COSC-1 – Drilling of a Subduction-Related Allochthon in the Palaeozoic Caledonide Orogen of Scandinavia

Total Page:16

File Type:pdf, Size:1020Kb

COSC-1 – Drilling of a Subduction-Related Allochthon in the Palaeozoic Caledonide Orogen of Scandinavia Science Reports Sci. Dril., 19, 1–11, 2015 www.sci-dril.net/19/1/2015/ doi:10.5194/sd-19-1-2015 © Author(s) 2015. CC Attribution 3.0 License. COSC-1 – drilling of a subduction-related allochthon in the Palaeozoic Caledonide orogen of Scandinavia H. Lorenz1, J.-E. Rosberg2, C. Juhlin1, L. Bjelm2, B. S. G. Almqvist1, T. Berthet1, R. Conze3, D. G. Gee1, I. Klonowska1, C. Pascal4, K. Pedersen5, N. M. W. Roberts6, and C.-F. Tsang1,7 1Department of Earth Sciences, Uppsala University, Villavägen 16, 752 36 Uppsala, Sweden 2Engineering Geology, Lund University, John Ericssons väg 1, 221 00 Lund, Sweden 3GFZ German Research Centre for Geosciences, Telegrafenberg, 14473 Potsdam, Germany 4Institute of Geology, Mineralogy and Geophysics, Ruhr-University Bochum, Universitätsstraße 150, 44780 Bochum, Germany 5Department of Civil and Environmental Engineering, Chalmers University of Technology, 412 96 Gothenburg, Sweden 6NERC Isotope Geosciences Laboratory, British Geological Survey, Nottingham, NG12 5GG, UK 7Lawrence Berkely National Laboratory, Earth Sciences Division, 1 Cyclotron Road, MS74R316C, Berkeley, CA 94720, USA Correspondence to: H. Lorenz ([email protected]) Received: 13 February 2015 – Revised: 24 April 2015 – Accepted: 5 May 2015 – Published: 29 May 2015 Abstract. The Collisional Orogeny in the Scandinavian Caledonides (COSC) scientific drilling project focuses on mountain building processes in a major mid-Palaeozoic orogen in western Scandinavia and its comparison with modern analogues. The project investigates the subduction-generated Seve Nape Complex. These in part un- der ultra-high-pressure conditions metamorphosed outer continental margin and continent–ocean transition zone assemblages were emplaced onto the Baltoscandian platform and there influenced the underlying allochthons and the basement. COSC-1 is the first of two ca. 2.5 km deep, fully cored drill holes located in the vicinity of the abandoned Fröå mine, close to the town of Åre in Jämtland, central Sweden. It sampled a thick section of the lower part of the Seve Complex and was planned to penetrate its basal thrust zone into the underlying lower- grade metamorphosed allochthon. The drill hole reached a depth of 2495.8 m and nearly 100 % core recovery was achieved. Although planning was based on existing geological mapping and new high-resolution seismic surveys, the drilling resulted in some surprises: the Lower Seve Nappe proved to be composed of rather homoge- nous gneisses, with only subordinate mafic bodies, and its basal thrust zone was unexpectedly thick (> 800 m). The drill hole did not penetrate the bottom of the thrust zone. However, lower-grade metasedimentary rocks were encountered in the lowermost part of the drill hole together with garnetiferous mylonites tens of metres thick. The tectonostratigraphic position is still unclear, and geological and geophysical interpretations are under revi- sion. The compact gneisses host only eight fluid conducting zones of limited transmissivity between 300 m and total depth. Downhole measurements suggest an uncorrected average geothermal gradient of ∼ 20 ◦C km−1. This paper summarizes the operations and preliminary results from COSC-1 (ICDP 5054-1-A), drilled from early May to late August 2014, and is complemented by a detailed operational report and the data repository. Published by Copernicus Publications on behalf of the IODP and the ICDP. 2 H. Lorenz et al.: COSC-1 – drilling of a subduction-related allochthon 10°E 20°E a NZ v ES ID LEGEND so N o A 70°N n F M o I T A Younger orogenic belts m o C L Svalbard TI Caledonide Orogen L BA Timanide Orogen Lofoten 68°N COSC d Older cratons es n and c S Norrbotten Franz Joseph Land eenla F r NZ Novaya Zemlya G Outer margin of Baltica 66°N (Lower part of Middle Allochthon) A Inner margin of Baltica British (Lower Allochthon) Västerbotten TI Isles Precambrian in windows N NW E 64°N UR A Jämt- røndelag ÅRE North L T land SE Atlantic 62°N Caledonides BERGEN Siljan Ring Figure 1. The Caledonides prior to opening of the North Atlantic 60°N Ocean. Modified from Lorenz et al. (2012). STOCKHOLM Baltic Sea 10°E 20°E 1 The Caledonides – the world’s major NW SE mid-Palaeozoic mountain belt NORWAY SWEDEN TRONDHEIM ÖSTERSUND Åre The Caledonides of western Scandinavia and eastern Green- . .. land (Fig. 1) have long been recognized to have been part 0 . 0 of a collisional orogen of Alpine–Himalayan dimensions, es- BAL TIC A BASEM E N T sentially the result of the closure of the Iapetus Ocean dur- HIGHER ALLOCHTHONS LOWER ALLOCHTHON, PARAUTOCHTHON and AUTOCHTHON ing the Ordovician and subsequent underthrusting of con- Köli Nappes (Laurentian fauna in uppermost nappe) Baltoscandian foreland basin & platform Seve Nappe Complex (high grade) Baltica Baltica basement (allochthonous & tinent Laurentia by Baltica in the Silurian and Early De- Särv Nappes (dike swarms) outer autochthonous) 0 100 200 .... Mylonitic granites & psammites margin vonian during Scandian collisional orogeny. Several hun- Horizontal scale in km dreds of kilometres of thrust emplacement of allochthons have been demonstrated, E-directed in the Scandes and W- Figure 2. Tectonostratigraphic map of the Scandinavian Cale- donides and sketch section along the geotraverse from Östersund directed in Greenland. In both the Scandinavian and Green- to the Norwegian coast. Modified from Gee et al. (2010). land Caledonides, the allochthons that originated from the outer parts of the continental margins were subjected to high- grade metamorphism and emplaced, apparently hot, onto the adjacent platforms (cf. Gee et al., 2008). Baltica, as the bidites in the Ordovician and Silurian. Only minor basement- smaller of the two palaeo-continents involved in the colli- derived units are incorporated in eastern parts of this al- sion (referred to as Scandian orogeny in the North Atlantic lochthon (Greiling et al., 1998), but towards the west, seis- region), played a similar role to that of India in the present- mic profiling suggests that the basal decollement passes be- day Himalaya–Tibet context. The Scandinavian Caledonides neath the crystalline basement exposed in windows (Palm et comprise thrust sheets transported onto the Palaeozoic plat- al., 1991; Juhojuntti et al., 2001). The Middle Allochthon form successions of the Baltoscandian margin of Baltica is of higher metamorphic grade than the underlying units (Fig. 2). The Caledonian front is marked by a sole thrust (Andréasson and Gorbatschev, 1980). In most areas it con- that dips 1–2◦ westwards beneath the orogen, underlain tains a basal basement-derived thrust sheet (e.g. the Tännes by a thin veneer of Cambrian (locally Ediacaran) sedi- Augen Gneiss Nappe), overlain by greenschist facies Of- mentary rocks that unconformably overlie Proterozoic crys- ferdal Nappe metasandstones, composing the footwall for talline basement. The thrust sheets are subdivided into the the remarkable Särv Nappe (Strömberg, 1961) with its abun- Lower, Middle, Upper and Uppermost allochthons (Gee et dant ca. 600 Ma dolerite dyke swarms. The sedimentary host al., 1985). The Lower Allochthon (Jämtlandian Nappes) is rocks are composed of Neoproterozoic sandstones with sub- dominated by a sedimentary succession of Neoproterozoic ordinate carbonates and tillites (Kumpulainen, 1980). The and Cambro-Silurian strata, featuring westerly-derived tur- uppermost tectonic unit in the Middle Allochthon (Andréas- Sci. Dril., 19, 1–11, 2015 www.sci-dril.net/19/1/2015/ H. Lorenz et al.: COSC-1 – drilling of a subduction-related allochthon 3 son and Gee, 2008; Gee et al., 2008), previously included Topical working groups developed the scientific objectives in the Upper Allochthon, is the Seve Nappe Complex, com- of the COSC scientific drilling project. Major targets are the posed in most areas of three units (Sjöström, 1983; van following: Roermund, 1985; Bergman and Sjöström, 1997): a lower part of similar protolith to the Särv Nappe, but ductilely – to establish a coherent model of mid-Palaeozoic (Scan- deformed in amphibolite (locally eclogite) facies; a cen- dian) mountain building and to apply these new insights tral part (e.g. Åreskutan Nappe) of migmatites and parag- to the interpretation of modern analogues, in particular neisses (Arnbom, 1980) with a previous ultra-high-pressure the Himalaya–Tibet mountain belt; metamorphic history (Klonowska et al., 2015); and an up- per, amphibolite-dominated unit with micaschists and psam- – to determine the origin of observed seismic reflections mites. The high-grade metamorphism and leucogranite in- and constrain geophysical interpretations in order to trusions of the Seve Nappes have yielded Early Silurian use this information to further our understanding of ages (Gromet et al., 1996; Williams and Claesson, 1987; the geological structure of the mountain belt and the Ladenberger et al., 2014). The entire Middle Allochthon Fennoscandian basement; was derived from west of the Norwegian coast and the up- – to refine knowledge on climate change at high latitudes, per units transported at least 400 km eastwards during Scan- including historical global changes, recent palaeo- dian orogeny (Gee, 1978). The tectonostratigraphically high- climate development (since last ice age); est rocks in Jämtland are the Köli Nappes in the Upper Al- lochthon. This low to high greenschist facies unit contains – to understand the hydrological characteristics of the ge- basal slices of ophiolite (e.g. at Handöl) and is dominated by ological units and research present groundwater circu- sedimentary rocks of Early Palaeozoic age (Kulling, 1933). lation patterns of the mountain belt; The Uppermost Allochthon, metasedimentary and carbonate rocks inferred to be derived from the Laurentian margin are – to analyse the extent, functions and diversity of microor- only exposed farther to the northwest in the mountain belt. ganisms in the drill hole as a function of the different penetrated geological strata and their depth. 3 Strategy 2 Scientific objectives Two wireline fully cored drill holes, each to ca. 2.5 km depth, can penetrate through the tectonic stack from the high-grade The COSC project aims to study mountain building pro- Lower Seve Nappe and well into the Baltican basement.
Recommended publications
  • From the Early Paleozoic Platforms of Baltica and Laurentia to the Caledonide Orogen of Scandinavia and Greenland
    44 by David G. Gee1, Haakon Fossen2, Niels Henriksen3, and Anthony K. Higgins3 From the Early Paleozoic Platforms of Baltica and Laurentia to the Caledonide Orogen of Scandinavia and Greenland 1 Department of Earth Sciences, Uppsala University, Villavagen Villavägen 16, Uppsala, SE-752 36, Sweden. E-mail: [email protected] 2 Department of Earth Science, University of Bergen, Allégaten 41, N-5007, Bergen, Norway. E-mail: [email protected] 3 The Geological Survey of Denmark and Greenland, Øster Voldgade 10, Dk 1350 Copenhagen, Denmark. E-mail: [email protected], [email protected] The Caledonide Orogen in the Nordic countries is exposed in Norway, western Sweden, westernmost Fin- Introduction land, on Svalbard and in northeast Greenland. In the The Caledonide Orogen is preserved on both sides of the North mountains of western Scandinavia, the structure is dom- Atlantic Ocean, in the mountains of western Scandinavia and north- inated by E-vergent thrusts with allochthons derived eastern Greenland; it continues northwards from northern Norway, across the Barents Shelf and Svalbard to the edge of the Eurasian from the Baltoscandian platform and margin, from out- Basin (Figure 1). The orogen is notable for its thrust systems, board oceanic (Iapetus) terranes and with the highest E-vergent in Scandinavia and W-vergent in Greenland. The width of the orogen, prior to Cenozoic opening of the North Atlantic, was in thrust sheets having Laurentian affinities. The other the order of at least 700–800 km, the deformation fronts on both side of this bivergent orogen is well exposed in north- sides of the orogen being defined by thrusts that, in the Devonian, eastern Greenland, where W-vergent thrust sheets probably reached substantially further onto the foreland platforms than they do today.
    [Show full text]
  • Assembly, Configuration, and Break-Up History of Rodinia
    Author's personal copy Available online at www.sciencedirect.com Precambrian Research 160 (2008) 179–210 Assembly, configuration, and break-up history of Rodinia: A synthesis Z.X. Li a,g,∗, S.V. Bogdanova b, A.S. Collins c, A. Davidson d, B. De Waele a, R.E. Ernst e,f, I.C.W. Fitzsimons g, R.A. Fuck h, D.P. Gladkochub i, J. Jacobs j, K.E. Karlstrom k, S. Lu l, L.M. Natapov m, V. Pease n, S.A. Pisarevsky a, K. Thrane o, V. Vernikovsky p a Tectonics Special Research Centre, School of Earth and Geographical Sciences, The University of Western Australia, Crawley, WA 6009, Australia b Department of Geology, Lund University, Solvegatan 12, 223 62 Lund, Sweden c Continental Evolution Research Group, School of Earth and Environmental Sciences, University of Adelaide, Adelaide, SA 5005, Australia d Geological Survey of Canada (retired), 601 Booth Street, Ottawa, Canada K1A 0E8 e Ernst Geosciences, 43 Margrave Avenue, Ottawa, Canada K1T 3Y2 f Department of Earth Sciences, Carleton U., Ottawa, Canada K1S 5B6 g Tectonics Special Research Centre, Department of Applied Geology, Curtin University of Technology, GPO Box U1987, Perth, WA 6845, Australia h Universidade de Bras´ılia, 70910-000 Bras´ılia, Brazil i Institute of the Earth’s Crust SB RAS, Lermontova Street, 128, 664033 Irkutsk, Russia j Department of Earth Science, University of Bergen, Allegaten 41, N-5007 Bergen, Norway k Department of Earth and Planetary Sciences, Northrop Hall University of New Mexico, Albuquerque, NM 87131, USA l Tianjin Institute of Geology and Mineral Resources, CGS, No.
    [Show full text]
  • Nd Isotope Mapping of the Grenvillian Allochthon Boundary Thrust in Algonquin Park, Ontario
    Canadian Journal of Earth Sciences Nd isotope mapping of the Grenvillian Allochthon Boundary Thrust in Algonquin Park, Ontario Journal: Canadian Journal of Earth Sciences Manuscript ID cjes-2018-0142.R1 Manuscript Type: Article Date Submitted by the 26-Sep-2018 Author: Complete List of Authors: Dickin, Alan; School of Geography and Geology Strong, Jacob; School of Geography and Geology Keyword: Nd isotopes,Draft Model ages, Grenville Province Is the invited manuscript for consideration in a Special Not applicable (regular submission) Issue? : https://mc06.manuscriptcentral.com/cjes-pubs Page 1 of 34 Canadian Journal of Earth Sciences 1 Nd isotope mapping of the Grenvillian Allochthon Boundary Thrust in Algonquin Park, 2 Ontario 3 4 A.P. Dickin and J.W.D. Strong 5 School of Geography and Earth Sciences, McMaster University, Hamilton ON, Canada 6 7 Abstract 8 Over fifty new Nd isotope analyses are presented for high-grade orthogneisses from 9 Algonquin Park and surrounding region in order to map major Grenvillian thrust boundaries. Nd 10 model ages display a consistent geographical pattern that allows detailed mapping of the 11 boundary between the Algonquin and MuskokaDraft domains, here interpreted as the local trajectory 12 of the Ottawan-age Allochthon Boundary Thrust (ABT). The ABT is underlain by a domain with 13 Paleoproterozoic Nd model ages, interpreted as a tectonic duplex entrained onto the base of the 14 main allochthon. The boundaries determined using Nd isotope mapping are consistent with field 15 mapping and with remotely sensed aeromagnetic and digital elevation data. The precise location 16 of the ABT can be observed in a road-cut on Highway 60, on the north shore of the Lake of Two 17 Rivers in the centre of Algonquin Park.
    [Show full text]
  • Balkatach Hypothesis: a New Model for the Evolution of the Pacific, Tethyan, and Paleo-Asian Oceanic Domains
    Research Paper GEOSPHERE Balkatach hypothesis: A new model for the evolution of the Pacific, Tethyan, and Paleo-Asian oceanic domains 1,2 2 GEOSPHERE, v. 13, no. 5 Andrew V. Zuza and An Yin 1Nevada Bureau of Mines and Geology, University of Nevada, Reno, Nevada 89557, USA 2Department of Earth, Planetary, and Space Sciences, University of California, Los Angeles, California 90095-1567, USA doi:10.1130/GES01463.1 18 figures; 2 tables; 1 supplemental file ABSTRACT suturing. (5) The closure of the Paleo-Asian Ocean in the early Permian was accompanied by a widespread magmatic flare up, which may have been CORRESPONDENCE: avz5818@gmail .com; The Phanerozoic history of the Paleo-Asian, Tethyan, and Pacific oceanic related to the avalanche of the subducted oceanic slabs of the Paleo-Asian azuza@unr .edu domains is important for unraveling the tectonic evolution of the Eurasian Ocean across the 660 km phase boundary in the mantle. (6) The closure of the and Laurentian continents. The validity of existing models that account for Paleo-Tethys against the southern margin of Balkatach proceeded diachro- CITATION: Zuza, A.V., and Yin, A., 2017, Balkatach hypothesis: A new model for the evolution of the the development and closure of the Paleo-Asian and Tethyan Oceans criti- nously, from west to east, in the Triassic–Jurassic. Pacific, Tethyan, and Paleo-Asian oceanic domains: cally depends on the assumed initial configuration and relative positions of Geosphere, v. 13, no. 5, p. 1664–1712, doi:10.1130 the Precambrian cratons that separate the two oceanic domains, including /GES01463.1. the North China, Tarim, Karakum, Turan, and southern Baltica cratons.
    [Show full text]
  • Sm–Nd and U–Pb Isotope Geochemistry of the Palaeoproterozoic Mafic Magmatism in Eastern and Northern Finland
    Geological Survey of Finland GeologicalGeological SurveySurvey ofof FinlandFinland 2018 Sm–Nd and U–Pb isotope geochemistry of the Palaeoproterozoic mafic magmatism in eastern and northern Finland Hannu Huhma, Eero Hanski, Asko Kontinen, Jouni Vuollo, Irmeli Mänttäri and Yann Lahaye Bulletin 405 • Monograph Geological Survey of Finland, Bulletin The Bulletin of the Geological Survey of Finland publishes the results of scientific research that is thematically or geographically connected to Finnish or Fennoscandian geology, or otherwise related to research and innovation at GTK. Articles by researchers outside GTK are also welcome. All manuscripts are peer reviewed. Editorial Board Prof. Pekka Nurmi, GTK, Chair Dr Stefan Bergman, SGU Dr Asko Käpyaho, GTK Dr Antti Ojala, GTK Dr Timo Tarvainen, GTK, Scientific Editor Instructions for authors available from the Scientific Editor. GEOLOGICAL SURVEY OF FINLAND Bulletin 405 Sm–Nd and U–Pb isotope geochemistry of the Palaeoproterozoic mafic magmatism in eastern and northern Finland by Hannu Huhma, Eero Hanski, Asko Kontinen, Jouni Vuollo, Irmeli Mänttäri and Yann Lahaye Unless otherwise indicated, the figures have been prepared by the authors of the publication. Layout: Elvi Turtiainen Oy Espoo 2018 Huhma, H.1) , Hanski, E.2), Kontinen, A.3), Vuollo, J.4), Mänttäri, I.1) & Lahaye, Y.1) 2018. Sm–Nd and U–Pb isotope geochemistry of the Palaeoproterozoic mafic magmatism in eastern and northern Finland. Geological Survey of Finland, Bulletin 405, 150 pages, 128 figures, 1 table and 11 appendices. The extensive isotopic studies performed at the Geological Survey of Finland (GTK) since the early 1970s have shown that mafic magmas in the Karelia province of the Fennoscandian Shield were emplaced in several stages, including ca.
    [Show full text]
  • Neoproterozoic Metamorphic Evolution of the Isbjørnhamna
    Neoproterozoic metamorphic evolution of the Isbjørnhamna Group rocks from south-western Svalbardpor_186 250..264 Jaroslaw Majka,1 Jerzy Czerny,2 Stanislaw Mazur,3 Daniel K. Holm4 & Maciej Manecki2 1 Department of Earth Sciences, Uppsala University, Villavägen 16, SE-75236 Uppsala, Sweden 2 Department of Mineralogy, Petrography and Geochemistry, AGH–University of Science and Technology, 30 Mickiewicza Av., PL-30059 Kraków, Poland 3 GETECH, Kitson House, Elmete Hall, Elmete Lane, Leeds, LS8 2LJ, UK 4 Department of Geology, Kent State University, Kent, OH 44242, USA Keywords Abstract Caledonides; geothermobarometry; metapelites; Neoproterozoic; Spitsbergen. A metamorphosed volcano-sedimentary complex constitutes the Caledonian basement in the south-western part of Wedel Jarlsberg Land, Svalbard. Field, Correspondence textural and previous thermochronologic data indicate a weak, localized meta- Jaroslaw Majka, Department of Earth morphic Caledonian overprint (M2). Deformed M1 isograds and variation in Sciences, Uppsala University, Villavägen 16, pressure–temperature estimates indicate a pervasive Neoproterozoic SE-75236 Uppsala, Sweden. E-mail: amphibolite-facies metamorphism that pre-dates large-scale Caledonian age [email protected] folding. Garnet–biotite and garnet–Al silicate–plagioclase (GASP) geother- doi:10.1111/j.1751-8369.2010.00186.x mobarometry of the Isbjørnhamna Group mica schists, and their comparison with the K2O–FeO–MgO–Al2O3–SiO2–H2O (KFMASH) petrogenetic grid, indi- cates a peak pressure of ca. 11 kbar, and a peak temperature of ca. 670°C during M1 metamorphism. A cooling rate of ca. 5°C My-1 is estimated on the basis of geothermobarometry and the available U–Th–total Pb and Ar–Ar data. Southern Wedel Jarlsberg Land (Fig.
    [Show full text]
  • The High Pressure Belt in the Grenville Province: 75 Architecture, Timing, and Exhumation1
    100 867 100 95 95 75 The High Pressure belt in the Grenville Province: 75 architecture, timing, and exhumation1 25 25 Toby Rivers, John Ketchum, Aphrodite Indares, and Andrew Hynes 5 5 0 0 Abstract: We propose that the Grenvillian allochthonous terranes may be grouped into High Pressure (HP) and Low Pressure (LP) belts and examine the HP belt in detail in the western and central Grenville Province. The HP belt is developed in Paleo- and Mesoproterozoic rocks of the pre-Grenvillian Laurentian margin and characterized by Grenvillian eclogite and co-facial HP granulite in mafic rocks. Pressure–temperature (P–T) estimates for eclogite-facies conditions in well-preserved assemblages are about 1800 MPa and 850°C. In the central Grenville Province, HP rocks formed at -1060–1040 Ma and underwent a single stage of unroofing with transport into the upper crust by -1020 Ma, whereas farther west they underwent two stages of unroofing separated by penetrative mid-crustal recrystallization before transport to the upper crust at -1020 Ma. Unroofing processes were comparable in the two areas, involving both thrusting and extensional faulting in an orogen propagating into its foreland by understacking. In detail, thrusting episodes preceded extension in the western Grenville Province, whereas in the central Grenville Province, they were coeval, resulting in unroofing by tectonic extrusion. In the central Grenville Province, the footwall ramp is well preserved, but any former ramp in the western Grenville Province was obliterated by later lower crustal extensional flow. Continuation of the HP belt into the eastern Grenville Province is not established, but likely on geological grounds.
    [Show full text]
  • Crespi, Cooper Boemmels, and Robinson Geology of The
    CRESPI, COOPER BOEMMELS, AND ROBINSON C2-1 GEOLOGY OF THE NORTHERN TACONIC ALLOCHTHON: STRAIN VARIATION IN THRUST SHEETS, BRITTLE FAULTS, AND POSTRIFT DIKE EMPLACEMENT by Jean Crespi, Jennifer Cooper Boemmels, and Jessica Robinson Geosciences, University of Connecticut, Storrs, CT 06269 INTRODUCTION This field trip has three purposes: (1) to present a synthesis of structural and strain data for the Taconic slate belt, which lies in the northern part of the Giddings Brook thrust sheet in the Taconic allochthon, (2) to present an analysis of fault-slip data for postcleavage faults in the region, and (3) to present the results of work on mafic dikes in the Taconic lobe of the New England–Québec igneous province. The stops have been selected to illustrate the along-strike variation in structure and strain, to show representative postcleavage faults, and to include dikes in a variety of orientations. The data presented at the stops cover a region that extends for about 60 km along strike in the Giddings Brook thrust sheet, from Hubbardton, Vermont, in the north to Salem, New York, in the south (Figs. 1 and 2). Emplacement of the Taconic allochthon took place during the Early to Late Ordovician Taconic orogeny. In the northeastern United States, the Taconic orogeny has traditionally been interpreted as resulting from the collision of a west-facing volcanic arc with the eastern margin of Laurentia (Bird and Dewey, 1970; Rowley and Kidd, 1981; Stanley and Ratcliffe, 1985). In this interpretation, emplacement of the Taconic allochthon occurred in a proforeland setting. New geochronological data, however, indicate that the orogeny involved several phases (Karabinos et al., 1998, 2017; Macdonald et al., 2014, 2017).
    [Show full text]
  • Geology of the Western Boundary of the Taconic Allochthon Near Troy
    32 Figure 4.3 Olive green massive micaceous wacke of the Bomoseen Formation exposed at the Devil's Kitchen in Oakwood Cemetery, Troy. 38 Figure 4.4 Olive green silty shale with thin quartzite beds of the Truthville Formation exposed in a quarry near the type locality of “Diamond Rock”. 42 Figure 4.5 Dark grey to black silty shale of the Browns Pond Formation exposed along Gurley Avenue near the St. Johns Cemetery. 44 Figure 4.6 Browns Pond black silty shale containing sandstone and greywacke lumps. 45 Figure 4.7 Light gray granular quartzite near the base of the Browns Pond Formation exposed at the type locality of the “Diamond Rock Quartzite”. 46 Figure 4.8 Tan to pink, orange or rusty brown-weathering, ferruginous calcareous sandstone beds of the Browns Pond Formation. 48 Figure 4.9 Conglomerates of limestone pebbles in the upper part of the Browns Pond Formation. The matrix is sandy and dolomitic. 50 Figure 4.10 Light gray granular quartzite containing pebbles of dark gray fine-grained sandstone or siltstone near the top of the Browns Pond Formation. 57 Figure 4.11 Indian River green slate underlying the white-weathering black chert beds of the Mount Merino Formation. 58 Figure 4.12 Light gray siliceous argillite with dark gray chert ribbons in the Indian River Formation. 62 Figure 4.13 The Mount Merino Formation: well bedded white-weathering black chert beds interlayered with black shale. 69 Figure 4.14 Sandstone block with primary folds contained in the dark gray to black shale of the Snake Hill formation.
    [Show full text]
  • Structural Geology of Parautochthonous and Allochthonous Terranes of the Penokean Orogeny in Upper Michigan Comparisons with Northern Appalachian Tectonics
    Structural Geology of Parautochthonous and Allochthonous Terranes of the Penokean Orogeny in Upper Michigan Comparisons with Northern Appalachian Tectonics U.S. GEOLOGICAL SURVEY BULLETIN 1904-Q AVAILABILITY OF BOOKS AND MAPS OF THE U.S. GEOLOGICAL SURVEY Instructions on ordering publications of the U.S. Geological Survey, along with the last offerings, are given in the current-year issues of the monthly catalog "New Publications of the U.S. Geological Survey." Prices of available U.S. Geological Survey publications released prior to the current year are listed in the most recent annual "Price and Availability List." Publications that are listed in various U.S. Geological Survey catalogs (see back inside cover) but not listed in the most recent annual "Price and Availability List" are no longer available. Prices of reports released to the open files are given in the listing "U.S. Geological Survey Open-File Reports," updated monthly, which is for sale in microfiche from the U.S. Geological Survey, Book and Open-File Report Sales, Box 25286, Building 810, Denver Federal Center, Denver, CO 80225 Order U.S. Geological Survey publications by mail or over the counter from the offices given below. BY MAIL OVER THE COUNTER Books Books Professional Papers, Bulletins, Water-Supply Papers, Tech­ Books of the U.S. Geological Survey are available over the niques of Water-Resources Investigations, Circulars, publications counter at the following U.S. Geological Survey offices, all of of general interest (such as leaflets, pamphlets, booklets), single which are authorized agents of the Superintendent of Documents. copies of periodicals (Earthquakes & Volcanoes, Preliminary De­ termination of Epicenters), and some miscellaneous reports, includ­ ANCHORAGE, Alaska-Rm.
    [Show full text]
  • Geochemical and Lu-Hf Isotope (LA-ICP-MS
    Arch & Anthropol Open Acc Archaeology Copyright& Anthropology: © Kuznetsov NB CRIMSON PUBLISHERS C Wings to the Research Open Access ISSN: 2577-1949 Research Article Geochemical and Lu-Hf Isotope Systematic of Detrital Zircons from the Ordovician Sandstones of the Sol-Iletsk Arch (Russia, Northern Caspian, Borehole Ordovician-2) Kuznetsov NB 1,2,3,4*, Belousova EA4, Romanyuk TV2,3,4 1Geological Institute, Russian Academy of Sciences, Russia 2Schmidt Institute of Physics of the Earth, Russian Academy of Science, Russia 3Gubkin Russian State University of Oil and Gas, National Research University, Russia 4Australian Research Council Centre of Excellence for Core to Crust Fluid Systems/GEMOC, Macquarie University, Australia *Corresponding author: Kuznetsov NB, Geological Institute, Russian Academy of Sciences, Gubkin Russian State University of Oil and Gas, Russia Submission: July 02, 2018; Published: September 20, 2018 Abstract The Sol-Iletsk arch is located at the south eastern edge of the East European platform (EEP), where EEP adjoins with the Southern Urals. The results of the integrated (U-Pb age, Lu-Hf isotopic system and trace-elements) study of detrital zircons (dZr) from the Ordovician sandstones (within Sol-Iletsk arch) reached by borehole Ordovician-2 are presented. The primary sources of Early Precambrian dZr were most likely the crystalline complexes of the Late Proterozoic Volgo-Sarmatian and Taratash orogens and Archean Volga-Uralia basement. However, for numerous dZr with ages younger 1.65Ga, it is not possible presently to unambiguously identify primary sources. Crystalline complexes with such ages are absolutely atypical for the south-eastern part of the EEP, but they occurred within parts EEP very remote from Sol-Iletsk arch and beyond EEP.
    [Show full text]
  • Ages of Detrital Zircons (U/Pb, LA-ICP-MS) from the Latest
    Precambrian Research 244 (2014) 288–305 Contents lists available at ScienceDirect Precambrian Research jo urnal homepage: www.elsevier.com/locate/precamres Ages of detrital zircons (U/Pb, LA-ICP-MS) from the Latest Neoproterozoic–Middle Cambrian(?) Asha Group and Early Devonian Takaty Formation, the Southwestern Urals: A test of an Australia-Baltica connection within Rodinia a,∗ b c Nikolay B. Kuznetsov , Joseph G. Meert , Tatiana V. Romanyuk a Geological Institute, Russian Academy of Sciences, Pyzhevsky Lane, 7, Moscow 119017, Russia b Department of Geological Sciences, University of Florida, 355 Williamson Hall, Gainesville, FL 32611, USA c Schmidt Institute of Physics of the Earth, Russian Academy of Sciences, B. Gruzinskaya ul. 10, Moscow 123810, Russia a r t i c l e i n f o a b s t r a c t Article history: A study of U-Pb ages on detrital zircons derived from sedimentary sequences in the western flank of Received 5 February 2013 Urals (para-autochthonous or autochthonous with Baltica) was undertaken in order to ascertain/test Received in revised form source models and paleogeography of the region in the Neoproterozoic. Samples were collected from the 16 September 2013 Ediacaran-Cambrian(?) age Asha Group (Basu and Kukkarauk Formations) and the Early Devonian-aged Accepted 18 September 2013 Takaty Formation. Available online 19 October 2013 Ages of detrital zircons within the Basu Formation fall within the interval 2900–700 Ma; from the Kukkarauk Formation from 3200 to 620 Ma. Ages of detrital zircons from the Devonian age Takaty For- Keywords: Australia mation are confined to the Paleoproterozoic and Archean (3050–1850 Ma).
    [Show full text]