Magnetic Moment

Total Page:16

File Type:pdf, Size:1020Kb

Magnetic Moment Magnetic moment Bohr magneton Magnetic moment gyromagnetic ratio (g factor) determined by details of charge distribution (elementary particle e.g. electron) (QED corrections for electron) 7-31. Assuming the electron to be a classical particle, a sphere of radius 10-15 m and a uniform mass density, use the magnitude of the spin angular momentum | S | = [s (s+1)]1/2 ħ=(3/4)1/2 ħ to compute the speed of rotation at the electron’s equator. How does your result compare with the speed of light? Magnetic moment Stern-Gerlach experiment Inhomogeneous magnetic field Stern-Gerlach experiment Inhomogeneous magnetic field Stern-Gerlach experiment Inhomogeneous magnetic field Classical picture – continuum of possible orientations Quantum mechanics– 2l +1 deflections ? Stern-Gerlach experiment Total Angular Momentum total angular momentum or If J1 is one angular momentum (orbital, spin, or a combination) and J2 is another, the resulting total angular momentum J = J1 + J2 has the value [ j ( j + 1)]1/2 ħ for its magnitude, where j can be any of the values j1 + j2, j1 + j2 - 1, . , | j1 - j2 | 7-34. (a) The angular momentum of the yttrium atom in the ground state is characterized by the quantum number j = 3/2. How many lines would you expect to see if you could do a Stern-Gerlach experiment with yttrium atoms? (b) How many lines would you expect to see if the beam consisted of atoms with zero spin, but l= 1? a) b) 7-37. A hydrogen atom is in the 3d state (n = 3, l = 2). (a) What are the possible values of j? (b) What are the possible values of the magnitude of the total angular momentum? (c) What are the possible z components of the total angular momentum? a) b) c) Spectroscopic Notation Single electron s p d f g h l 0 1 2 3 4 5 K L M N O n 1 2 3 4 5 Atomic state total spin total orbital angular momentum n total angular momentum Hydrogen ground state Identical Particles in Quantum Mechanics Non-interacting particles e.g. Identical Particles in Quantum Mechanics Symmetric wavefunctions –bosons (e.g photons) Antisymmetric wavefunctions –fermions (e.g electrons) Symmetric wavefunctions –bosons (e.g photons) Antisymmetric wavefunctions –fermions (e.g electrons) Pauli Exclusion Principle No more than one electron may occupy a given quantum state specified by a particular set of single- particle quantum numbers n, l, ml ms. Ground State of Atoms He (Z=2) 1s2 – ground state (more accurate calculations to be used) He+ Energy needed to remove the first electron (first ionization) potential is 24.4 eV Ground State of Atoms l=0 m=0 ms=±1/2 2 electrons l=1 m=-1,0,1 ms=±1/2 6 electrons l=2 m=-2,-1,0,1,2 ms=±1/2 10 electrons ground state last electron H : 1s1 n=1, l=0 He: 1s2 (filled shell n=1) n=1, l=0 Li: 1s2 2s1 n=2, l=0 Be: 1s2 2s2 n=2, l=0 B : 1s2 2s2 2p1 n=2, l=1 C : 1s2 2s2 2p2 n=2, l=1 N: 1s2 2s2 2p3 n=2, l=1 O: 1s2 2s2 2p4 n=2, l=1 F: 1s2 2s2 2p5 n=2, l=1 Ne: 1s2 2s2 2p6 (filled shell n=2) n=2, l=1 Ground State of Atoms ground state last electron Na: 1s2 2s2 2p6 3s1 n=3, l=0 Mg: 1s2 2s2 2p6 3s2 n=3, l=0 Al: 1s2 2s2 2p6 3s2 3p1 n=3, l=1 Si : 1s2 2s2 2p6 3s2 3p2 n=3, l=1 P: 1s2 2s2 2p6 3s2 3p3 n=3, l=1 S: 1s2 2s2 2p6 3s2 3p4 n=3, l=1 Cl: 1s2 2s2 2p6 3s2 3p5 n=3, l=1 Ar: 1s2 2s2 2p6 3s2 3p6 n=3, l=1 K: 1s2 2s2 2p6 3s2 3p6 3d1 n=3, l=2 K: 1s2 2s2 2p6 3s2 3p6 4s1 n=4, l=0 Ground State of Atoms 2p state is almost always outside 1s electrons - sees the effective charge Zeff =+1 2s state penetrates the shielding of 1s electrons more positive charge –lower energy for 2s Ground State of Atoms Li: 1s2 2s1 Greater l smaller involves penetration effect and large energies The large penetration effect makes the energy 4s lower than 3d. 7-46. Write the ground-state electron configuration of (a) carbon, (b) oxygen, and (c) argon. C : 1s2 2s2 2p2 O: 1s2 2s2 2p4 Ar: 1s2 2s2 2p6 3s2 3p6 7-50. If the 3s electron in sodium did not penetrate the inner core, its energy would be -13.6 eV/32 = -1.51 eV. Because it does penetrate, it sees a higher effective Z and its energy is lower. Use the measured ionization potential of 5.14 V to calculate Zeff for the 3s electron in sodium. 2 2 7-41. The Lamb shift energy difference between the 2 S1/2 and 2 P1/2 levels in atomic hydrogen is 4.372 x 10-6 eV. (a) What is the frequency of the photon emitted in this transition? (b) What is the photon’s wavelength? (c) In what part of the electromagnetic spectrum does this transition lie? a) b) .
Recommended publications
  • Basic Magnetic Measurement Methods
    Basic magnetic measurement methods Magnetic measurements in nanoelectronics 1. Vibrating sample magnetometry and related methods 2. Magnetooptical methods 3. Other methods Introduction Magnetization is a quantity of interest in many measurements involving spintronic materials ● Biot-Savart law (1820) (Jean-Baptiste Biot (1774-1862), Félix Savart (1791-1841)) Magnetic field (the proper name is magnetic flux density [1]*) of a current carrying piece of conductor is given by: μ 0 I dl̂ ×⃗r − − ⃗ 7 1 - vacuum permeability d B= μ 0=4 π10 Hm 4 π ∣⃗r∣3 ● The unit of the magnetic flux density, Tesla (1 T=1 Wb/m2), as a derive unit of Si must be based on some measurement (force, magnetic resonance) *the alternative name is magnetic induction Introduction Magnetization is a quantity of interest in many measurements involving spintronic materials ● Biot-Savart law (1820) (Jean-Baptiste Biot (1774-1862), Félix Savart (1791-1841)) Magnetic field (the proper name is magnetic flux density [1]*) of a current carrying piece of conductor is given by: μ 0 I dl̂ ×⃗r − − ⃗ 7 1 - vacuum permeability d B= μ 0=4 π10 Hm 4 π ∣⃗r∣3 ● The Physikalisch-Technische Bundesanstalt (German national metrology institute) maintains a unit Tesla in form of coils with coil constant k (ratio of the magnetic flux density to the coil current) determined based on NMR measurements graphics from: http://www.ptb.de/cms/fileadmin/internet/fachabteilungen/abteilung_2/2.5_halbleiterphysik_und_magnetismus/2.51/realization.pdf *the alternative name is magnetic induction Introduction It
    [Show full text]
  • Magnetism, Magnetic Properties, Magnetochemistry
    Magnetism, Magnetic Properties, Magnetochemistry 1 Magnetism All matter is electronic Positive/negative charges - bound by Coulombic forces Result of electric field E between charges, electric dipole Electric and magnetic fields = the electromagnetic interaction (Oersted, Maxwell) Electric field = electric +/ charges, electric dipole Magnetic field ??No source?? No magnetic charges, N-S No magnetic monopole Magnetic field = motion of electric charges (electric current, atomic motions) Magnetic dipole – magnetic moment = i A [A m2] 2 Electromagnetic Fields 3 Magnetism Magnetic field = motion of electric charges • Macro - electric current • Micro - spin + orbital momentum Ampère 1822 Poisson model Magnetic dipole – magnetic (dipole) moment [A m2] i A 4 Ampere model Magnetism Microscopic explanation of source of magnetism = Fundamental quantum magnets Unpaired electrons = spins (Bohr 1913) Atomic building blocks (protons, neutrons and electrons = fermions) possess an intrinsic magnetic moment Relativistic quantum theory (P. Dirac 1928) SPIN (quantum property ~ rotation of charged particles) Spin (½ for all fermions) gives rise to a magnetic moment 5 Atomic Motions of Electric Charges The origins for the magnetic moment of a free atom Motions of Electric Charges: 1) The spins of the electrons S. Unpaired spins give a paramagnetic contribution. Paired spins give a diamagnetic contribution. 2) The orbital angular momentum L of the electrons about the nucleus, degenerate orbitals, paramagnetic contribution. The change in the orbital moment
    [Show full text]
  • The Magnetic Moment of a Bar Magnet and the Horizontal Component of the Earth’S Magnetic Field
    260 16-1 EXPERIMENT 16 THE MAGNETIC MOMENT OF A BAR MAGNET AND THE HORIZONTAL COMPONENT OF THE EARTH’S MAGNETIC FIELD I. THEORY The purpose of this experiment is to measure the magnetic moment μ of a bar magnet and the horizontal component BE of the earth's magnetic field. Since there are two unknown quantities, μ and BE, we need two independent equations containing the two unknowns. We will carry out two separate procedures: The first procedure will yield the ratio of the two unknowns; the second will yield the product. We will then solve the two equations simultaneously. The pole strength of a bar magnet may be determined by measuring the force F exerted on one pole of the magnet by an external magnetic field B0. The pole strength is then defined by p = F/B0 Note the similarity between this equation and q = F/E for electric charges. In Experiment 3 we learned that the magnitude of the magnetic field, B, due to a single magnetic pole varies as the inverse square of the distance from the pole. k′ p B = r 2 in which k' is defined to be 10-7 N/A2. Consider a bar magnet with poles a distance 2x apart. Consider also a point P, located a distance r from the center of the magnet, along a straight line which passes from the center of the magnet through the North pole. Assume that r is much larger than x. The resultant magnetic field Bm at P due to the magnet is the vector sum of a field BN directed away from the North pole, and a field BS directed toward the South pole.
    [Show full text]
  • PH585: Magnetic Dipoles and So Forth
    PH585: Magnetic dipoles and so forth 1 Magnetic Moments Magnetic moments ~µ are analogous to dipole moments ~p in electrostatics. There are two sorts of magnetic dipoles we will consider: a dipole consisting of two magnetic charges p separated by a distance d (a true dipole), and a current loop of area A (an approximate dipole). N p d -p I S Figure 1: (left) A magnetic dipole, consisting of two magnetic charges p separated by a distance d. The dipole moment is |~µ| = pd. (right) An approximate magnetic dipole, consisting of a loop with current I and area A. The dipole moment is |~µ| = IA. In the case of two separated magnetic charges, the dipole moment is trivially calculated by comparison with an electric dipole – substitute ~µ for ~p and p for q.i In the case of the current loop, a bit more work is required to find the moment. We will come to this shortly, for now we just quote the result ~µ=IA nˆ, where nˆ is a unit vector normal to the surface of the loop. 2 An Electrostatics Refresher In order to appreciate the magnetic dipole, we should remind ourselves first how one arrives at the field for an electric dipole. Recall Maxwell’s first equation (in the absence of polarization density): ρ ∇~ · E~ = (1) r0 If we assume that the fields are static, we can also write: ∂B~ ∇~ × E~ = − (2) ∂t This means, as you discovered in your last homework, that E~ can be written as the gradient of a scalar function ϕ, the electric potential: E~ = −∇~ ϕ (3) This lets us rewrite Eq.
    [Show full text]
  • Ph501 Electrodynamics Problem Set 8 Kirk T
    Princeton University Ph501 Electrodynamics Problem Set 8 Kirk T. McDonald (2001) [email protected] http://physics.princeton.edu/~mcdonald/examples/ Princeton University 2001 Ph501 Set 8, Problem 1 1 1. Wire with a Linearly Rising Current A neutral wire along the z-axis carries current I that varies with time t according to ⎧ ⎪ ⎨ 0(t ≤ 0), I t ( )=⎪ (1) ⎩ αt (t>0),αis a constant. Deduce the time-dependence of the electric and magnetic fields, E and B,observedat apoint(r, θ =0,z = 0) in a cylindrical coordinate system about the wire. Use your expressions to discuss the fields in the two limiting cases that ct r and ct = r + , where c is the speed of light and r. The related, but more intricate case of a solenoid with a linearly rising current is considered in http://physics.princeton.edu/~mcdonald/examples/solenoid.pdf Princeton University 2001 Ph501 Set 8, Problem 2 2 2. Harmonic Multipole Expansion A common alternative to the multipole expansion of electromagnetic radiation given in the Notes assumes from the beginning that the motion of the charges is oscillatory with angular frequency ω. However, we still use the essence of the Hertz method wherein the current density is related to the time derivative of a polarization:1 J = p˙ . (2) The radiation fields will be deduced from the retarded vector potential, 1 [J] d 1 [p˙ ] d , A = c r Vol = c r Vol (3) which is a solution of the (Lorenz gauge) wave equation 1 ∂2A 4π ∇2A − = − J. (4) c2 ∂t2 c Suppose that the Hertz polarization vector p has oscillatory time dependence, −iωt p(x,t)=pω(x)e .
    [Show full text]
  • Units in Electromagnetism (PDF)
    Units in electromagnetism Almost all textbooks on electricity and magnetism (including Griffiths’s book) use the same set of units | the so-called rationalized or Giorgi units. These have the advantage of common use. On the other hand there are all sorts of \0"s and \µ0"s to memorize. Could anyone think of a system that doesn't have all this junk to memorize? Yes, Carl Friedrich Gauss could. This problem describes the Gaussian system of units. [In working this problem, keep in mind the distinction between \dimensions" (like length, time, and charge) and \units" (like meters, seconds, and coulombs).] a. In the Gaussian system, the measure of charge is q q~ = p : 4π0 Write down Coulomb's law in the Gaussian system. Show that in this system, the dimensions ofq ~ are [length]3=2[mass]1=2[time]−1: There is no need, in this system, for a unit of charge like the coulomb, which is independent of the units of mass, length, and time. b. The electric field in the Gaussian system is given by F~ E~~ = : q~ How is this measure of electric field (E~~) related to the standard (Giorgi) field (E~ )? What are the dimensions of E~~? c. The magnetic field in the Gaussian system is given by r4π B~~ = B~ : µ0 What are the dimensions of B~~ and how do they compare to the dimensions of E~~? d. In the Giorgi system, the Lorentz force law is F~ = q(E~ + ~v × B~ ): p What is the Lorentz force law expressed in the Gaussian system? Recall that c = 1= 0µ0.
    [Show full text]
  • Magnetic Moment of a Spin, Its Equation of Motion, and Precession B1.1.6
    Magnetic Moment of a Spin, Its Equation of UNIT B1.1 Motion, and Precession OVERVIEW The ability to “see” protons using magnetic resonance imaging is predicated on the proton having a mass, a charge, and a nonzero spin. The spin of a particle is analogous to its intrinsic angular momentum. A simple way to explain angular momentum is that when an object rotates (e.g., an ice skater), that action generates an intrinsic angular momentum. If there were no friction in air or of the skates on the ice, the skater would spin forever. This intrinsic angular momentum is, in fact, a vector, not a scalar, and thus spin is also a vector. This intrinsic spin is always present. The direction of a spin vector is usually chosen by the right-hand rule. For example, if the ice skater is spinning from her right to left, then the spin vector is pointing up; the skater is rotating counterclockwise when viewed from the top. A key property determining the motion of a spin in a magnetic field is its magnetic moment. Once this is known, the motion of the magnetic moment and energy of the moment can be calculated. Actually, the spin of a particle with a charge and a mass leads to a magnetic moment. An intuitive way to understand the magnetic moment is to imagine a current loop lying in a plane (see Figure B1.1.1). If the loop has current I and an enclosed area A, then the magnetic moment is simply the product of the current and area (see Equation B1.1.8 in the Technical Discussion), with the direction n^ parallel to the normal direction of the plane.
    [Show full text]
  • Lecture #4, Matter/Energy Interactions, Emissions Spectra, Quantum Numbers
    Welcome to 3.091 Lecture 4 September 16, 2009 Matter/Energy Interactions: Atomic Spectra 3.091 Periodic Table Quiz 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 Name Grade /10 Image by MIT OpenCourseWare. Rutherford-Geiger-Marsden experiment Image by MIT OpenCourseWare. Bohr Postulates for the Hydrogen Atom 1. Rutherford atom is correct 2. Classical EM theory not applicable to orbiting e- 3. Newtonian mechanics applicable to orbiting e- 4. Eelectron = Ekinetic + Epotential 5. e- energy quantized through its angular momentum: L = mvr = nh/2π, n = 1, 2, 3,… 6. Planck-Einstein relation applies to e- transitions: ΔE = Ef - Ei = hν = hc/λ c = νλ _ _ 24 1 18 Bohr magneton µΒ = eh/2me 9.274 015 4(31) X 10 J T 0.34 _ _ 27 1 19 Nuclear magneton µΝ = eh/2mp 5.050 786 6(17) X 10 J T 0.34 _ 2 3 20 Fine structure constant α = µ0ce /2h 7.297 353 08(33) X 10 0.045 21 Inverse fine structure constant 1/α 137.035 989 5(61) 0.045 _ 2 1 22 Rydberg constant R¥ = mecα /2h 10 973 731.534(13) m 0.0012 23 Rydberg constant in eV R¥ hc/{e} 13.605 698 1(40) eV 0.30 _ 10 24 Bohr radius a0 = a/4πR¥ 0.529 177 249(24) X 10 m 0.045 _ _ 4 2 1 25 Quantum of circulation h/2me 3.636 948 07(33) X 10 m s 0.089 _ 11 1 26 Electron specific charge -e/me -1.758 819 62(53) X 10 C kg 0.30 _ 12 27 Electron Compton wavelength λC = h/mec 2.426 310 58(22) X 10 m 0.089 _ 2 15 28 Electron classical radius re = α a0 2.817 940 92(38) X 10 m 0.13 _ _ 26 1 29 Electron magnetic moment` µe 928.477 01(31) X 10 J T 0.34 _ _ 3 30 Electron mag.
    [Show full text]
  • Magnetic & Electric Dipole Moments
    Axion Academic Training CERN, 1 December 2005 Magnetic & Electric Dipole Moments. Yannis K. Semertzidis Brookhaven National Lab •Muon g-2 experiment d c •EDMs: What do they probe? q •Physics of Hadronic EDMs θ •Probing QCD directly (RHIC), & indirectly (Hadronic EDM) •Experimental Techniques dsr v r r = μr × B + d × E dt Building blocks of matter Force carriers Muons decay to an electron and two neutrinos with a lifetime of 2.2μs (at rest). dsr v r r = μr × B + d × E Axion Training, 1 December, 2005 Yannis Semertzidis, BNL dt Quantum Mechanical Fluctuations •The electron particle is surrounded by a cloud of virtual particles, a …soup of particles… •The muon, which is ~200 times heavier than the electron, is surrounded by a heavier soup of particles… dsr v r r = μr × B + d × E Axion Training, 1 December, 2005 Yannis Semertzidis, BNL dt A circulating particle with r charge e and mass m: μr, L r • Angular momentum e, m L = mvr e r • Magnetic dipole μr = L moment 2m μ = IA dsr v r r = μr × B + d × E Axion Training, 1 December, 2005 Yannis Semertzidis, BNL dt For particles with intrinsic angular momentum (spin S): e r μr = g S 2m The anomalous magnetic moment a: g − 2 a = 2 dsr v r r = μr × B + d × E Axion Training, 1 December, 2005 Yannis Semertzidis, BNL dt In a magnetic field (B), there is a torque: r τr = μr × B Which causes the spin to precess in the horizontal plane: dsr r =×μr B dt r ds v r r = μr × B + d × E Axion Training, 1 December, 2005 Yannis Semertzidis, BNL dt Definition of g-Factor magnetic moment g ≡ eh / 2mc angular momentum h From Dirac equation g-2=0 for point-like, spin ½ particles.
    [Show full text]
  • Induced Magnetic Dipole Moment Per Unit Volume [A/M]
    Electromagnetism II (spring term 2020) Lecture 7 Microscopic theory of magnetism E Goudzovski [email protected] http://epweb2.ph.bham.ac.uk/user/goudzovski/Y2-EM2 Previous lecture The electric displacement field is defined as Gauss’s law for the electric displacement field: or equivalently For linear, isotropic and homogeneous (e.g. most) dielectrics, Boundary conditions: and , leading to Energy density of the electric field: 1 This lecture Lecture 7: Microscopic theory of magnetism Magnetization and magnetic susceptibility Magnetic properties of atoms; the Bohr magneton Theory of diamagnetism Theory of paramagnetism 2 Types of magnetism In external magnetic field, materials acquire non-zero magnetization , i.e. induced magnetic dipole moment per unit volume [A/m]. For isotropic homogeneous materials, the magnetic susceptibility is defined as Magnetism is linked to the charged constituents in materials: 1) orbital angular momenta of electrons; 2) spin angular momenta of electrons; 3) spin angular momenta of nuclei (a much smaller contribution). Three main types of magnetic materials Diamagnetic: M is opposite to external B; small and negative. B Paramagnetic: M is parallel to external B; small and positive. B Ferromagnetic: very large and non-linear magnetization M. Permanent magnets are magnetized in absence of external B. 3 Magnetic properties of atoms (1) A fundamentally quantum effect: classical physics predicts absence of magnetization phenomena. Ze Bohr’s semiclassical model Angular momentum of the electron: e Magnetic dipole moment of a current loop (lecture 1) (T is the rotation period; S is the area; e>0 is the elementary charge) Gyromagnetic ratio of electron orbital motion: 4 Magnetic properties of atoms (2) Quantization of angular momentum: Quantization of the magnetic moment of electron orbital motion: Bohr magneton: Electron spin (intrinsic angular momentum): The associated magnetic moment is B, therefore the gyromagnetic ratio is twice larger than for orbital motion: e/m.
    [Show full text]
  • Equivalence of Current–Carrying Coils and Magnets; Magnetic Dipoles; - Law of Attraction and Repulsion, Definition of the Ampere
    GEOPHYSICS (08/430/0012) THE EARTH'S MAGNETIC FIELD OUTLINE Magnetism Magnetic forces: - equivalence of current–carrying coils and magnets; magnetic dipoles; - law of attraction and repulsion, definition of the ampere. Magnetic fields: - magnetic fields from electrical currents and magnets; magnetic induction B and lines of magnetic induction. The geomagnetic field The magnetic elements: (N, E, V) vector components; declination (azimuth) and inclination (dip). The external field: diurnal variations, ionospheric currents, magnetic storms, sunspot activity. The internal field: the dipole and non–dipole fields, secular variations, the geocentric axial dipole hypothesis, geomagnetic reversals, seabed magnetic anomalies, The dynamo model Reasons against an origin in the crust or mantle and reasons suggesting an origin in the fluid outer core. Magnetohydrodynamic dynamo models: motion and eddy currents in the fluid core, mechanical analogues. Background reading: Fowler §3.1 & 7.9.2, Lowrie §5.2 & 5.4 GEOPHYSICS (08/430/0012) MAGNETIC FORCES Magnetic forces are forces associated with the motion of electric charges, either as electric currents in conductors or, in the case of magnetic materials, as the orbital and spin motions of electrons in atoms. Although the concept of a magnetic pole is sometimes useful, it is diácult to relate precisely to observation; for example, all attempts to find a magnetic monopole have failed, and the model of permanent magnets as magnetic dipoles with north and south poles is not particularly accurate. Consequently moving charges are normally regarded as fundamental in magnetism. Basic observations 1. Permanent magnets A magnet attracts iron and steel, the attraction being most marked close to its ends.
    [Show full text]
  • 1. Physical Constants 1 1
    1. Physical constants 1 1. PHYSICAL CONSTANTS Table 1.1. Reviewed 1998 by B.N. Taylor (NIST). Based mainly on the “1986 Adjustment of the Fundamental Physical Constants” by E.R. Cohen and B.N. Taylor, Rev. Mod. Phys. 59, 1121 (1987). The last group of constants (beginning with the Fermi coupling constant) comes from the Particle Data Group. The figures in parentheses after the values give the 1-standard- deviation uncertainties in the last digits; the corresponding uncertainties in parts per million (ppm) are given in the last column. This set of constants (aside from the last group) is recommended for international use by CODATA (the Committee on Data for Science and Technology). Since the 1986 adjustment, new experiments have yielded improved values for a number of constants, including the Rydberg constant R∞, the Planck constant h, the fine- structure constant α, and the molar gas constant R,and hence also for constants directly derived from these, such as the Boltzmann constant k and Stefan-Boltzmann constant σ. The new results and their impact on the 1986 recommended values are discussed extensively in “Recommended Values of the Fundamental Physical Constants: A Status Report,” B.N. Taylor and E.R. Cohen, J. Res. Natl. Inst. Stand. Technol. 95, 497 (1990); see also E.R. Cohen and B.N. Taylor, “The Fundamental Physical Constants,” Phys. Today, August 1997 Part 2, BG7. In general, the new results give uncertainties for the affected constants that are 5 to 7 times smaller than the 1986 uncertainties, but the changes in the values themselves are smaller than twice the 1986 uncertainties.
    [Show full text]