Chapter 17 Sound Waves
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Science of String Instruments
The Science of String Instruments Thomas D. Rossing Editor The Science of String Instruments Editor Thomas D. Rossing Stanford University Center for Computer Research in Music and Acoustics (CCRMA) Stanford, CA 94302-8180, USA [email protected] ISBN 978-1-4419-7109-8 e-ISBN 978-1-4419-7110-4 DOI 10.1007/978-1-4419-7110-4 Springer New York Dordrecht Heidelberg London # Springer Science+Business Media, LLC 2010 All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York, NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden. The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights. Printed on acid-free paper Springer is part of Springer ScienceþBusiness Media (www.springer.com) Contents 1 Introduction............................................................... 1 Thomas D. Rossing 2 Plucked Strings ........................................................... 11 Thomas D. Rossing 3 Guitars and Lutes ........................................................ 19 Thomas D. Rossing and Graham Caldersmith 4 Portuguese Guitar ........................................................ 47 Octavio Inacio 5 Banjo ...................................................................... 59 James Rae 6 Mandolin Family Instruments........................................... 77 David J. Cohen and Thomas D. Rossing 7 Psalteries and Zithers .................................................... 99 Andres Peekna and Thomas D. -
Standing Waves and Sound
Standing Waves and Sound Waves are vibrations (jiggles) that move through a material Frequency: how often a piece of material in the wave moves back and forth. Waves can be longitudinal (back-and- forth motion) or transverse (up-and- down motion). When a wave is caught in between walls, it will bounce back and forth to create a standing wave, but only if its frequency is just right! Sound is a longitudinal wave that moves through air and other materials. In a sound wave the molecules jiggle back and forth, getting closer together and further apart. Work with a partner! Take turns being the “wall” (hold end steady) and the slinky mover. Making Waves with a Slinky 1. Each of you should hold one end of the slinky. Stand far enough apart that the slinky is stretched. 2. Try making a transverse wave pulse by having one partner move a slinky end up and down while the other holds their end fixed. What happens to the wave pulse when it reaches the fixed end of the slinky? Does it return upside down or the same way up? Try moving the end up and down faster: Does the wave pulse get narrower or wider? Does the wave pulse reach the other partner noticeably faster? 3. Without moving further apart, pull the slinky tighter, so it is more stretched (scrunch up some of the slinky in your hand). Make a transverse wave pulse again. Does the wave pulse reach the end faster or slower if the slinky is more stretched? 4. Try making a longitudinal wave pulse by folding some of the slinky into your hand and then letting go. -
7.7.4.2 Damping of Longitudinal Waves Chapter 7.7.4.1 Had Shown That a Coupling of Transversal String-Vibrations Occurs at the Bridge and at the Nut (Or Fret)
7.7 Absorption of string oscillations 7-75 7.7.4.2 Damping of longitudinal waves Chapter 7.7.4.1 had shown that a coupling of transversal string-vibrations occurs at the bridge and at the nut (or fret). In addition, transversal and longitudinal oscillations exchange part of their oscillation energy, as well (Chapters 1.4 and 7.5.2). The dilatational waves induced that way showed high loss factors in the decay measurements: individual partials decay rapidly, i.e. they exhibit short decay times. For the following vibration measurements, a Fender US- Standard Stratocaster was used with its tremolo (aka vibrato) genre-typically adjusted to be floating. The investigated string was plucked fretboard-normally close to the nut; an oscillation analysis was made close to the bridge using a laser vibrometer. Fig. 7.70: Decay (left) and time function of the fretboard-normal velocity. Dilatational wave period = 0.42 ms. For the fretboard normal velocity, the left-hand image in Fig. 7.70 shows the decay time of the D3-partials. Damping maxima – i.e. T30 minima – can be identified at 2.36, at 4.7 and at 7.1 kHz; resonances of dilatational waves can be assumed to be the cause. In the time function we can see that - even before the transversal wave arrives at the measurement point – small impulses with a periodicity of 0.42 ms occur. Although the laser vibrometer (which is sensitive to lateral string oscillations) cannot itself detect the dilatational waves, it does capture their secondary waves (Chapter 1.4). Apparently, dilatational waves are absorbed efficiently in the wound D-string, and a selective damping arises at a frequency of 2.36 kHz (and its multiples). -
Giant Slinky: Quantitative Exhibit Activity
Name: _________________________________________________________________ Giant Slinky: Quantitative Exhibit Activity Materials: Tape Measure, Stopwatch, & Calculator. In this activity, we will explore wave properties using the Giant Slinky. Let’s start by describing the two types of waves: transverse and longitudinal. Transverse and Longitudinal Waves A transverse wave moves side-to-side orthogonal (at a right angle; perpendicular) to the direction the wave is moving. These waves can be created on the Slinky by shaking the end of it left and right. A longitudinal wave is a pressure wave alternating between high and low pressure. These waves can be created on the Slinky by gathering a few (about 5 or so) Slinky rings, compressing them with your hands and letting go. The area of high pressure is where the Slinky rings are bunched up and the area of low pressure is where the Slinky rings are spread apart. Transverse Waves Before we can do any math with our Slinky, we need to know a little more about its properties. Begin by measuring the length (L) of the Slinky (attachment disk to attachment disk). If your tape measure only measures in feet and inches, convert feet into meters using 1 ft = 0.3048 m. Length of Slinky: L = __________________m We must also know how long it takes a wave to travel the length of the Slinky so that we can calculate the speed of a wave. For now, we are going to investigate transverse waves, so make a single pulse by jerking the Slinky sharply to the left and right ONCE (very quickly) and then return the Slinky to the original center position. -
Comparison of Procedures for Determination of Acoustic Nonlinearity of Some Inhomogeneous Materials
Downloaded from orbit.dtu.dk on: Dec 17, 2017 Comparison of procedures for determination of acoustic nonlinearity of some inhomogeneous materials Jensen, Leif Bjørnø Published in: Acoustical Society of America. Journal Link to article, DOI: 10.1121/1.2020879 Publication date: 1983 Document Version Publisher's PDF, also known as Version of record Link back to DTU Orbit Citation (APA): Jensen, L. B. (1983). Comparison of procedures for determination of acoustic nonlinearity of some inhomogeneous materials. Acoustical Society of America. Journal, 74(S1), S27-S27. DOI: 10.1121/1.2020879 General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. PROGRAM OF The 106thMeeting of the AcousticalSociety of America Town and CountryHotel © San Diego, California © 7-11 November1983 TUESDAY MORNING, 8 NOVEMBER 1983 SENATE/COMMITTEEROOMS, 8:30 A.M. TO 12:10P.M. Session A. Underwater Acoustics: Arctic Acoustics I William Mosely,Chairman Naval ResearchLaboratory, Washington, DC 20375 Chairman's Introductions8:30 Invited Papers 8:35 A1. -
Woods for Wooden Musical Instruments S
ISMA 2014, Le Mans, France Woods for Wooden Musical Instruments S. Yoshikawaa and C. Walthamb aKyushu University, Graduate School of Design, 4-9-1 Shiobaru, Minami-ku, 815-8540 Fukuoka, Japan bUniversity of British Columbia, Dept of Physics & Astronomy, 6224 Agricultural Road, Vancouver, BC, Canada V6T 1Z1 [email protected] 281 ISMA 2014, Le Mans, France In spite of recent advances in materials science, wood remains the preferred construction material for musical instruments worldwide. Some distinguishing features of woods (light weight, intermediate quality factor, etc.) are easily noticed if we compare material properties between woods, a plastic (acrylic), and a metal (aluminum). Woods common in musical instruments (strings, woodwinds, and percussions) are typically (with notable exceptions) softwoods (e.g. Sitka spruce) as tone woods for soundboards, hardwoods (e.g. amboyna) as frame woods for backboards, and monocots (e.g. bamboo) as bore woods for woodwind bodies. Moreover, if we consider the radiation characteristics of tap tones from sample plates of Sitka spruce, maple, and aluminum, a large difference is observed above around 2 kHz that is attributed to the relative strength of shear and bending deformations in flexural vibrations. This shear effect causes an appreciable increase in the loss factor at higher frequencies. The stronger shear effect in Sitka spruce than in maple and aluminum seems to be relevant to soundboards because its low-pass filter effect with a cutoff frequency of about 2 kHz tends to lend the radiated sound a desired softness. A classification diagram of traditional woods based on an anti-vibration parameter (density ρ/sound speed c) and transmission parameter cQ is proposed. -
Tutorial #5 Solutions
Name: Other group members: Tutorial #5 Solutions PHYS 1240: Sound and Music Friday, July 19, 2019 Instructions: Work in groups of 3 or 4 to answer the following questions. Write your solu- tions on this copy of the tutorial|each person should have their own copy, but make sure you agree on everything as a group. When you're finished, keep this copy of your tutorial for reference|no need to turn it in (grades are based on participation, not accuracy). 1. When telephones were first being developed by Bell Labs, they realized it would not be feasible to have them detect all frequencies over the human audible range (20 Hz - 20 kHz). Instead, they defined a frequency response so that the highest-pitched sounds telephones could receive is 3400 Hz and lowest-pitched sounds they could detect are at 340 Hz, which saved on costs considerably. a) Assume the temperature in air is 15◦C. How large are the biggest and smallest wavelengths of sound in air that telephones are able to receive? We can find the wavelength from the formula v = λf, but first we'll need the speed: v = 331 + (0:6 × 15◦C) = 340 m/s Now, we find the wavelengths for the two ends of the frequency range given: v 340 m/s λ = = = 0.1 m smallest f 3400 Hz v 340 m/s λ = = = 1 m largest f 340 Hz Therefore, perhaps surprisingly, telephones can pick up sound waves up to a meter long, but they won't detect waves as small as the ear receiver itself. -
L Atdment OFFICF QO9ENT ROOM 36
*;JiQYL~dW~llbk~ieira - - ~-- -, - ., · LAtDMENT OFFICF QO9ENT ROOM 36 ?ESEARC L0ORATORY OF RL C.f:'__ . /j16baV"BLI:1!S INSTITUTE 0i'7Cn' / PERCEPTION OF MUSICAL INTERVALS: EVIDENCE FOR THE CENTRAL ORIGIN OF THE PITCH OF COMPLEX TONES ADRIANUS J. M. HOUTSMA JULIUS L. GOLDSTEIN LO N OPY TECHNICAL REPORT 484 OCTOBER I, 1971 MASSACHUSETTS INSTITUTE OF TECHNOLOGY RESEARCH LABORATORY OF ELECTRONICS CAMBRIDGE, MASSACHUSETTS 02139 The Research Laboratory of Electronics is an interdepartmental laboratory in which faculty members and graduate students from numerous academic departments conduct research. The research reported in this document was made possible in part by support extended the Massachusetts Institute of Tech- nology, Research Laboratory of Electronics, by the JOINT SER- VICES ELECTRONICS PROGRAMS (U. S. Army, U. S. Navy, and U.S. Air Force) under Contract No. DAAB07-71-C-0300, and by the National Institutes of Health (Grant 5 PO1 GM14940-05). Requestors having DOD contracts or grants should apply for copies of technical reports to the Defense Documentation Center, Cameron Station, Alexandria, Virginia 22314; all others should apply to the Clearinghouse for Federal Scientific and Technical Information, Sills Building, 5285 Port Royal Road, Springfield, Virginia 22151. THIS DOCUMENT HAS BEEN APPROVED FOR PUBLIC RELEASE AND SALE; ITS DISTRIBUTION IS UNLIMITED. MASSACHUSETTS INSTITUTE OF TECHNOLOGY RESEARCH LABORATORY OF ELECTRONICS Technical Report 484 October 1, 1971 PERCEPTION OF MUSICAL INTERVALS: EVIDENCE FOR THE CENTRAL ORIGIN OF COMPLEX TONES Adrianus J. M. Houtsma and Julius L. Goldstein This report is based on a thesis by A. J. M. Houtsma submitted to the Department of Electrical Engineering at the Massachusetts Institute of Technology, June 1971, in partial fulfillment of the requirements for the degree of Doctor of Philosophy. -
Chapter 5 Waves I: Generalities, Superposition & Standing Waves
Chapter 5 Waves I: Generalities, Superposition & Standing Waves 5.1 The Important Stuff 5.1.1 Wave Motion Wave motion occurs when the mass elements of a medium such as a taut string or the surface of a liquid make relatively small oscillatory motions but collectively give a pattern which travels for long distances. This kind of motion also includes the phenomenon of sound, where the molecules in the air around us make small oscillations but collectively give a disturbance which can travel the length of a college classroom, all the way to the students dozing in the back. We can even view the up–and–down motion of inebriated spectators of sports events as wave motion, since their small individual motions give rise to a disturbance which travels around a stadium. The mathematics of wave motion also has application to electromagnetic waves (including visible light), though the physical origin of those traveling disturbances is quite different from the mechanical waves we study in this chapter; so we will hold off on studying electromagnetic waves until we study electricity and magnetism in the second semester of our physics course. Obviously, wave motion is of great importance in physics and engineering. 5.1.2 Types of Waves In some types of wave motion the motion of the elements of the medium is (for the most part) perpendicular to the motion of the traveling disturbance. This is true for waves on a string and for the people–wave which travels around a stadium. Such a wave is called a transverse wave. This type of wave is the easiest to visualize. -
Large Scale Sound Installation Design: Psychoacoustic Stimulation
LARGE SCALE SOUND INSTALLATION DESIGN: PSYCHOACOUSTIC STIMULATION An Interactive Qualifying Project Report submitted to the Faculty of the WORCESTER POLYTECHNIC INSTITUTE in partial fulfillment of the requirements for the Degree of Bachelor of Science by Taylor H. Andrews, CS 2012 Mark E. Hayden, ECE 2012 Date: 16 December 2010 Professor Frederick W. Bianchi, Advisor Abstract The brain performs a vast amount of processing to translate the raw frequency content of incoming acoustic stimuli into the perceptual equivalent. Psychoacoustic processing can result in pitches and beats being “heard” that do not physically exist in the medium. These psychoac- oustic effects were researched and then applied in a large scale sound design. The constructed installations and acoustic stimuli were designed specifically to combat sensory atrophy by exer- cising and reinforcing the listeners’ perceptual skills. i Table of Contents Abstract ............................................................................................................................................ i Table of Contents ............................................................................................................................ ii Table of Figures ............................................................................................................................. iii Table of Tables .............................................................................................................................. iv Chapter 1: Introduction ................................................................................................................. -
1S-13 Slinky on Stand
Sound light waves... waves... water waves... 1S-13 Slinky on Stand Creating longitudinal compression waves in a slinky What happens when you pull back and release one end of the slinky ? Physics 214 Fall 2010 11/18/2019 3 Moving one end of the Slinky back and forth created a local compression where the rings of the spring are closer together than in the rest of the Slinky. The slinky tries to return to equilibrium. But inertia cause the links to pass beyond. This create a compression. Then the links comes back to the equilibrium point due to the restoration force, i.e. the elastic force. The speed of the pulse may depend on factors such as tension in the Slinky and the mass of the Slinky. Energy is transferred through the Slinky as the pulse travels. The work done in moving one end of the Slinky increases both the potential energy of the spring and the kinetic energy of individual loops. This region of higher energy then moves along the Slinky and reaches the opposite end. There, the energy could be used to ring a bell or perform other types of work. Energy carried by water waves does substantial work over time in eroding and shaping a shoreline. If instead of moving your hand back and forth just once, you continue to produce pulses, you will send a series of longitudinal pulses down the Slinky. If equal time intervals separate the pulses, you produce a periodic wave. The time between pulses is the period T of the wave. The number of pulses or cycles per unit of time is the frequency f = 1/T. -
Combination Tones and Other Related Auditory Phenomena
t he university ot cbtcago ro m a n wyo ur: no c xxuu.“ COMBINATION TONES AND OTHER RELATED AUDITORY PHENOMENA A DI SSERTA TION SUBMITTED TO THE FA CULTY OF TH E GRADUA TE SCHOOL OF A RTS AND LITERATURE IN CANDIDA CY FO R THE DEG REE OF DOCTOR OF PHI LOSOPHY DEPARTMENT OF PSY CHOLOGY BY JOSEPH PETERSON u rr N o o r r un Psvc a o wc xcu. Rm " wa Sm u n . Pvumun AS “o uo c 39 , 1 908. PREFA CE . The first part of this mo no graph is devo ted primarily to a critical exposition of the important theories of combination to n and t t nt e n es a s a eme of th facts upo which they rest . This undertaking i nevitably leads to the mention of a considerable number of closely related phenomena whose significance for I e general theo ry is often crucial . n view of th conditions l n in the t t the t it n th t prevai i g li era ure of subjec , has bee ough expedient that this presentation should in the main follow h n n . n c nt nts c ro ological li es The full a alyt ical table of o e , t t t the n int n n oge her wi h divisio o sect io s , will readily e able he x readers who so desire to consult t te t o n special topics . The second part of the monograph report s cert ain experimcnta l t n t observa io s made by the au hor o n summation tones .