UC Santa Barbara UC Santa Barbara Electronic Theses and Dissertations

Total Page:16

File Type:pdf, Size:1020Kb

UC Santa Barbara UC Santa Barbara Electronic Theses and Dissertations UC Santa Barbara UC Santa Barbara Electronic Theses and Dissertations Title Conformal Perturbation Theory and LLM Geometries Permalink https://escholarship.org/uc/item/23d7z11w Author Miller, Alexandra Publication Date 2018 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California University of California Santa Barbara Conformal Perturbation Theory and LLM Geometries A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Physics by Alexandra Patrea Mathisen Miller Committee in charge: Professor David Berenstein, Chair Professor Gary Horowitz Professor Elisabeth Gwinn September 2018 The Dissertation of Alexandra Patrea Mathisen Miller is approved. Professor Gary Horowitz Professor Elisabeth Gwinn Professor David Berenstein, Committee Chair June 2018 Conformal Perturbation Theory and LLM Geometries Copyright ⃝c 2018 by Alexandra Patrea Mathisen Miller iii This dissertation is dedicated to the memory of Joe Polchinski. iv Acknowledgements I am grateful for so many people who have helped me during my time at UCSB. My graduate school experience has been filled with many ups and downs and I am certain that I would not have made it to where I am today without the support of so many wonderful people. First and foremost, I must thank my advisor, David Berenstein. He went above and beyond in his duties by not only advising me in my research, but also by serving as a mentor more generally. During all of my times of self doubt, he was always there to support and encourage me. Thank you, David, for all you have taught me! To my defense, advancement, and supervisory committee members: Gary Horowitz, Joe Polchinski, Beth Gwinn, and Mark Srednicki. Thank you for your words of wisdom over the years. To my undergraduate research advisor, Zhigang Chen, and my postdoc mentor, Peng Zhang. Their mentoring and teachings were crucial in both helping me to get into graduate school and to be successful during my time here. Though I ended up completely switching research fields, my experience in the Chen lab has always helped me to be a more well rounded physicist. It's always a plus when a theorist has some idea of what actually goes on in a lab! To the many professors and teachers throughout my academic career, from my ele- mentary school math and science teachers (Mr. Adamick and Mrs. Mariano), to my high school teachers (Ms. Centeno, Mr. Green, Mr. Kenyon, Ms. Shields, Mr. Souza, and Ms. Zwicker), the wonderful professors at SFSU (Joe Barranco, Roger Bland, Adrienne Cool, Jeff Greensite, Susan Lea, Weining Man, and Barbara Neuhauser), and finally the UCSB faculty (David Berenstein, Nathaniel Craig, Matthew Fisher, Steve Giddings, Gary Horowitz, Don Marolf, Joe Polchinski, and Mark Srednicki). Thank you for all you v have taught me, both in and out of the classroom, and for inspiring me to love to learn! To my teaching mentors: Tengiz Bibilashvili, Lisa Berry, and Mindy Collin. Being a teacher takes a lot of work. Thank you for giving me the tools necessary to one day achieve my goal of being a great physics teacher! To Jennifer Farrar, who is the glue that holds the UCSB physics department together and has helped me in so many ways throughout my graduate school career. To all the wonderful friends I've had throughout my life who are most certainly too numerous to name individually, but categorically can be listed as: UCSB Physics Grads, HEP JC, Broida 6234, Physics Force Soccer, Sting Soccer, Track Tuesday, Pali and other Funk zone homies, UCSB Geologists, SFSU PAC, SFSU Pizza and Milkshake Enthusiasts, and Vanden Drama Club. You know who you are! And special shout outs to my partner, Alex Schrader. To Netta Englehardt, my hero. And to Sebastian Fischetti and Kurt Fujiwara, two of the best friends I could ever ask for!!! To all of the doctors, nurses, and staff at the UCSB Health Center, the Ridley Tree Cancer Center, Sansum Clinic, SB Fertility Center, Cottage Health, and UCSB CAPS. Especially thanks to Dr. Newman, Dr. Hughes, Dr. Bagalio, and Dr. Lantrip! Finally, to my wonderful family who have helped shape me into the person I am today. I am eternally grateful for the love and support throughout my whole life. Thank you, Mom and Dad, for encouraging me to be whoever I wanted to be. I love you to the moon and back! This dissertation was supported by the National Science Foundation Graduate Re- search Fellowship Program, the Broida-Hirschfelder Fellowship, the Graduate Division Dissertation year Fellowship, funds by the University of California, and the Department of Energy (grants DE-FG02-91ER40618 and DE-SC 0011702). vi Curriculum Vitæ Alexandra Patrea Mathisen Miller Education 2018 Ph.D. in Physics (Expected), University of California, Santa Bar- bara. 2015 M.A. in Physics, University of California, Santa Barbara. 2011 B.S. in Physics, San Francisco State University Publications 1. D. Berenstein and A. Miller, \Code Subspaces for LLM Geometries," accepted for publication in Class. Quant. Grav. [arXiv:1708.00035 [hep-th]]. 2. D. Berenstein and A. Miller, \Superposition Induced Topology Changes in Quantum Gravity," JHEP 1711, 121 (2017) [arXiv:1702.03011 [hep-th]]. 3. D. Berenstein and A. Miller, \Logarithmic Enhancements in Conformal Perturba- tion Theory and Their Real Time Interpretation," [arXiv:1607.01922 [hep-th]]. 4. D. Berenstein and A. Miller, \Can Topology and Geometry be Measured by an Operator Measurement in Quantum Gravity?," Phys. Rev. Lett. 118, 261601 (2017) [arXiv:1605.06166 [hep-th]]. 5. D. Berenstein and A. Miller, \Reconstructing Spacetime from the Hologram, Even in the Classical Limit, Requires Physics Beyond the Planck Scale," Int. J. Mod. Phys. D 25, 1644012 (2016) [arXiv:1605.05288 [hep-th]]. Received honorable mention in 2016 Gravity Research Foundation essay contest. 6. D. Berenstein and A. Miller, \Conformal Perturbation Theory, Dimensional Reg- ularization, and AdS/CFT," Phys. Rev. D 90, 086011 (2014) [arXiv:1406.4142 [hep-th]]. 7. J. Yang, D. Gallardo, A. Miller, and Z. Chen, \Elimination of Transverse Instability in Stripe Solitions by One-Dimensional Lattices," Opt. Lett. 37, 1571-1573 (2012) [arXiv:1205.0767 [physics]]. 8. J. Wang, N.K. Efremidis, A. Miller, C. Lu, P. Zhang, and Z. Chen, \Nonlinear Beam Deflection in Photonic Lattices with Negative Defects" Phys. Rev. A 83, 033836 (2011). 9. P. Zang, N.K. Efremidis, A. Miller, P. Ni, and Z. Chen, “Reconfigurable 3D Pho- tonic Lattices by Optical Induction for Optical Control of Beam Propagation" Appl. Phys. B 104, 553 (2011). 10. P. Zang, N.K. Efremidis, A. Miller, Y. Hu, and Z. Chen, \Observation of Coherent Destruction of Tunneling and Unusual Beam Dynamics due to Negative Coupling in Three-Dimensional Photonic Lattices" Opt. Lett. 35, 3252 (2010). vii Abstract Conformal Perturbation Theory and LLM Geometries by Alexandra Patrea Mathisen Miller This dissertation will focus on various aspects of the AdS/CFT correspondence. Each new result can be thought of as doing at least one of three things: 1) providing support of the duality, 2) using the duality to learn about quantum gravity, and 3) helping to further develop our understanding of the duality. The dissertation is divided into two parts, each dealing with a different physical system. In the first part, we derive universal results for near conformal systems, which we have perturbed. In order to do this, we start by looking at the conformal correlation functions and compute the corrections that arise when he hit the system with a new operator. We were able to analyze what happens to the dual gravitational system under such circumstances and see that our answers agree, providing support for the AdS/CFT conjecture. These universal results also provided a previously lacking interpretation of the universality of energy found in a quenching your system between the perturbed and unperturbed set-ups. In order to perform these computations, we put our CFT on a cylinder, which happens to be the boundary of global AdS. This provided an IR regulator and we found that the remaining divergences were of the same form as one expects in dimensional regularization. Following along these same lines, we further analyzed the divergence structure of correlators in conformal perturbation theory. We found that on the plane, the logarithmic divergences that show up can be understood in terms of resonant behavior in time dependent perturbation theory, for a transition between states viii that is induced by an oscillatory perturbation on the cylinder. In part two, we restrict to the set of LLM geometries, which are the set of 1/2 BPS solutions to IIB supergravity. In our first work, we analyzed limitations of the duality, showing that boundary expectation values are not enough to determine the classical bulk geometry. Next, we used this system in order to learn about quantum gravity. We first were able to show that a quantum superposition of states with a well defined spacetime topology leads to a new state with a different topology. From this, we were able to prove that for this set of states there cannot exist a quantum topology measuring operator, bringing to doubt whether such an operator can exist in quantum gravity more generally. Finally, we were able to advance our understanding of the dictionary itself by reinterpreting these results in terms of the language of quantum error correction, showing that questions about topology perhaps only make sense within a particular (code) subspace of states. ix Contents Curriculum Vitae vii Abstract viii 0 Introduction 1 0.1 Scales in Physical Theories and the Road to Quantum Gravity ...... 1 0.2 The Search for a Theory of Quantum Gravity ............... 4 0.3 AdS/CFT ................................... 6 0.4 Conformal Perturbation Theory ....................... 13 0.5 LLM Geometries ..............................
Recommended publications
  • String Theory Methods for Condensed Matter Physics Horatiu Nastase Frontmatter More Information
    Cambridge University Press 978-1-107-18038-3 — String Theory Methods for Condensed Matter Physics Horatiu Nastase Frontmatter More Information String Theory Methods for Condensed Matter Physics The discovery of a duality between Anti–de Sitter spaces (AdS) and Conformal Field The- ories (CFT) has led to major advances in our understanding of quantum field theory and quantum gravity. String theory methods and AdS/CFT correspondence maps provide new ways to think about difficult condensed matter problems. String theory methods based on the AdS/CFT correspondence allow us to transform problems so they have weak interac- tions and can be solved more easily. They can also help map problems to different descrip- tions, for instance, mapping the description of a fluid using the Navier-Stokes equations to the description of an event horizon of a black hole using Einstein’s equations. This text- book covers the applications of string theory methods and the mathematics of AdS/CFT to areas of condensed matter physics. Bridging the gap between string theory and condensed matter, this is a valuable textbook for students and researchers in both fields. Hora¸tiu Nastase˘ is a Researcher at the Institute for Theoretical Physics at the State University of São Paulo, Brazil. To date, his career has spanned four continents. As an undergraduate he studied at the University of Bucharest and Copenhagen University. He later completed his Ph.D. at the State University of New York, Stony Brook, before moving to the Institute for Advanced Study, Princeton, where his collaboration with David Berenstein and Juan Maldacena defined the pp-wave correspondence.
    [Show full text]
  • Lectures on D-Branes, Gauge Theories and Calabi-Yau
    UPR-1086-T Lectures on D-branes, Gauge Theories and Calabi-Yau Singularities Yang-Hui He Department of Physics and Math/Physics RG University of Pennsylvania Philadelphia, PA 19104–6396, USA Abstract These lectures, given at the Chinese Academy of Sciences for the BeiJing/HangZhou International Summer School in Mathematical Physics, are intended to introduce, to the beginning student in string theory and mathematical physics, aspects of the rich and beautiful subject of D-brane gauge theories constructed from local Calabi-Yau spaces. arXiv:hep-th/0408142v1 18 Aug 2004 Topics such as orbifolds, toric singularities, del Pezzo surfaces as well as chaotic duality will be covered. ∗[email protected] Contents 1 Introduction 2 2 Minute Waltz on the String 5 2.1 The D3-brane in R1,9 ............................... 6 2.2 D3-branesonCalabi-Yauthreefolds . ...... 7 3 The Simplest Case: S = C3 8 4 Orbifolds and Quivers 10 4.1 ProjectiontoDaughterTheories. ..... 10 4.2 Quivers ...................................... 12 4.3 TheMcKayCorrespondence . 12 4.4 McKay, Dimension 2 and N =2......................... 15 4.5 N = 1 Theories and C3 Orbifolds ........................ 15 4.6 Quivers, Modular Invariants, Path Algebras? . ......... 17 4.7 MoreGames.................................... 17 5 Gauge Theories, Moduli Spaces andSymplectic Quotients 19 5.1 QuiverGaugeTheory............................... 20 5.2 An Illustrative Example: The Conifold . ...... 21 5.3 ToricSingularities.. .. .. ... 22 5.3.1 A Lightning Review on Toric Varieties . ... 23 5.3.2 Witten’s Gauged Linear Sigma Model (GLSM) . .. 23 5.4 TheForwardAlgorithm ............................. 24 5.4.1 Forward Algorithm for Abelian Orbifolds . ..... 25 5.5 TheInverseAlgorithm ............................. 28 5.6 Applications of Inverse Algorithm . ...... 29 5.6.1 delPezzoSurfaces ...........................
    [Show full text]
  • N = 1 Dualities and the Dynamics of Brane Anti-Brane Systems
    N = 1 dualities and the dynamics of brane anti-brane systems David Berenstein School of Natural Sciences Institute for Advanced Study Work w. M. Douglas. hep-th 0207027 1 Introduction One of the most striking results in the modern study of N = 1 supersymmetric gauge theory was Seiberg’s discovery of an IR duality between two QCD-like theories, both with Nf flavors of quarks (fundamental chiral superfields), but with different gauge groups. This discovery connects two quantum theories which at the classical level have no resemblance to each other. The two theories are • SU(Nc) supersymmetric gauge theory with Nf flavours Qi, Q˜i, and no superpotential. • SU(NF − Nc) supersymmetric gauge theory with Nf flavours qi, q˜i, meson fields Mij which are singlets of the gauge group, and superpotential Mijqiq˜j 2 A popular way to study N = 1 supersymmetric gauge theories is to realize them geometrically in string theory, as suspended brane constructions, D- branes wrapping cycles in Calabi-Yau manifolds, orbifolds, and otherwise. • Hanany-Witten • S. Elitzur, A. Giveon and D. Kutasov • B. Feng, A. Hanany and Y. H. He (toric duality ?) • F. Cachazo, B. Fiol, K. A. Intriligator, S. Katz and C. Vafa They do not explain in a satisfying manner the superpotential data that is necessary to make the dualities work. The objective of this talk is to show how to overcome this obstacle so that one can derive the (classical) superpotential of the dual theory from first principles. 3 Outline • Field theories realized by IIb holomorphic branes on CY. • Central charge and gauge couplings.
    [Show full text]
  • Marginal and Relevant Deformations of N= 4 Field Theories and Non
    Preprint typeset in JHEP style. - HYPER VERSION ILL-(TH)-00-04 Marginal and Relevant Deformations of N=4 Field Theories and Non-Commutative Moduli Spaces of Vacua David Berenstein,∗Vishnu Jejjala,†and Robert G. Leigh‡ Department of Physics University of Illinois at Urbana-Champaign Urbana, IL 61801 Abstract: We study marginal and relevant supersymmetric deformations of the N = 4 super-Yang-Mills theory in four dimensions. Our primary innovation is the interpretation of the moduli spaces of vacua of these theories as non-commutative spaces. The construction of these spaces relies on the representation theory of the related quantum algebras, which are obtained from F -term constraints. These field theories are dual to superstring theories propagating on deformations of the AdS S5 5× geometry. We study D-branes propagating in these vacua and introduce the ap- propriate notion of algebraic geometry for non-commutative spaces. The resulting moduli spaces of D-branes have several novel features. In particular, they may be interpreted as symmetric products of non-commutative spaces. We show how mir- ror symmetry between these deformed geometries and orbifold theories follows from arXiv:hep-th/0005087v1 9 May 2000 T-duality. Many features of the dual closed string theory may be identified within the non-commutative algebra. In particular, we make progress towards understand- ing the K-theory necessary for backgrounds where the Neveu-Schwarz antisymmetric tensor of the string is turned on, and we shed light on some aspects of discrete anomalies based on the non-commutative geometry. Keywords: D-branes, AdS/CFT, non-commutative geometry, K-theory.
    [Show full text]
  • David Berenstein, UCSB DPF 2015 Meeting Based on D.B., Eric Dziankowski, R
    Spinning the fuzzy sphere David Berenstein, UCSB DPF 2015 meeting Based on D.B., Eric Dziankowski, R. Lashof Regas arXiv:1506.01722 This talk is not about this fuzzy sphere. Outline • Where the problem comes from and why it is interesting. • Ansatz for spinning fuzzy sphere and its consistency • Phase diagrams Holography Some large N field theories are equivalent to theories of quantum gravity in higher dimensions. Many solutions of such field theories have geometric interpretations, even at finite N Part of the goal is to find more examples of such solutions. SO(3) sector of BMN matrix model 1 1 3 H = Tr(P 2 + P 2 + P 2)+ Tr (Xj + i✏ XmXn)2 2 1 2 3 2 0 jmn 1 j=1 X @ A Has SO(3) symmetry with generator J = L = Tr(XP YP ) Z Y − X And a U(N) gauge invariance. Arises from • BMN matrix model (B,Maldacena, Nastase 2002) • Mass deformed N=4 SYM (Vafa, Witten; Polchinski, Strassler, …) • Equivariant Sphere reductions of Yang Mills on sphere (Kim, Klose, Plefka, 2003) Model is chaotic Yang Mills (on a box, with translationally invariant configurations) is chaotic. Basenyan, Matinyan, Savvidy, Shepelyanskii, Chirikov (early 80’) Chaos in BFSS matrix theory: Aref’eva, Medvedev, Rytchkov, Volovich (1998) Chaos in BFSS/BMN: Asplund, D.B., Trancanelli, Dzienkowski (2011,2012), Asano, Kawai, Yoshida (2015) The solutions with H =0aregivenbyfuzzyspheres.Thesearesolutionsoftheequations [Xi,Xj]=i✏ijkXk (6) The solutions to these equations are characterized by direct sums of the adjoint matrices for irreducible representations of su(2). For these solutions we have P1,P2,P3 =0andthusare classically gauge invariant according to (2).
    [Show full text]
  • D-Branes at Singularities, Compactification, and Hypercharge
    Published by Institute of Physics Publishing for SISSA Received: November 20, 2006 Revised: January 8, 2007 Accepted: January 9, 2007 Published: January 31, 2007 D-branes at singularities, compactification, and hypercharge JHEP01(2007)107 Matthew Buican,a Dmitry Malyshev,a∗ David R. Morrison,bc Herman Verlindea and Martijn Wijnholtad aDepartment of Physics, Princeton University, Princeton, NJ 08544, U.S.A. bCenter for Geometry and Theoretical Physics, Duke University, Durham, NC 27708, U.S.A. cDepartments of Physics and Mathematics, Univ. of California, Santa Barbara, CA 93106, U.S.A. dMax-Planck-Institut f¨ur Gravitationsphysik, Albert-Einstein-Institut, Potsdam, Germany E-mail: [email protected], [email protected], [email protected], [email protected], [email protected] Abstract: We report on progress towards the construction of SM-like gauge theories on the world-volume of D-branes at a Calabi-Yau singularity. In particular, we work out the topological conditions on the embedding of the singularity inside a compact CY threefold, that select hypercharge as the only light U(1) gauge factor. We apply this insight to the proposed open string realization of the SM of hep-th/0508089, based on a D3-brane at a dP8 singularity, and present a geometric construction of a compact Calabi-Yau threefold with all the required topological properties. Keywords: Intersecting branes models, Superstring Vacua, D-branes. ∗On leave from ITEP Russia, Moscow, B Cheremushkinskaya, 25 °c SISSA 2007 http://jhep.sissa.it/archive/papers/jhep012007107 /jhep012007107.pdf Contents 1. Introduction 1 2. General strategy 2 2.1 D-branes at a CY singularity 3 2.2 Symmetry breaking towards the SSM 6 2.3 Summary 6 3.
    [Show full text]
  • Matrix Description of M-Theory on T 6
    HU-EP-97/44 hep-th/9707259 July 31, 1997 Matrix Description of M-theory on T 6 Ilka Brunner and Andreas Karch Humboldt-Universit¨at zu Berlin Institut f¨ur Physik Invalidenstraße 110 D-10115 Berlin, Germany Email: [email protected] [email protected] Abstract We give some evidence that the worldvolume theory of the M-theory KK 6-brane is governed by a non-critical membrane theory. We use this theory to give a matrix description of M- theory on T 6. 1. Introduction Recently there has been much excitement about a new approach to capture the non-perturbative aspects of supersting theory: matrix theory ([17]). “Matrix theory is a nonperturbative Hamiltonian formalism for the theory formerly known as string theory/M theory” ([31]). Nevertheless this nice new theory has a serious flaw: it is formulated in the infinite mo- mentum frame (IMF), sometimes called lightcone gauge. Thus in addition to not being manifestly covariant the theory becomes background dependent. That means for every new background (e.g. for various compactifications) one needs a different Hamiltonian, ergo a new theory. Since we are mostly interested in compactifications down to four dimensions (after all, this is the real world) it is a very interesting problem to find the matrix description of M-theory compactifications. Since matrix theory is non-local, the compactified theory has ’more’ degrees of freedom than the theory describing flat space. Very early it has been realised that compactifications of M-theory on tori can be realised by substituting the original 0+1 dimensional quantum mechanics by d+1 dimensional SYM with 16 supercharges ([17,20]).
    [Show full text]
  • JHEP09(2020)019 and 1 S Springer × 2 July 25, 2020 June 18, 2020 : : September 2, 2020 Ads : -BPS Geometries
    Published for SISSA by Springer Received: June 18, 2020 Accepted: July 25, 2020 Published: September 2, 2020 JHEP09(2020)019 Open giant magnons suspended between dual giant gravitons in N = 4 SYM David Berenstein and Adolfo Holguin Department of Physics, University of California at Santa Barbara, Santa Barbara, CA 93106, U.S.A. E-mail: [email protected], [email protected] 1 Abstract: We study classical solutions to the Nambu-Goto string on AdS2 × S and 1 AdS3 × S corresponding to strings stretched between wrapped branes extending in AdS. The solutions are obtained by analytic continuation of giant magnon solutions, cut at the position of the branes. These solutions carry one or two SO(2; 4) charges and a single 1 SO(6) charge. We compute their energies and show their relation to 2 -BPS geometries. Their relevance to the SL(2) sector of N = 4 SYM is also discussed. Keywords: AdS-CFT Correspondence, D-branes, Long strings ArXiv ePrint: 2006.08649 Open Access, c The Authors. https://doi.org/10.1007/JHEP09(2020)019 Article funded by SCOAP3. Contents 1 Introduction1 2 Review of giant magnon solutions4 3 Open giant magnons in AdS6 1 3.1 AdS2 × S 6 JHEP09(2020)019 1 3.2 Rotating string in AdS3 × S 7 4 Discussion 10 A Giant gravitons and LLM geometries 11 1 Introduction The AdS/CFT correspondence has established a bridge between quantum gravity in asymp- totically AdS spaces and gauge field theories [1]. This connection makes it possible to ex- tract information about strong coupling dynamics from calculations in the dual geometry.
    [Show full text]
  • Counting 1/8-BPS Dual-Giants
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Publications of the IAS Fellows Home Search Collections Journals About Contact us My IOPscience Counting 1/8-BPS dual-giants This content has been downloaded from IOPscience. Please scroll down to see the full text. JHEP03(2007)031 (http://iopscience.iop.org/1126-6708/2007/03/031) View the table of contents for this issue, or go to the journal homepage for more Download details: IP Address: 117.194.63.85 This content was downloaded on 29/06/2017 at 10:38 Please note that terms and conditions apply. You may also be interested in: Counting wobbling dual-giants Sujay K. Ashok and Nemani V. Suryanarayana BPS electromagnetic waves on giant gravitons Seok Kim and Kimyeong Lee The Zamolodchikov-Faddeev algebra for open strings attached to giant gravitons Changrim Ahn and Rafael I. Nepomechie Classical open string integrability Nelia Mann and Samuel E. Vázquez Giant gravitons—with strings attached (II) Robert de Mello Koch, Jelena Smolic and Milena Smolic A study of open strings ending on giant gravitons, spin chains and integrability David Berenstein, Diego H. Correa and Samuel E. Vázquez Published by Institute of Physics Publishing for SISSA Received: November 22, 2006 Revised: March 1, 2007 Accepted: March 1, 2007 Published: March 8, 2007 Counting 1/8-BPS dual-giants JHEP03(2007)031 Gautam Mandal Department of Theoretical. Physics, Homi Bhabha Road, Mumbai, 400005, India E-mail: [email protected] Nemani V. Suryanarayana Perimeter Institute for Theoretical Physics, Caroline Street North, Waterloo, ON, N2L 2Y5, Canada E-mail: [email protected] Abstract: We count 1/8-BPS states in type IIB string theory on AdS S5 background 5 × which carry three independent angular momenta on S5.
    [Show full text]
  • Open Spin Chains for Giant Gravitons and Relativity
    Open spin chains for giant gravitons and relativity David Berenstein, Eric Dzienkowski Department of Physics, University of California at Santa Barbara, CA 93106 We study open spin chains for strings stretched between giant graviton states in the = 4 SYM field theory in the collective coordinate approach. We study the N boundary conditions and the effective Hamiltonian of the corresponding spin chain to two loop order. The ground states of the spin chain have energies that match the relativistic dispersion relation characteristic of massive W boson particles on the worldvolume of the giant graviton configurations, up to second order in the limit where the momentum is much larger than the mass. We find evidence for a non- renormalization theorem for the ground state wave function of this spin chain system. We also conjecture a generalization of this result to all loop orders which makes it compatible with a fully relativistic dispersion relation. We show that the conjecture follows if one assumes that the spin chain admits a central charge extension that is sourced by the giant gravitons, generalizing the giant magnon dispersion relation for closed string excitations. This provides evidence for ten dimensional local physics mixing AdS directions and the five-sphere emerging from an = 4 SYM computa- N tion in the presence of a non-trivial background (made of D-branes) that break the conformal field theory of the system. arXiv:1305.2394v2 [hep-th] 4 Jun 2013 2 I. INTRODUCTION The AdS/CFT correspondence [1] suggests that there should be a relation between the low energy effective field theories of string theory (both with open and closed strings) or M-theory on AdS spaces and the dual gauge theory.
    [Show full text]
  • On the Moduli Spaces of M (Atrix)-Theory Compactifications
    UTTG–08–97 hep-th/9704087 April 10, 1997 On the Moduli Spaces of M(atrix)-Theory Compactifications David Berenstein, Richard Corrado, and Jacques Distler ∗ Theory Group, Department of Physics University of Texas at Austin Austin TX 78712 USA Email: [email protected] Email: [email protected] Email: [email protected] Abstract By identifying the moduli space of coupling constants in the SYM description of toroidal arXiv:hep-th/9704087v1 10 Apr 1997 compactifications of M(atrix)-Theory, we construct the M(atrix) description of the moduli spaces of Type IIA string theory compactified on T n. Addition of theta terms to the M(atrix) SYM produces the shift symmetries necessary to recover the correct global structure of the moduli spaces. Up to n = 3, the corresponding BPS charges transform under the proper representations of the U-duality groups. For n = 4, 5, if we make the ans¨atz of including the BPS charges corresponding to the wrapped M-theory 5-brane, the correspondence with Type IIA continues to hold. However, for n = 6, we find additional charges for which there are no obvious candidates in M(atrix)-Theory. ∗Research supported in part by the Robert A. Welch Foundation and NSF Grant PHY 9511632. 1. Introduction One of the principles which drove the recent “revolution” in string theory was Witten’s dis- covery of M-Theory as a limit of Type IIA strings. Building on results of Townsend [1] and others, he realized that the spectrum of BPS-saturated threshold bound states of RR charges in Type IIA string theory were in direct correspondence with the Kaluza-Klein spectrum of the D = 11 supergravity multiplet with the 11th dimension compactified on a circle of radius r = λ2/3, where λ is the IIA string coupling [2].
    [Show full text]
  • David Berenstein, UCSB, Durban, 1-15-19
    Aspects of the AdS/ CFT dictionary, II David Berenstein, UCSB, Durban, 1-15-19 Research supported by AdS/CFT correspondence Quantum gravity can be equivalent to quantum field theory in fewer dimensions. Simplest (original) example 3 =4SY M on S R N ⇥ $ Type IIB superstring on (global) AdS S5 <latexit sha1_base64="dwjOTb3RbH0JYMRdX3tlywlkgXQ=">AAACbnicdVBNbxMxEPUuXyV8pSBxoEKMiKjSS7SbbptyQCrlQg+gQpq2KE4j2/FurHrtle0FotUe+YPc+A1c+Al4myABgpEsPb2Zec/zaCGFdVH0LQivXL12/cbazdat23fu3muv3z+xujSMj5iW2pxRYrkUio+ccJKfFYaTnEp+Si9eNf3Tj9xYodWxWxR8kpNMiVQw4jw1bX/ZrDAjEt7W8AISGH54A3hO9ecKtIIahufb2ImcW6hwTtycUnhfYwybWPLUGZHNHTFGfwKMW55cbh57Hzg8PABbFt7aj6msketmUlMit7zuy9lwurNSHp7vTNudqPd8b7ef7ELUi6JB3I8b0B8k2wnEnmmqg1Z1NG1/xTPNypwrxySxdhxHhZtUxDjBJK9buLS8IOyCZHzsoSLeaFJdxlXDM8/MINXGP+Xgkv19oyK5tYuc+snmZvt3ryH/1RuXLt2bVEIVpeOKLY3SUoLT0GQPM2E4c3LhAWFG+L8CmxNDmPMxtXwIvy6F/4OTfi/2+F3S2T9YxbGGNtBT1EUxGqB99BodoRFi6HuwHjwKNoIf4cPwcfhkORoGq50H6I8Kuz8Bm4C4Zg==</latexit> 5 ⇥ Original Maldacena paper hep-th/9711200 Basic dictionary for simplest case AdS/CFT is a strStandardong weak-coupling Table duality for the ‘t Hooft coupling constant. AdS CFT Isometries Global symmetries 4 2 R gY M N Flux = N Gauge group U(N) State State We want to explore CFT at large values of R -large ‘t Hooft coupling- but with g fixed and small. Field content Z, Z,¯ φi=1,...4,Aµ J=1,...4 ¯↵˙ , <latexit sha1_base64="D02ycfgCBAT+iB3lYvs/3MPN0yM=">AAACU3icdVHLSgMxFM2M7/qqunQTLIKLUmbqYHUh+NiIKwVbxU4d7qRpG5uZCUlGKEP/UQQX/ogbF5ppK1jRCyGHc8+5SU5CwZnSjvNm2TOzc/MLi0uF5ZXVtfXixmZDJakktE4Snsi7EBTlLKZ1zTSnd0JSiEJOb8P+ed6/faJSsSS+0QNBWxF0Y9ZhBLShguLjfRn7IUic76LHgowduwa2E62wNyzj08CPUt8v+EKxwAcuevCQXU5rRgNywUOWk3gsGwbTuqBYcipHhwdV7wA7FcepuVU3B9Wat+9h1zB5ldCkroLii7GSNKKxJhyUarqO0K0MpGaE02HBTxUVQPrQpU0DY4ioamWjTIZ41zBt3EmkWbHGI/anI4NIqUEUGmUEuqd+93Lyr14z1Z3DVsZikWoak/FBnZRjneA8YNxmkhLNBwYAkczcFZMeSCDafEPBhPD9Uvw/aFQrrsHXXunkbBLHItpGO2gPuaiGTtAFukJ1RNAzekefFrJerQ/btmfHUtuaeLbQVNmrX9lXsJE=</latexit>
    [Show full text]