Ehrlichia Species • the E

Total Page:16

File Type:pdf, Size:1020Kb

Ehrlichia Species • the E Ehrlichia Species • The E. muris-like or EML agent was first described in Wis- consin and Minnesota during 2009; represents the third Disease Agent: Ehrlichia sp. described to cause disease in humans in the United States. • Ehrlichia chaffeensis, Ehrlichia ewingii, Ehrlichia muris-like (EML) Common Human Exposure Route: Disease Agent Characteristics: • Bite of infected tick • Obligate intracellular Gram-negative bacterium of mono- Likelihood of Secondary Transmission: cytes (E. chaffeensis) and granulocytes (E. ewingii) • Order: Rickettsiales; Family: Anaplasmataceae • None documented • Size: 0.5-0.8 μm x 1.2-3 μm • Nucleic acid: Rickettsial genomes are among the smallest of At-Risk Populations: bacteria. Ehrlichia are approximately 1200-1600 kb. • Individuals at enhanced risk for exposure to infected ticks • Physicochemical properties: The rickettsiae are susceptible through outdoor activity, including those involved in hiking, to 1% sodium hypochlorite, 70% ethanol, glutaraldehyde, gardening, clearing brush, etc. formaldehyde, and quaternary ammonium disinfectants. • The frequency of reported cases is higher among males and Sensitive to moist heat (121°C) for at least 15 minutes and anyone 50 years of age. dry heat (160-170°C) for at least 1 hour > • A compromised immune system due to cancer treatments, Disease Name: advanced HIV infection, prior organ transplants, or immune suppression may increase the risk of severe outcome. • Human ehrlichiosis, human monocytic ehrlichiosis (HME) Priority Level: Vector and Reservoir Involved: • Scientific/Epidemiologic evidence regarding blood safety: • Lone star tick, Amblyomma americanum, distributed Low throughout southeastern and south central US; transmits • Public perception and/or regulatory concern regarding both E. chaffeensis and E. ewingii. Dermacentor variabilis blood safety: Very low (American dog tick) and Rhipicephalus sanguineus (brown • Public concern regarding disease agent: Very low/low in dog tick) have been identified as secondary vectors of E. focal/endemic areas chaffeensis and/or E. ewingii. • Cases in the western US suggest additional tick vectors that Background: are thought to be D. variabilis and Ixodes pacificus. • Human ehrlichiosis is an emerging tick-borne zoonosis • Tick vector for EML found in Wisconsin and Minnesota has with exposure occurring in rural and suburban tick habi- not been identified, but may be I. scapularis. tats during recreational and peridomestic activities. First • White-tailed deer are thought to be the primary reservoir for became a reportable disease (i.e., HME) in 1999. Infections E. chaffeensis. E. ewingii has been demonstrated to infect caused by E. ewingii became a separate reportable disease white-tailed deer, but the current status of deer as a reservoir in 2008. host has not been established. • Documented HME has been reported from 47 states, • Dogs are the definitive host for E. ewingii. especially in the south central and southeast US. This corresponds to the distribution of the major vector tick, Blood Phase: Amblyomma americanum, and the white-tailed deer • Although data are scant, the recently reported transfusion (Odocoileus virginianus) that serves as the reservoir host. transmission of E. ewingii demonstrates asymptomatic bac- • Concern over potential transfusion transmission first arose teremia for this species. in 1997 during an outbreak of febrile disease at Fort Chaffee, • Experimental infection in dogs suggests that the agent may where a large blood drive was conducted just after military circulate in blood for over 3 weeks. donors had extensive exposure to infected ticks. No transfu- • Asymptomatic human infection is suspected. An Ehrlichia sion transmission was documented in the subsequent species related to E. canis was isolated from the blood of investigations. an asymptomatic persistently infected patient in South • E. ewingii was first documented as a cause of human disease America. in 1999. Relatively few cases reported, but agent likely widely distributed throughout the central and southeastern US. In Survival/Persistence in Blood Products: some cases, infections with E. ewingii may be misdiagnosed and attributed to infection with E. chaffeensis. This species • E. chaffeensis remains viable when infected monocytes are also reported in a single transfusion transmission. inoculated into RBCs stored at 4-6°C for at least 11 days, with July 2013: update to TRANSFUSION 2009;49(Suppl):175-77S 1 supernatant organisms found, suggesting the potential for Primary Disease Symptoms: transfusion transmission. • Fever with headache, myalgia, and malaise • E. ewingii transmitted by platelets at day 5 of storage. • Gastrointestinal, respiratory, or central nervous system Transmission by Blood Transfusion: involvement also may occur. • Rash appears in up to 60% of children and less than 30% of • One case involving E. ewingii occurred in 2011. Recipient adults with HME. Not common in patients infected with was a 9-year old boy with a history of acute lymphoblastic E. ewingii or EML. leukemia and anemia secondary to chemotherapy. Morulae • Leukopenia, thrombocytopenia and elevated transaminases (microcolonies of Ehrlichia) were identified in granulocytes, are common laboratory signs. infection was confirmed by PCR, patient was treated with doxycycline and recovered within 48 hours. Patient denied Severity of Clinical Disease: any risk factors for exposure other than transfusion. Impli- • Currently most infections are not diagnosed, but HME can cated donor (IgG titer 1:512) reported frequent tick attach- be a life-threatening disease, with hospitalization in 41-63% ment at home in Florida and wooded property in South of recognized cases. Carolina in the month prior to donation. Transfused product • Severely affected patients can develop acute respiratory was a day 5 leukoreduced and irradiated apheresis platelet failure, renal failure, meningoencephalitis, coagulopathy, unit. and GI bleeding. • In 1997, following deployment to Fort Chaffee, AR, a number • Untreated disease may progress to death as early as the of National Guard personnel developed febrile illnesses. second week of illness. Investigation of both symptomatic and asymptomatic indi- viduals demonstrated serological evidence for infection with Mortality: both Rickettsia rickettsii, the agent of Rocky Mountain spotted fever, and E. chaffeensis. Blood drives had been con- • 1-2% ducted during the deployment. Evaluation of 10 recipients • Since HME became a reportable disease in 1999, the annual of components from 377 personnel with confirmed or prob- case fatality rate has declined. able infections did not demonstrate transmission of either Chronic Carriage: organism. • Not documented Cases/Frequency in Population: Treatment Available/Efficacious: • 3.6% seroprevalence for HME has been documented in selected areas. • Tetracyclines (e.g., doxycycline) are effective. • Among 413 patients from Missouri with possible ehrlichio- • Rifampin may be an alternative when tetracyclines cannot sis, 60 (15%) tested positive by PCR from EDTA whole blood be used (pregnancy and tetracycline allergy), but data are for Ehrlichia spp: 56 (14%) for E. chaffeensis and 4 (1%) for limited. E. ewingii. • The number of ehrlichiosis cases due to E. chaffeensis has Agent-Specific Screening Question(s): increased steadily, from 200 cases in 2000 ( < 1 case/million • No specific question is in use. population), to 961 cases in 2008 (3.4/million). A decrease • Not indicated because to date transfusion transmission has in the number of E. chaffeensis cases was noted in 2010 been rare. (2.5/million). • No sensitive or specific question is likely to be feasible. In • 28 cases of E. ewingii infection reported to the CDC from endemic areas, a question on exposure to tick bites has been 2008-2010. shown to be ineffective in distinguishing Babesia-infected • Majority of cases have an illness onset during the summer from Babesia-uninfected donors, and probably also lacks months, peaking in June/July. sensitivity and specificity for Ehrlichia spp. Incubation Period: Laboratory Test(s) Available: • 1-2 weeks (median: 9 days) • No FDA-licensed blood donor screening test exists. • Available diagnostic tests include IFA (some cross reactivity Likelihood of Clinical Disease: with other Ehrlichia species) and western blot, PCR, visual- • Low/Moderate, based on serosurveys ization of morulae in blood smear, immunohistochemical • Symptoms are often subclinical or are usually mild and staining, and culture isolation. flu-like. s During the first week of infection, examination of • Immunocompromised individuals who are infected may peripheral blood smears may reveal morulae in the develop more severe manifestations of disease. cytoplasm of white blood cells (2-38% for HME). 2 s Specialized cell culture techniques can be used to Other Prevention Measures: amplify the infection and observe infected cells (highly • Tick avoidance measures (e.g., long pants, long sleeves, variable sensitivity and may be delayed for weeks for insect/tick repellant) HME). • Riboflavin/Light has been effective in inactivating Orientia s IFA is considered the gold standard serologic test. A tsutsugamushi, a related organism. four-fold rise in IgG antibody level is considered diag- nostic for a recent infection (for HME sensitivity ranges Other Comments: from 22-55% in the first week after onset, to > 90% after • Dogs may serve as regional or local sentinels of potential risk 3 weeks). for human infection with ehrlichial agents. s PCR detection primarily
Recommended publications
  • Chemical Structures of Some Examples of Earlier Characterized Antibiotic and Anticancer Specialized
    Supplementary figure S1: Chemical structures of some examples of earlier characterized antibiotic and anticancer specialized metabolites: (A) salinilactam, (B) lactocillin, (C) streptochlorin, (D) abyssomicin C and (E) salinosporamide K. Figure S2. Heat map representing hierarchical classification of the SMGCs detected in all the metagenomes in the dataset. Table S1: The sampling locations of each of the sites in the dataset. Sample Sample Bio-project Site depth accession accession Samples Latitude Longitude Site description (m) number in SRA number in SRA AT0050m01B1-4C1 SRS598124 PRJNA193416 Atlantis II water column 50, 200, Water column AT0200m01C1-4D1 SRS598125 21°36'19.0" 38°12'09.0 700 and above the brine N "E (ATII 50, ATII 200, 1500 pool water layers AT0700m01C1-3D1 SRS598128 ATII 700, ATII 1500) AT1500m01B1-3C1 SRS598129 ATBRUCL SRS1029632 PRJNA193416 Atlantis II brine 21°36'19.0" 38°12'09.0 1996– Brine pool water ATBRLCL1-3 SRS1029579 (ATII UCL, ATII INF, N "E 2025 layers ATII LCL) ATBRINP SRS481323 PRJNA219363 ATIID-1a SRS1120041 PRJNA299097 ATIID-1b SRS1120130 ATIID-2 SRS1120133 2168 + Sea sediments Atlantis II - sediments 21°36'19.0" 38°12'09.0 ~3.5 core underlying ATII ATIID-3 SRS1120134 (ATII SDM) N "E length brine pool ATIID-4 SRS1120135 ATIID-5 SRS1120142 ATIID-6 SRS1120143 Discovery Deep brine DDBRINP SRS481325 PRJNA219363 21°17'11.0" 38°17'14.0 2026– Brine pool water N "E 2042 layers (DD INF, DD BR) DDBRINE DD-1 SRS1120158 PRJNA299097 DD-2 SRS1120203 DD-3 SRS1120205 Discovery Deep 2180 + Sea sediments sediments 21°17'11.0"
    [Show full text]
  • The 2014 Golden Gate National Parks Bioblitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event
    National Park Service U.S. Department of the Interior Natural Resource Stewardship and Science The 2014 Golden Gate National Parks BioBlitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event Natural Resource Report NPS/GOGA/NRR—2016/1147 ON THIS PAGE Photograph of BioBlitz participants conducting data entry into iNaturalist. Photograph courtesy of the National Park Service. ON THE COVER Photograph of BioBlitz participants collecting aquatic species data in the Presidio of San Francisco. Photograph courtesy of National Park Service. The 2014 Golden Gate National Parks BioBlitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event Natural Resource Report NPS/GOGA/NRR—2016/1147 Elizabeth Edson1, Michelle O’Herron1, Alison Forrestel2, Daniel George3 1Golden Gate Parks Conservancy Building 201 Fort Mason San Francisco, CA 94129 2National Park Service. Golden Gate National Recreation Area Fort Cronkhite, Bldg. 1061 Sausalito, CA 94965 3National Park Service. San Francisco Bay Area Network Inventory & Monitoring Program Manager Fort Cronkhite, Bldg. 1063 Sausalito, CA 94965 March 2016 U.S. Department of the Interior National Park Service Natural Resource Stewardship and Science Fort Collins, Colorado The National Park Service, Natural Resource Stewardship and Science office in Fort Collins, Colorado, publishes a range of reports that address natural resource topics. These reports are of interest and applicability to a broad audience in the National Park Service and others in natural resource management, including scientists, conservation and environmental constituencies, and the public. The Natural Resource Report Series is used to disseminate comprehensive information and analysis about natural resources and related topics concerning lands managed by the National Park Service.
    [Show full text]
  • Ehrlichiosis in Dogs Animal Veterinary Associations Borne Diseases
    21 Working ECAVA F F A E V C A A C V Group on E A F F A E V C Canine A FECAVA Federation of European Companion vector Ehrlichiosis in dogs Animal Veterinary Associations borne diseases WERSJA POPRAWIONA A Ehrlichia spp. !! Ehrlichiosis is a tick-borne disease caused by Ehrlichia spp, an obligate intracellular gram-negative bacterium of the Anaplasmataceae family. In Europe, Ehrlichia canis causes canine monocytic ehrlichiosis ! (CME) The tick Rhipicephalus sanguineus is its main vector in Europe. Dogs and wild canids act as reservoirs. The disease has a subclinical, acute asymptomatic phase and chronic phase. The prognosis for chronically sick dogs is poor, ! !! The incubation period is 1-4 weeks. German Shepherds and Siberian Huskies appear to be more susceptible to clinical ehrlichiosis with more severe clinical !! presentations than other breeds. When to suspect infection? Origin / travelling history Clinical signs o Dogs that live in, originate from or have travelled to countries where the parasite is endemic are at risk. Weight loss, anorexia, lethargy, fever o Dogs in countries not currently considered endemic Bleeding disorders: petechiae/ecchymoses of the skin, mucous o o should not be considered free of risk. membranes and conjunctivas, hyphaema, epistaxis Lymphadenomegaly o How can it be confirmed? o Splenomegaly o Ocular signs: conjunctivitis, uveitis, corneal oedema Blood smear: Visualisation of intracellular bacteria on blood o Neurological signs (less common): seizures, ataxia, paresis, smears stained with Giemsa or similar. Sensitivity is poor: hyperaesthesia, cranial nerve deficits E. canis morulae in monocytes are visualised in only 4% (meningitis/meninigoencephalitis) cases of acute infections.
    [Show full text]
  • Tick-Borne Diseases Primary Tick-Borne Diseases in the Southeastern U.S
    Entomology Insect Information Series Providing Leadership in Environmental Entomology Department of Entomology, Soils, and Plant Sciences • 114 Long Hall • Clemson, SC 29634-0315 • Phone: 864-656-3111 email:[email protected] Tick-borne Diseases Primary tick-borne diseases in the southeastern U.S. Affecting Humans in the Southeastern United Disease (causal organism) Tick vector (Scientific name) States Lyme disease Black-legged or “deer” tick (Borrelia burgdorferi species (Ixodes scapularis) Ticks are external parasites that attach themselves complex) to an animal host to take a blood meal at each of Rocky Mountain spotted fever American dog tick their active life stages. Blood feeding by ticks may (Rickettsia rickettsii) (Dermacentor variabilis) lead to the spread of disease. Several common Southern Tick-Associated Rash Lone star tick species of ticks may vector (transmit) disease. Many Illness or STARI (Borrelia (Amblyomma americanum) tick-borne diseases are successfully treated if lonestari (suspected, not symptoms are recognized early. When the disease is confirmed)) Tick-borne Ehrlichiosis not diagnosed during the early stages of infection, HGA-Human granulocytic Black-legged or “deer” tick treatment can be difficult and chronic symptoms anaplasmosis (Anaplasma (Ixodes scapularis) may develop. The most commonly encountered formerly Ehrlichia ticks in the southeastern U.S. are the American dog phagocytophilum) tick, lone star tick, blacklegged or “deer” tick and HME-Human monocytic Lone star tick brown dog tick. While the brown dog tick is notable Ehrlichiosis (Amblyomma americanum) because of large numbers that may be found indoors (Ehrlichia chafeensis ) American dog tick when dogs are present, it only rarely feeds on (Dermacentor variabilis) humans.
    [Show full text]
  • Pinpointing the Origin of Mitochondria Zhang Wang Hanchuan, Hubei
    Pinpointing the origin of mitochondria Zhang Wang Hanchuan, Hubei, China B.S., Wuhan University, 2009 A Dissertation presented to the Graduate Faculty of the University of Virginia in Candidacy for the Degree of Doctor of Philosophy Department of Biology University of Virginia August, 2014 ii Abstract The explosive growth of genomic data presents both opportunities and challenges for the study of evolutionary biology, ecology and diversity. Genome-scale phylogenetic analysis (known as phylogenomics) has demonstrated its power in resolving the evolutionary tree of life and deciphering various fascinating questions regarding the origin and evolution of earth’s contemporary organisms. One of the most fundamental events in the earth’s history of life regards the origin of mitochondria. Overwhelming evidence supports the endosymbiotic theory that mitochondria originated once from a free-living α-proteobacterium that was engulfed by its host probably 2 billion years ago. However, its exact position in the tree of life remains highly debated. In particular, systematic errors including sparse taxonomic sampling, high evolutionary rate and sequence composition bias have long plagued the mitochondrial phylogenetics. This dissertation employs an integrated phylogenomic approach toward pinpointing the origin of mitochondria. By strategically sequencing 18 phylogenetically novel α-proteobacterial genomes, using a set of “well-behaved” phylogenetic markers with lower evolutionary rates and less composition bias, and applying more realistic phylogenetic models that better account for the systematic errors, the presented phylogenomic study for the first time placed the mitochondria unequivocally within the Rickettsiales order of α- proteobacteria, as a sister clade to the Rickettsiaceae and Anaplasmataceae families, all subtended by the Holosporaceae family.
    [Show full text]
  • Morbidity and Mortality Weekly Report Weekly March 20, 2009 / Vol
    Morbidity and Mortality Weekly Report www.cdc.gov/mmwr Weekly March 20, 2009 / Vol. 58 / No. 10 Trends in Tuberculosis — World TB Day — March 24, 2009 United States, 2008 World TB Day is observed each year on March 24 to commemorate the date in 1882 when Dr. Robert Koch In 2008, a total of 12,898 incident tuberculosis (TB) cases announced the discovery of Mycobacterium tuberculosis, the were reported in the United States; the TB rate declined 3.8% bacterium that causes tuberculosis (TB). Worldwide, TB from 2007 to 4.2 cases per 100,000 population, the lowest remains one of the leading causes of death from infectious rate recorded since national reporting began in 1953. This disease. An estimated 2 billion persons are infected with report summarizes provisional 2008 data from the National M. tuberculosis (1). In 2006, approximately 9.2 million TB Surveillance System and describes trends since 1993. persons became ill from TB, and 1.7 million died from Despite this overall improvement, progress has slowed in the disease (1). World TB Day provides an opportunity recent years; the average annual percentage decline in the TB for TB programs, nongovernmental organizations, and rate decreased from 7.3% per year during 1993–2000 to 3.8% other partners to describe problems and solutions related during 2000–2008.* Foreign-born persons and racial/ethnic to the TB pandemic and to support worldwide TB minorities continued to bear a disproportionate burden of TB control efforts. The U.S. theme for this year’s observance disease in the United States. In 2008, the TB rate in foreign- is Partnerships for TB Elimination.
    [Show full text]
  • Characterization of the Interaction Between R. Conorii and Human
    Louisiana State University LSU Digital Commons LSU Doctoral Dissertations Graduate School 4-5-2018 Characterization of the Interaction Between R. Conorii and Human Host Vitronectin in Rickettsial Pathogenesis Abigail Inez Fish Louisiana State University and Agricultural and Mechanical College, [email protected] Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_dissertations Part of the Bacteria Commons, Bacteriology Commons, Biology Commons, Immunology of Infectious Disease Commons, and the Pathogenic Microbiology Commons Recommended Citation Fish, Abigail Inez, "Characterization of the Interaction Between R. Conorii and Human Host Vitronectin in Rickettsial Pathogenesis" (2018). LSU Doctoral Dissertations. 4566. https://digitalcommons.lsu.edu/gradschool_dissertations/4566 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Doctoral Dissertations by an authorized graduate school editor of LSU Digital Commons. For more information, please [email protected]. CHARACTERIZATION OF THE INTERACTION BETWEEN R. CONORII AND HUMAN HOST VITRONECTIN IN RICKETTSIAL PATHOGENESIS A Dissertation Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Doctor of Philosophy in The Interdepartmental Program in Biomedical and Veterinary Medical Sciences Through the Department of Pathobiological Sciences by Abigail Inez
    [Show full text]
  • 2012 Case Definitions Infectious Disease
    Arizona Department of Health Services Case Definitions for Reportable Communicable Morbidities 2012 TABLE OF CONTENTS Definition of Terms Used in Case Classification .......................................................................................................... 6 Definition of Bi-national Case ............................................................................................................................................. 7 ------------------------------------------------------------------------------------------------------- ............................................... 7 AMEBIASIS ............................................................................................................................................................................. 8 ANTHRAX (β) ......................................................................................................................................................................... 9 ASEPTIC MENINGITIS (viral) ......................................................................................................................................... 11 BASIDIOBOLOMYCOSIS ................................................................................................................................................. 12 BOTULISM, FOODBORNE (β) ....................................................................................................................................... 13 BOTULISM, INFANT (β) ...................................................................................................................................................
    [Show full text]
  • Ehrlichiosis and Anaplasmosis Are Tick-Borne Diseases Caused by Obligate Anaplasmosis: Intracellular Bacteria in the Genera Ehrlichia and Anaplasma
    Ehrlichiosis and Importance Ehrlichiosis and anaplasmosis are tick-borne diseases caused by obligate Anaplasmosis: intracellular bacteria in the genera Ehrlichia and Anaplasma. These organisms are widespread in nature; the reservoir hosts include numerous wild animals, as well as Zoonotic Species some domesticated species. For many years, Ehrlichia and Anaplasma species have been known to cause illness in pets and livestock. The consequences of exposure vary Canine Monocytic Ehrlichiosis, from asymptomatic infections to severe, potentially fatal illness. Some organisms Canine Hemorrhagic Fever, have also been recognized as human pathogens since the 1980s and 1990s. Tropical Canine Pancytopenia, Etiology Tracker Dog Disease, Ehrlichiosis and anaplasmosis are caused by members of the genera Ehrlichia Canine Tick Typhus, and Anaplasma, respectively. Both genera contain small, pleomorphic, Gram negative, Nairobi Bleeding Disorder, obligate intracellular organisms, and belong to the family Anaplasmataceae, order Canine Granulocytic Ehrlichiosis, Rickettsiales. They are classified as α-proteobacteria. A number of Ehrlichia and Canine Granulocytic Anaplasmosis, Anaplasma species affect animals. A limited number of these organisms have also Equine Granulocytic Ehrlichiosis, been identified in people. Equine Granulocytic Anaplasmosis, Recent changes in taxonomy can make the nomenclature of the Anaplasmataceae Tick-borne Fever, and their diseases somewhat confusing. At one time, ehrlichiosis was a group of Pasture Fever, diseases caused by organisms that mostly replicated in membrane-bound cytoplasmic Human Monocytic Ehrlichiosis, vacuoles of leukocytes, and belonged to the genus Ehrlichia, tribe Ehrlichieae and Human Granulocytic Anaplasmosis, family Rickettsiaceae. The names of the diseases were often based on the host Human Granulocytic Ehrlichiosis, species, together with type of leukocyte most often infected.
    [Show full text]
  • Ehrlichia Ewingii Sp. Nov., the Etiologic Agent of Canine Granulocytic Ehrlichiosis
    INTERNATIONAL JOURNAL OF SYSTEMATICBACTERIOLOGY, Apr. 1992, p. 299-302 Vol. 42, No. 2 0020-7713/92/020299-04$02.00/0 Copyright 0 1992, International Union of Microbiological Societies NOTES Ehrlichia ewingii sp. nov., the Etiologic Agent of Canine Granulocytic Ehrlichiosis BURT E. ANDERSON,l* CRAIG E. GREENE,2 DANA C. JONES,l AND JACQUELINE E. DAWSON’ viral and Rickettsial Zoonoses Branch, Division of viral and Rickettsial Diseases, National Center for Infectious Diseases, Centers for Disease Control, Atlanta, Georgia 30333, and Department of Small Animal Medicine, College of Veterinaly Medicine, University of Georgia, Athens, Georgia 306022 The 16s rRNA gene was amplified, cloned, and sequenced from the blood of two dogs that were experimentally infected with the etiologic agent of canine granulocytic ehrlichiosis. The 16s rRNA sequence was found to be unique when it was compared with the sequences of other members of the genus Ehrlichia. The most closely related species were Ehrlichia canis (98.0% related) and the human ehrlichiosis agent (Ehrlichia chafeensis) (98.1% related); all other species in the genus were found to be phylogenetically much more distant. Our results, coupled with previous serologic data, provide conclusive evidence that the canine granulocytic ehrlichiosis agent is a new species of the genus Ehrlichia that is related to, but is distinct from, E. canis and all other members of the genus. We propose the name Ehrlichia ewingii sp. nov.; the Stillwater strain is the type strain. Ehrlichia canis, the type species of the genus Ehrlichia, human ehrlichiosis (Ehrlichia chafeensis) (1) is discussed was first described by Donatien and Lestoquard in 1935 (7).
    [Show full text]
  • Health: Epidemiology Subchapter 41A
    CHAPTER 41 – HEALTH: EPIDEMIOLOGY SUBCHAPTER 41A – COMMUNICABLE DISEASE CONTROL SECTION .0100 – REPORTING OF COMMUNICABLE DISEASES 10A NCAC 41A .0101 REPORTABLE DISEASES AND CONDITIONS (a) The following named diseases and conditions are declared to be dangerous to the public health and are hereby made reportable within the time period specified after the disease or condition is reasonably suspected to exist: (1) acquired immune deficiency syndrome (AIDS) - 24 hours; (2) anthrax - immediately; (3) botulism - immediately; (4) brucellosis - 7 days; (5) campylobacter infection - 24 hours; (6) chancroid - 24 hours; (7) chikungunya virus infection - 24 hours; (8) chlamydial infection (laboratory confirmed) - 7 days; (9) cholera - 24 hours; (10) Creutzfeldt-Jakob disease - 7 days; (11) cryptosporidiosis - 24 hours; (12) cyclosporiasis - 24 hours; (13) dengue - 7 days; (14) diphtheria - 24 hours; (15) Escherichia coli, shiga toxin-producing - 24 hours; (16) ehrlichiosis - 7 days; (17) encephalitis, arboviral - 7 days; (18) foodborne disease, including Clostridium perfringens, staphylococcal, Bacillus cereus, and other and unknown causes - 24 hours; (19) gonorrhea - 24 hours; (20) granuloma inguinale - 24 hours; (21) Haemophilus influenzae, invasive disease - 24 hours; (22) Hantavirus infection - 7 days; (23) Hemolytic-uremic syndrome – 24 hours; (24) Hemorrhagic fever virus infection - immediately; (25) hepatitis A - 24 hours; (26) hepatitis B - 24 hours; (27) hepatitis B carriage - 7 days; (28) hepatitis C, acute - 7 days; (29) human immunodeficiency
    [Show full text]
  • Ixodes Scapularis) Affected Species: Humans PATHOBIOLOGY and VETERINARY SCIENCE • CONNECTICUT VETERINARY MEDICAL DIAGNOSTIC LABORATORY
    Tick Borne Diseases In New England Bullseye rash- common symptom of Lyme disease and STARI Skin lesions- common symptom of Tularemia Tularemia Rocky Mountain Spotted Fever Agent: Rickettsia rickettsii Agent: Francisella tularensis Brown Dog Tick Symptoms: fever, “spotted” rash, headache, nausea, Symptoms: fever, skin lesions in people, vomiting, abdominal pain, muscle pain, lack of appetite, face and eyes redden and become (Rhipicephalus sanguineus) red eyes inflamed, chills, headache, exhaustion Affected Species: humans, dogs Affected Species: humans, rabbits, rodents, cats, dogs, sheep, many Dog Tick mammalian species (Dermacentor variabilis) Ehrlichiosis Agent: Ehrlichia chaffeensis and Ehrlichia ewingii Symptoms: fever, headache, chills, muscle pain, nausea, vomiting, diarrhea, confusion, red eyes Affected Species: humans, dogs, cats Babesiosis Anaplasmosis Agent: Babesia microti Agent: Anaplasma phagocytophilum Symptoms: (many show none), fever, chills, sweats, Lone star tick Symptoms: fever, severe headache, muscle aches, headache, body aches, loss of appetite, nausea chills and shaking, nausea, vomiting, abdominal pain Affected Species: humans (Amblyomma americanum) Affected Species: humans, dogs, horses, cows Borrelia miyamotoi Disease Agent: Borrelia miyamotoi Southern Tick-Associated Lyme Disease Symptoms: fever, chills, headache, body and joint Agent: Borrelia burgdorferi pain, fatigue Rash Illness (STARI) Symptoms: “bullseye” rash Affected Species: humans Agent: Borrelia lonestari (humans only), fever, aching joints, Symptoms: “bullseye” rash, fatigue, muscle pains, headache, fatigue, neurological headache involvement Affected Species: humans Affected Species: humans, Powassan Virus horses, dogs, many others Agent: Powassan Virus Symptoms: (many show none), fever, headache, vomiting, weakness, confusion, loss of coordination, Deer Tick speech difficulties, seizures (Ixodes scapularis) Affected Species: humans PATHOBIOLOGY AND VETERINARY SCIENCE • CONNECTICUT VETERINARY MEDICAL DIAGNOSTIC LABORATORY.
    [Show full text]