinath. Coral Triangle Initiative: Ecosystem Approach to Fisheries Management (EAFM): Country Position Paper—Malaysia. Publication. Honolulu, Hawaii: The USAID Coral Triangle Support Partnership, 2012. Print. PRINTED IN: Honolulu, Hawaii, May 2013 This is a publication of the Coral Triangle Initiative on Corals, Fisheries and Food Security (CTI-CFF). Funding for the preparation of this document was provided by the USAID-funded Coral Triangle Support Partnership (CTSP). CTSP is a consortium led by the World Wildlife Fund, The Nature Conservancy and Conservation International with funding support from the United States Agency for International Development’s Regional Asia Program. For more information on the Coral Triangle Initiative, please contact: Coral Triangle Initiative on Coral Reefs, Fisheries and Food Security Interim-Regional Secretariat Ministry of Marine Affairs and Fisheries of the Republic of Indonesia Mina Bahari Building II, 17th Floor Jalan Medan Merdeka Timur No. 16 Jakarta Pusat 10110, Indonesia www.coraltriangleinitiative.org CTI-CFF National Coordinating Committee Professor Nor Aeni Haji Mokhtar Under Secretary National Oceanography Directorate, Ministry of Science, Technology and Innovation, Level 6, Block C4, Complex C, Federal Government Administrative Centre, 62662 Putrajaya, Malaysia. -
Features of Formation of Reefs and Macrobenthos Communities in the an Thoi Archipelago the Gulf of Thailand (South China Sea)
id7363687 pdfMachine by Broadgun Software - a great PDF writer! - a great PDF creator! - http://www.pdfmachine.com http://www.broadgun.com EEnnvviirroonnImSmSN : e0e97nn4 - 7tt45aa1 ll SSccViioleeumnne 8 Iccssuee 8 An Indian Journal Current Research Paper ESAIJ, 8(8), 2013 [297-307] Features of formation of reefs and macrobenthos communities in the An Thoi archipelago the Gulf of Thailand (South China Sea) Yuri Ya.Latypov A.V.Zhirmunsky Institute of Marine Biology, Far Eastern BranchRussian Academy of Sciences, Vladivostok, 690059, (RUSSIA) E-mail : [email protected] ABSTRACT KEYWORDS Macrobenthos communities studied on fringing reefs of the AnThoj Coral; archipelago using SCUBA-diving equipment. The islands are located in Reef; the turbid and highly eutrophic waters of the eastern Gulf of Thailand. We Macrobenthos; researched species composition and settlements densities and biomasses Community; in common species of algae, coelenterates, mollusks and echinoderms, as AnThoi archipelago; well as the degree of substrate coverage by macrophytes and coral. Clear Vietnam. vertical zonation identified in the change of the various communities in macrobenthos. The dominance of massive Porites on almost all reefs of the Gulf of Thailand is due to their ability to survive in stressful for many corals. They predominate over other scleractinian for the productivity of organic matter, the degree of substrate coverage and species diversity. They also constitute the reef skeleton and play a significant role of the expansion of its area in themuddy bottom of the Gulf of Thailand. 2013 Trade Science Inc. - INDIA INTRODUCTION phological zoning and developed powerful reef depos- its, common in structural reefs of the Indo- Pacific. -
Guide to the Identification of Precious and Semi-Precious Corals in Commercial Trade
'l'llA FFIC YvALE ,.._,..---...- guide to the identification of precious and semi-precious corals in commercial trade Ernest W.T. Cooper, Susan J. Torntore, Angela S.M. Leung, Tanya Shadbolt and Carolyn Dawe September 2011 © 2011 World Wildlife Fund and TRAFFIC. All rights reserved. ISBN 978-0-9693730-3-2 Reproduction and distribution for resale by any means photographic or mechanical, including photocopying, recording, taping or information storage and retrieval systems of any parts of this book, illustrations or texts is prohibited without prior written consent from World Wildlife Fund (WWF). Reproduction for CITES enforcement or educational and other non-commercial purposes by CITES Authorities and the CITES Secretariat is authorized without prior written permission, provided the source is fully acknowledged. Any reproduction, in full or in part, of this publication must credit WWF and TRAFFIC North America. The views of the authors expressed in this publication do not necessarily reflect those of the TRAFFIC network, WWF, or the International Union for Conservation of Nature (IUCN). The designation of geographical entities in this publication and the presentation of the material do not imply the expression of any opinion whatsoever on the part of WWF, TRAFFIC, or IUCN concerning the legal status of any country, territory, or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries. The TRAFFIC symbol copyright and Registered Trademark ownership are held by WWF. TRAFFIC is a joint program of WWF and IUCN. Suggested citation: Cooper, E.W.T., Torntore, S.J., Leung, A.S.M, Shadbolt, T. and Dawe, C. -
New Record of Melithaea Retifera (Lamarck, 1816) from Andaman and Nicobar Island, India
Indian Journal of Geo Marine Sciences Vol. 48 (10), October 2019, pp. 1516-1520 New record of Melithaea retifera (Lamarck, 1816) from Andaman and Nicobar Island, India J. S. Yogesh Kumar1*, S. Geetha2, C. Raghunathan3 & R. Sornaraj2 1Marine Aquarium and Regional Centre, Zoological Survey of India, (MoEFCC), Government of India, Digha, West Bengal, India. 2Research Department of Zoology, Kamaraj College (Manonmaniam Sundaranar University), Thoothukudi, Tamil Nadu, India. 3Zoological Survey of India (MoEFCC), Government of India, M Block, New Alipore, Kolkata, West Bengal, India. *[E-mail: [email protected]] Received 25 April 2018; revised 04 June 2018 Alcyoniidae octocorals are represented by 405 species in India of which 154 are from Andaman and Nicobar Islands. Surveys conducted in Havelock Island, South Andaman and Shark Island, North Andaman revealed the occurrence of Melithaea retifera and is reported herein as a new distributional record to Andaman and Nicobar Islands. This species is characterised by the clubs of the coenenchyme of the node and internodes and looks like a flower-bud. The structural variations and length of sclerites in the samples are also reported in this manuscript. [Keywords: Octocoral; Soft coral; Melithaeidae; Melithaea retifera; Havelock Island; Shark Island; Andaman and Nicobar; India.] Introduction identification15. The axis of Melithaeidae has short The Alcyonacea are sedentary, colonial growth and long internodes; those sclerites are short, smooth, forms belonging to the subclass Octocorallia. The rod-shaped9. Recently the family Melithaeidae was subclass Octocorallia belongs to Class Anthozoa, recognized18 based on the DNA molecular Phylum Cnidaria and is commonly called as soft phylogenetic relationship and synonymised Acabaria, corals (Alcyonacea), seafans (Gorgonacea), blue Clathraria, Melithaea, Mopsella, Wrightella under corals (Helioporacea), sea pens and sea pencil this family. -
IUCN / TRAFFIC Analyses of the Proposals to Amend the CITES
ENGLISH Analyses covers amended 2 Feb 10:analyses landscape 02/02/2010 18:11 Page 1 IUCN/TRAFFIC Analyses of the Proposals to Amend the CITES Appendices at the 15th Meeting of the Conference of the Parties Doha, Qatar 13–25 March 2010 Prepared by IUCN Species Programme and Species Survival Commission and TRAFFIC ANALYSES ENGLISH Analyses covers amended 2 Feb 10:analyses landscape 02/02/2010 18:11 Page 2 IUCN/TRAFFIC Analyses of the Proposals to Amend the CITES Appendices at the 15th Meeting of the Conference of the Parties Doha, Qatar 13–25 March 2010 Prepared by IUCN Species Programme and Species Survival Commission and TRAFFIC France, Ministère de Germany, Federal Ministry for the l'Écologie, de l'Énergie, Finland, Ministry of the Environment European Commission Environment, Nature Conservation Monaco, Government du Développement and Nuclear Safety (BMU) of Monaco durable et de la Mer Sweden, Naturvårdsverket - Netherlands, Ministry Swiss Confederation, Federal United States, US Fish Swedish Environmental Belgium, DG Animaux, Denmark, Danish Forest of Agriculture, Nature Department of Economic Affairs & Wildlife Service Protection Agency Végétaux et Alimentation and Nature Agency and Food Quality (FDEA), Veterinary Office Production of the 2010 IUCN/TRAFFIC Analyses of the Proposals to Amend the CITES Appendices was made possible through the generous support of: • European Commission – Directorate General for the Environment • USA – US Fish & Wildlife Service • France – Ministère de l'Écologie, de l'Energie, du Développement durable -
Okeanos Explorer ROV Dive Summary
Okeanos Explorer ROV Dive Summary Dive Information Dive Map Site Name Carondelet Reef Expedition Coordinator(s) Brian RC Kennedy, Nick Pawlenko ROV Lead(s) Karl McLetchie Science Team Lead(s) Amanda Demopoulos and Steven Auscavitch General Area Descriptor Phoenix Islands Protected Area ROV Dive Name Cruise EX-17-03 Leg 0 Dive Number 03 Equipment Deployed ROV Deep Discoverer (D2) Camera Platform Seirios CTD Depth Altitude Scanning Sonar USBL Position Heading ROV Measurements Pitch Roll HD Camera 1 HD Camera 2 Low Res Cam 1 Low Res Cam 2 Low Res Cam 3 Low Res Cam 4 Low Res Cam 5 Equipment Malfunctions Dive Summary: EX1703_DIVE03 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ In Water: 2017-03-10T18:25:08.463000 05°, 38.029' S ; 173°, 50.379' W Out Water: 2017-03-11T02:34:14.648000 05°, 37.629' S ; 173°, 50.105' W Off Bottom: 2017-03-11T01:37:19.059000 ROV Dive Summary 05°, 37.685' S ; 173°, 50.365' W (from processed ROV data) On Bottom: 2017-03-10T19:36:06.783000 05°, 37.936' S ; 173°, 50.260' W Dive duration: 8:9:6 Bottom Time: 6:1:12 Max. depth: 1842.3 m Special Notes Name Affiliation Email Address Scientists Involved University of (please provide name, Abby Lapointe Hawaii [email protected] location, affiliation, email) NOAA Fisheries Allen Andrews - PIFSC [email protected] 2 Amanda Demopoulos USGS [email protected] Amanda Netburn NOAA OER [email protected] FLorida State Amy Baco-Taylor University [email protected] UnderWater Andrea Pierce World Guam [email protected] Chiba Institute Asako of Technology Matsumoto -
Pink-To-Red Coral: a Guide to Determining Origin of Color
PINK-TO-RED CORAL: AGUIDE TO DETERMINING ORIGIN OF COLOR Christopher P. Smith, Shane F. McClure, Sally Eaton-Magaña, and David M. Kondo Pink-to-red coral has a long history as an ornamental gem material in jewelry, carvings, and sculptures. However, due to a variety of environmental and legal factors, the supply of high- quality, natural-color coral in this color range has dramatically decreased in recent years— and the quantity of dyed coral on the market has increased. From a study of more than 1,000 natural- and treated-color samples, this article summarizes the procedures that are useful to identify the color origin of pink-to-red coral. A variety of techniques—including magnifica- tion, exposure to acetone, and Raman analysis—can determine if the color of a piece of such coral is dyed. Although there are limitations to the use of magnification and acetone, Raman analysis can establish conclusively that the color is natural. oral is an organic gem material that has been This limitation has led to the practice of dyeing used for ornamental purposes (figure 1) for pale-colored and white coral into the more highly C several thousand years (see, e.g., Walton, valued shades of pink to red. Commonly, the coral 1959). Amulets of red coral dating back to 8000 BC is bleached prior to the dyeing process so that better were uncovered in Neolithic graves in Switzerland, penetration and more homogeneous coloration may coral jewelry was made in Sumeria and Egypt around be achieved (figure 3). Additionally, polymer 3000 BC, and Chinese cultures have valued coral high- impregnation—with or without a coloring agent— ly since about 1000 BC (Liverino, 1989). -
The Great Barrier Reef and Coral Sea 20 Tom C.L
The Great Barrier Reef and Coral Sea 20 Tom C.L. Bridge, Robin J. Beaman, Pim Bongaerts, Paul R. Muir, Merrick Ekins, and Tiffany Sih Abstract agement approaches that explicitly considered latitudinal The Coral Sea lies in the southwestern Pacific Ocean, bor- and cross-shelf gradients in the environment resulted in dered by Australia, Papua New Guinea, the Solomon mesophotic reefs being well-represented in no-take areas in Islands, Vanuatu, New Caledonia, and the Tasman Sea. The the GBR. In contrast, mesophotic reefs in the Coral Sea Great Barrier Reef (GBR) constitutes the western margin currently receive little protection. of the Coral Sea and supports extensive submerged reef systems in mesophotic depths. The majority of research on Keywords the GBR has focused on Scleractinian corals, although Mesophotic coral ecosystems · Coral · Reef other taxa (e.g., fishes) are receiving increasing attention. · Queensland · Australia To date, 192 coral species (44% of the GBR total) are recorded from mesophotic depths, most of which occur shallower than 60 m. East of the Australian continental 20.1 Introduction margin, the Queensland Plateau contains many large, oce- anic reefs. Due to their isolated location, Australia’s Coral The Coral Sea lies in the southwestern Pacific Ocean, cover- Sea reefs remain poorly studied; however, preliminary ing an area of approximately 4.8 million square kilometers investigations have confirmed the presence of mesophotic between latitudes 8° and 30° S (Fig. 20.1a). The Coral Sea is coral ecosystems, and the clear, oligotrophic waters of the bordered by the Australian continent on the west, Papua New Coral Sea likely support extensive mesophotic reefs. -
Depletion of Suspended Particulate Matter Over Coastal Reef Communities Dominated by Zooxanthellate Soft Corals
MARINE ECOLOGY PROGRESS SERIES Published April 18 Mar Ecol Frog Ser Depletion of suspended particulate matter over coastal reef communities dominated by zooxanthellate soft corals Katharina E. Fabricius*, Michaela Dommisse Australian Institute of Marine Science and CRC Reef Research, PMB 3. Townsville, Queensland 4810. Australia ABSTRACT. Coastal reef communities dominated by zooxanthellate alcyonacean octocorals extract large quantities of suspended particulate matter (SPM) from the water column. Concentrations of SPM in water parcels, tracked by a curtain drogue, were measured before and after passing over 2 strips of soft coral dominated, near-shore reefs -200 m long, and over 2 adjacent sand-dominated strips for com- parison. The reefs were covered with 50% zooxanthellate octocorals (total standing stock: -270 g AFDW m-'; mean live tissue volume: 70 1 m-2),7 % hard corals, 15 % turf algae with bioeroding sponges underneath, and <l% other filter feeders (sponges, tunicates, and bivalves). Downstream of the reef communities, chlorophyll, particulate organic carbon and particulate phosphorus were significantly depleted. The depletion of chlorophyll averaged 35 % of the standing stock, whereas the net depletion of particulate organic carbon and particulate phosphorus was 15 and 23 %, respectively. Rates of deple- tion were simllar for the 2 reef sites and 3 sampling periods, and were independent of upstream parti- cle concentration. In contrast, concentrations of particulate nitrogen and phaeopigments were similar before and after passage across the reef sites. On the sandy sites, downstream concentrations of par- ticulate nutrients, chlorophyll and phaeopigments were all similar to upstream concentrations. The net import of particulate organic carbon into the reef was estimated as 2.5 * 1.1 g C m-' d-'. -
Deep-Sea Life Issue 14, January 2020 Cruise News E/V Nautilus Telepresence Exploration of the U.S
Deep-Sea Life Issue 14, January 2020 Welcome to the 14th edition of Deep-Sea Life (a little later than anticipated… such is life). As always there is bound to be something in here for everyone. Illustrated by stunning photography throughout, learn about the deep-water canyons of Lebanon, remote Pacific Island seamounts, deep coral habitats of the Caribbean Sea, Gulf of Mexico, Southeast USA and the North Atlantic (with good, bad and ugly news), first trials of BioCam 3D imaging technology (very clever stuff), new deep pelagic and benthic discoveries from the Bahamas, high-risk explorations under ice in the Arctic (with a spot of astrobiology thrown in), deep-sea fauna sensitivity assessments happening in the UK and a new photo ID guide for mesopelagic fish. Read about new projects to study unexplored areas of the Mid-Atlantic Ridge and Azores Plateau, plans to develop a water-column exploration programme, and assessment of effects of ice shelf collapse on faunal assemblages in the Antarctic. You may also be interested in ongoing projects to address and respond to governance issues and marine conservation. It’s all here folks! There are also reports from past meetings and workshops related to deep seabed mining, deep-water corals, deep-water sharks and rays and information about upcoming events in 2020. Glance over the many interesting new papers for 2019 you may have missed, the scientist profiles, job and publishing opportunities and the wanted section – please help your colleagues if you can. There are brief updates from the Deep- Ocean Stewardship Initiative and for the deep-sea ecologists amongst you, do browse the Deep-Sea Biology Society president’s letter. -
CNIDARIA Corals, Medusae, Hydroids, Myxozoans
FOUR Phylum CNIDARIA corals, medusae, hydroids, myxozoans STEPHEN D. CAIRNS, LISA-ANN GERSHWIN, FRED J. BROOK, PHILIP PUGH, ELLIOT W. Dawson, OscaR OcaÑA V., WILLEM VERvooRT, GARY WILLIAMS, JEANETTE E. Watson, DENNIS M. OPREsko, PETER SCHUCHERT, P. MICHAEL HINE, DENNIS P. GORDON, HAMISH J. CAMPBELL, ANTHONY J. WRIGHT, JUAN A. SÁNCHEZ, DAPHNE G. FAUTIN his ancient phylum of mostly marine organisms is best known for its contribution to geomorphological features, forming thousands of square Tkilometres of coral reefs in warm tropical waters. Their fossil remains contribute to some limestones. Cnidarians are also significant components of the plankton, where large medusae – popularly called jellyfish – and colonial forms like Portuguese man-of-war and stringy siphonophores prey on other organisms including small fish. Some of these species are justly feared by humans for their stings, which in some cases can be fatal. Certainly, most New Zealanders will have encountered cnidarians when rambling along beaches and fossicking in rock pools where sea anemones and diminutive bushy hydroids abound. In New Zealand’s fiords and in deeper water on seamounts, black corals and branching gorgonians can form veritable trees five metres high or more. In contrast, inland inhabitants of continental landmasses who have never, or rarely, seen an ocean or visited a seashore can hardly be impressed with the Cnidaria as a phylum – freshwater cnidarians are relatively few, restricted to tiny hydras, the branching hydroid Cordylophora, and rare medusae. Worldwide, there are about 10,000 described species, with perhaps half as many again undescribed. All cnidarians have nettle cells known as nematocysts (or cnidae – from the Greek, knide, a nettle), extraordinarily complex structures that are effectively invaginated coiled tubes within a cell.