Local Comology, Local Duality and Basic Notions of Tight Closure Theory

Total Page:16

File Type:pdf, Size:1020Kb

Local Comology, Local Duality and Basic Notions of Tight Closure Theory LOCAL COMOLOGY, LOCAL DUALITY AND BASIC NOTIONS OF TIGHT CLOSURE THEORY Abstract. This lectures were given by Florian Enescu at the mini-course on classical problems in commutative algebra held at University of Utah, June 2004. The references listed were used extensively in preparing these notes and the author makes no claim of originality. Moreover, he encourages the reader to consult these references for more details and many more results that had to be omitted due to time constraints. This version has been typed and prepared by Bahman Engheta. 1. Injective modules, essential extensions, and local cohomology Throughout, let R be a commutative Noetherian ring. Definition. An R-module I is called injective if given any R-module monomor- phism f : N M, every homomorphism u : N I can be extended to a homo- morphism g :→M I, i.e. gf = u. → → f w 0 w N M u g u I Or equivalently, if the functor Hom( , I) is exact. Q Z Z Example. Q and / are injective -modules. Definition. An R-module M is called divisible if for every m M and M-regular element r R, there is an m′ M such that m = rm′. ∈ ∈ ∈ Exercise. An injective R-module is divisible. The converse holds if R is a principal ideal domain. A note on existence: If R S is a ring homomorphism and I is an injective → R-module, then HomR(S, I) is an injective S-module. [The S-module structure is Q given by s ϕ( ) := ϕ(s ).] In particular, HomZ(R, ) is an injective R-module and any R-module· can be embedded in an injective R-module. h Definition. An injective map M N is called an essential extension if one of the following equivalent conditions holds:→ a) h(M) N ′ =0 0 = N ′ N. b) 0 = ∩n N6 r∀ R6 such⊆ that 0 = rn h(M). ∀ 6 ϕ ∈ ∃ ∈ 6 ∈ c) N Q, if ϕ h is injective, then ϕ is injective. ∀ → ◦ 1 2LOCAL COMOLOGY, LOCAL DUALITY AND BASIC NOTIONS OF TIGHT CLOSURE THEORY Example. 1) If R is a domain and Q(R) its fraction field, then R Q(R) is an essential extension. ⊆ 2) Let M be a submodule of N. By Zorn’s lemma there is a maximal sub- module N ′ N containing M such that M N ′ is an essential extension. ⊆ ⊂ 3) Let (R, m, k) be a local ring and N an R-module such that every ele- ment of N is annihilated by some power of the maximal ideal m. Let Soc(N) := AnnN (m) denote the socle of N. Then Soc(N) N is an essential extension. (See exercise below.) ⊆ Note: The socle of a module N over a local ring (R, m, k)is a k-vector space. Exercise. An R-module N is Artinian if and only if Soc(N) is finite dimensional (as a k-vector space) and Soc(N) N is essential. ⊆ Definition. If M N is an essential extension such that N has no proper essential extension, then M⊆ N is called a maximal essential extension. ⊆ Proposition. a) An R-module I is injective if and only if it has no proper essential extension. b) Let M be an R-module and I and injective R-module containing M. Then any maximal essential extension of M contained in I is a maximal essential extension. In particular, it is injective and thus a direct summand of I. c) If M I and M I′ are two maximal essential extensions, then there is ⊆ ⊆ ′ an isomorphism I ∼= I that fixes M. Definition. A maximal essential extension of an R-module M is called an injective hull of M, denoted ER(M). −1 0 Definition. Let M be an R-module. Set I := M and I := ER(M). Inductively − n In 1 define I := ER( /im(In−2)). Then the acyclic complex 0 1 n I : 0 I I I → → →···→ →··· is called an injective resolution of M, where the maps are given by the composition − − n−1 In 1 In 1 .( I / n−2 ֒ ER( / n−2 → im(I ) → im(I ) Conversely, an acyclic complex I of injective R-modules is a minimal injective resolution of M if M = ker(I0 I1), • 0 → I = ER(M), • n n−1 n I = ER(im(I I )). • → n I-torsion: Given an ideal I R and an R-module M, set ΓI (M) := (0 :M I ). ⊆ Sn Then ΓI ( ) defines a covariant functor and for a homomorphism f : M N,ΓI (f) is given by the restriction f . → I Γ (M) Proposition. ΓI ( ) is a left exact functor. LOCAL COMOLOGY, LOCAL DUALITY AND BASIC NOTIONS OF TIGHT CLOSURE THEORY3 Proof. Let f g 0 L M N 0 → → → → be a short exact sequence. We want to show that ΓI (f) ΓI (g) 0 ΓI (L) ΓI (M) ΓI (N) → −→ −→ is an exact sequence. Exactness at ΓI (L): ΓI (f) is injective as it is the restriction of the injective map f. Exactness at ΓI (M): It is clear that im(ΓI (f)) ker(ΓI (g)). Conversely, let ⊆ m ker(ΓI (g)). Then m ker(g) and therefore m = f(l) for some l L. It ∈ ∈ k ∈ remains to show that l ΓI (L). As m ΓI (M), we have I m = 0 for some integer k k ∈ k ∈ k k. Then f(I l)= I f(l)= I m =0. As f is injective, I l = 0 and l ΓI (L). ∈ Exercise. ΓI =ΓJ if and only if √I = √J. i Definition. The i-th local cohomology functor HI ( ) is defined as the right derived functor of ΓI ( ). More precisely, given an R-module M, let I be an injective resolution of M: 0 1 n 0 d 1 d n d I : 0 I I I → → →···→ →··· Apply ΓI ( ) to I and obtain the complex: 0 1 n ΓI (I): 0 ΓI (I ) ΓI (I ) ΓI (I ) → → →···→ →··· 0 i i i−1 Then set HI ( ):=ΓI ( ) and HI (M) := ker(ΓI (d ))/ im(ΓI (d )) for i> 0. Note i that HI ( ) is a covariant functor. Proposition. 1) If 0 L M N 0 is a short exact sequence, then we have an induced long→ exact→ sequence→ → 0 H0(L) H0(M) H0(N) → I → I → I → H1(L) H1(M) H1(N) I → I → I →··· 2) Given a commutative diagram with exact rows: w w w 0 w L M N 0 u u u ′ ′ ′ w w w 0 w L M N 0 then we have the following commutative diagram with exact rows: i i i+1 w w w w H (M) H (N) H (L) · · · I I I · · · u u u i ′ i ′ i+1 ′ w w w w H (M ) H (N ) H (L ) · · · I I I · · · i i 3) √I = √J if and only if HI ( )= HJ ( ). 4LOCAL COMOLOGY, LOCAL DUALITY AND BASIC NOTIONS OF TIGHT CLOSURE THEORY A note on localization: Let S R be a multiplicatively closed set. Then −1 −1 ⊆ S ΓI (M)=ΓS−1I (S M) and the same holds for the higher local cohomology modules. i Clearly, if E is an injective R-module, then HI (E)=0 for i> 0. 2. Local cohomology An alternate way of constructing the local cohomology modules: Consider the n n module HomR(R/I ,M) = (0 :M I ). Now, if n m, then one has a natural map n m ∼ R/I R/I , forming an inverse system. Applying HomR( ,M), we get a direct system→ of maps: n n limn HomR(R/I ,M) ∼= [(0 :M I )=ΓI (M). −→ n As one might guess (or hope), it is also the case that i n i limn ExtR(R/I ,M) ∼= HI (M). −→ This follows from the theory of negative strongly connected functors – see [R]. Definition. Let R, R′ be commutative rings. A sequence of covariant functors i ′ T i> : R-modules R -modules is said to be negative (strongly) connected if { } 0 → (i) Any short exact sequence 0 L M N 0 induces a long exact sequence → → → → 0 T 0(L) T 0(M) T 0(N) → → → → T 1(L) T 1(M) T 1(N) → → →··· (ii) For any commutative diagram with exact rows w w w 0 w L M N 0 u u u ′ ′ ′ w w w 0 w L M N 0 there is a chain map between the long exact sequences given in (i). 0 0 0 i i > Theorem. Let ψ : T U be a natural equivalence, where T i> , U i are → { } 0 { } 0 strongly connected. If T i(I)= U i(I)=0 for all i> 0 and injective modules I, then i i i there is a natural equivalence of functors ψ = ψ i> : T i U i. { } 0 { } →{ } i n i The above theorem implies that limn ExtR(R/I ,M) ∼= HI (M). −→ Remark. i) One can replace the sequence of In by any decreasing sequence n { } n of ideals Jt which are cofinal with I , i.e. t n such that I Jt { } n { } ∀ ∃ ⊆ and n t such that Jt I . ∀ ∃ i ⊆ i ii) Every element of HI (M) is killed by some power of I, as every m HI (M) i n n ∈ is the image of some ExtR(R/I ,M) which is killed by I . LOCAL COMOLOGY, LOCAL DUALITY AND BASIC NOTIONS OF TIGHT CLOSURE THEORY5 x iii) For any x R, the homomorphism M · M induces a homomorphism ·x ∈ −→ Hi (M) Hi (M). I −→ I Proposition. Let M be a finitely generated R-module and I R an ideal.
Recommended publications
  • Injective Modules: Preparatory Material for the Snowbird Summer School on Commutative Algebra
    INJECTIVE MODULES: PREPARATORY MATERIAL FOR THE SNOWBIRD SUMMER SCHOOL ON COMMUTATIVE ALGEBRA These notes are intended to give the reader an idea what injective modules are, where they show up, and, to a small extent, what one can do with them. Let R be a commutative Noetherian ring with an identity element. An R- module E is injective if HomR( ;E) is an exact functor. The main messages of these notes are − Every R-module M has an injective hull or injective envelope, de- • noted by ER(M), which is an injective module containing M, and has the property that any injective module containing M contains an isomorphic copy of ER(M). A nonzero injective module is indecomposable if it is not the direct • sum of nonzero injective modules. Every injective R-module is a direct sum of indecomposable injective R-modules. Indecomposable injective R-modules are in bijective correspondence • with the prime ideals of R; in fact every indecomposable injective R-module is isomorphic to an injective hull ER(R=p), for some prime ideal p of R. The number of isomorphic copies of ER(R=p) occurring in any direct • sum decomposition of a given injective module into indecomposable injectives is independent of the decomposition. Let (R; m) be a complete local ring and E = ER(R=m) be the injec- • tive hull of the residue field of R. The functor ( )_ = HomR( ;E) has the following properties, known as Matlis duality− : − (1) If M is an R-module which is Noetherian or Artinian, then M __ ∼= M.
    [Show full text]
  • Nilpotent Elements Control the Structure of a Module
    Nilpotent elements control the structure of a module David Ssevviiri Department of Mathematics Makerere University, P.O BOX 7062, Kampala Uganda E-mail: [email protected], [email protected] Abstract A relationship between nilpotency and primeness in a module is investigated. Reduced modules are expressed as sums of prime modules. It is shown that presence of nilpotent module elements inhibits a module from possessing good structural properties. A general form is given of an example used in literature to distinguish: 1) completely prime modules from prime modules, 2) classical prime modules from classical completely prime modules, and 3) a module which satisfies the complete radical formula from one which is neither 2-primal nor satisfies the radical formula. Keywords: Semisimple module; Reduced module; Nil module; K¨othe conjecture; Com- pletely prime module; Prime module; and Reduced ring. MSC 2010 Mathematics Subject Classification: 16D70, 16D60, 16S90 1 Introduction Primeness and nilpotency are closely related and well studied notions for rings. We give instances that highlight this relationship. In a commutative ring, the set of all nilpotent elements coincides with the intersection of all its prime ideals - henceforth called the prime radical. A popular class of rings, called 2-primal rings (first defined in [8] and later studied in [23, 26, 27, 28] among others), is defined by requiring that in a not necessarily commutative ring, the set of all nilpotent elements coincides with the prime radical. In an arbitrary ring, Levitzki showed that the set of all strongly nilpotent elements coincides arXiv:1812.04320v1 [math.RA] 11 Dec 2018 with the intersection of all prime ideals, [29, Theorem 2.6].
    [Show full text]
  • SS-Injective Modules and Rings Arxiv:1607.07924V1 [Math.RA] 27
    SS-Injective Modules and Rings Adel Salim Tayyah Department of Mathematics, College of Computer Science and Information Technology, Al-Qadisiyah University, Al-Qadisiyah, Iraq Email: [email protected] Akeel Ramadan Mehdi Department of Mathematics, College of Education, Al-Qadisiyah University, P. O. Box 88, Al-Qadisiyah, Iraq Email: [email protected] March 19, 2018 Abstract We introduce and investigate ss-injectivity as a generalization of both soc-injectivity and small injectivity. A module M is said to be ss-N-injective (where N is a module) if every R-homomorphism from a semisimple small submodule of N into M extends to N. A module M is said to be ss-injective (resp. strongly ss-injective), if M is ss-R- injective (resp. ss-N-injective for every right R-module N). Some characterizations and properties of (strongly) ss-injective modules and rings are given. Some results of Amin, Yuosif and Zeyada on soc-injectivity are extended to ss-injectivity. Also, we provide some new characterizations of universally mininjective rings, quasi-Frobenius rings, Artinian rings and semisimple rings. Key words and phrases: Small injective rings (modules); soc-injective rings (modules); SS- Injective rings (modules); Perfect rings; quasi-Frobenius rings. 2010 Mathematics Subject Classification: Primary: 16D50, 16D60, 16D80 ; Secondary: 16P20, 16P40, 16L60 . arXiv:1607.07924v1 [math.RA] 27 Jul 2016 ∗ The results of this paper will be part of a MSc thesis of the first author, under the supervision of the second author at the University of Al-Qadisiyah. 1 Introduction Throughout this paper, R is an associative ring with identity, and all modules are unitary R- modules.
    [Show full text]
  • D-Extending Modules
    Hacettepe Journal of Hacet. J. Math. Stat. Volume 49 (3) (2020), 914 – 920 Mathematics & Statistics DOI : 10.15672/hujms.460241 Research Article D-extending modules Yılmaz Durğun Department of Mathematics, Çukurova University, Adana, Turkey Abstract A submodule N of a module M is called d-closed if M/N has a zero socle. D-closed submodules are similar concept to s-closed submodules, which are defined through non- singular modules by Goodearl. In this article we deal with modules with the property that all d-closed submodules are direct summands (respectively, closed, pure). The structure of a ring over which d-closed submodules of every module are direct summand (respectively, closed, pure) is studied. Mathematics Subject Classification (2010). 16D10, 16D40 Keywords. D-extending modules, d-closed submodules, semiartinian modules 1. Introduction Throughout we shall assume that all rings are associative with identity and all modules are unitary right modules. Let R be a ring and let M be an R-module. A (proper) submodule N of M will be denoted by (N M) N ≤ M. By E(M), Rad(M) and Soc(M) we shall denote the injective hull, the Jacobson radical, and the socle of M as usual. For undefined notions used in the text, we refer the reader to [2,11]. A submodule N of a module M is essential (or large) in M, denoted N ¢M, if for every 0 ≠ K ≤ M, we have N ∩ K ≠ 0; and N is said to be closed in M if N has no proper essential extension in M. We also say in this case that N is a closed submodule.
    [Show full text]
  • Local Cohomology and Base Change
    LOCAL COHOMOLOGY AND BASE CHANGE KAREN E. SMITH f Abstract. Let X −→ S be a morphism of Noetherian schemes, with S reduced. For any closed subscheme Z of X finite over S, let j denote the open immersion X \ Z ֒→ X. Then for any coherent sheaf F on X \ Z and any index r ≥ 1, the r sheaf f∗(R j∗F) is generically free on S and commutes with base change. We prove this by proving a related statement about local cohomology: Let R be Noetherian algebra over a Noetherian domain A, and let I ⊂ R be an ideal such that R/I is finitely generated as an A-module. Let M be a finitely generated R-module. Then r there exists a non-zero g ∈ A such that the local cohomology modules HI (M)⊗A Ag are free over Ag and for any ring map A → L factoring through Ag, we have r ∼ r HI (M) ⊗A L = HI⊗AL(M ⊗A L) for all r. 1. Introduction In his work on maps between local Picard groups, Koll´ar was led to investigate the behavior of certain cohomological functors under base change [Kol]. The following theorem directly answers a question he had posed: f Theorem 1.1. Let X → S be a morphism of Noetherian schemes, with S reduced. Suppose that Z ⊂ X is closed subscheme finite over S, and let j denote the open embedding of its complement U. Then for any coherent sheaf F on U, the sheaves r f∗(R j∗F) are generically free and commute with base change for all r ≥ 1.
    [Show full text]
  • Notes on FP-Projective Modules and FP-Injective Modules
    February 17, 2006 17:49 Proceedings Trim Size: 9in x 6in mao-ding NOTES ON FP -PROJECTIVE MODULES AND FP -INJECTIVE MODULES LIXIN MAO Department of Mathematics, Nanjing Institute of Technology Nanjing 210013, P.R. China Department of Mathematics, Nanjing University Nanjing 210093, P.R. China E-mail: [email protected] NANQING DING Department of Mathematics, Nanjing University Nanjing 210093, P.R. China E-mail: [email protected] In this paper, we study the FP -projective dimension under changes of rings, es- pecially under (almost) excellent extensions of rings. Some descriptions of FP - injective envelopes are also given. 1. Introduction Throughout this paper, all rings are associative with identity and all mod- ules are unitary. We write MR (RM) to indicate a right (left) R-module, and freely use the terminology and notations of [1, 4, 9]. 1 A right R-module M is called FP -injective [11] if ExtR(N; M) = 0 for all ¯nitely presented right R-modules N. The concepts of FP -projective dimensions of modules and rings were introduced and studied in [5]. For a right R-module M, the FP -projective dimension fpdR(M) of M is de¯ned to be the smallest integer n ¸ 0 such n+1 that ExtR (M; N) = 0 for any FP -injective right R-module N. If no such n exists, set fpdR(M) = 1. M is called FP -projective if fpdR(M) = 0. We note that the concept of FP -projective modules coincides with that of ¯nitely covered modules introduced by J. Trlifaj (see [12, De¯nition 3.3 and Theorem 3.4]).
    [Show full text]
  • The Freyd-Mitchell Embedding Theorem States the Existence of a Ring R and an Exact Full Embedding a Ñ R-Mod, R-Mod Being the Category of Left Modules Over R
    The Freyd-Mitchell Embedding Theorem Arnold Tan Junhan Michaelmas 2018 Mini Projects: Homological Algebra arXiv:1901.08591v1 [math.CT] 23 Jan 2019 University of Oxford MFoCS Homological Algebra Contents 1 Abstract 1 2 Basics on abelian categories 1 3 Additives and representables 6 4 A special case of Freyd-Mitchell 10 5 Functor categories 12 6 Injective Envelopes 14 7 The Embedding Theorem 18 1 Abstract Given a small abelian category A, the Freyd-Mitchell embedding theorem states the existence of a ring R and an exact full embedding A Ñ R-Mod, R-Mod being the category of left modules over R. This theorem is useful as it allows one to prove general results about abelian categories within the context of R-modules. The goal of this report is to flesh out the proof of the embedding theorem. We shall follow closely the material and approach presented in Freyd (1964). This means we will encounter such concepts as projective generators, injective cogenerators, the Yoneda embedding, injective envelopes, Grothendieck categories, subcategories of mono objects and subcategories of absolutely pure objects. This approach is summarised as follows: • the functor category rA, Abs is abelian and has injective envelopes. • in fact, the same holds for the full subcategory LpAq of left-exact functors. • LpAqop has some nice properties: it is cocomplete and has a projective generator. • such a category embeds into R-Mod for some ring R. • in turn, A embeds into such a category. 2 Basics on abelian categories Fix some category C. Let us say that a monic A Ñ B is contained in another monic A1 Ñ B if there is a map A Ñ A1 making the diagram A B commute.
    [Show full text]
  • Essential Properties of Pro-Objects in Grothendieck Categories Cahiers De Topologie Et Géométrie Différentielle Catégoriques, Tome 20, No 1 (1979), P
    CAHIERS DE TOPOLOGIE ET GÉOMÉTRIE DIFFÉRENTIELLE CATÉGORIQUES TIMOTHY PORTER Essential properties of pro-objects in Grothendieck categories Cahiers de topologie et géométrie différentielle catégoriques, tome 20, no 1 (1979), p. 3-57 <http://www.numdam.org/item?id=CTGDC_1979__20_1_3_0> © Andrée C. Ehresmann et les auteurs, 1979, tous droits réservés. L’accès aux archives de la revue « Cahiers de topologie et géométrie différentielle catégoriques » implique l’accord avec les conditions générales d’utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright. Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ CAHIERS DE TOPOLOGIE Vol. XX -1 ( 1979 ) ET GEOMETRIE DIFFERENTIELLE ESSENTIAL PROPERTIES OF PRO-OBJECTS IN GROTHENDIECK CATEGORIES by Timothy PORTER There is a class of problems in Algebra, algebraic Topology and category Theory which can be subsummed under the question : When does a «structure &#x3E;&#x3E; on a category C extend to a similar « structure» on the cor- responding procategory pro ( C ) ? Thus one has the work of Edwards and Hastings [7] and the author [27,28,29] on extending a «model category for homotopy theory » a la Quillen [35] from a category C , usually the category of simplicial sets or of chain complexes over some ring, to give a homotopy theory or homo- topical algebra in pro(C) . ( It is worth noting that the two approaches differ considerably, but they agree in the formation of the homotopy categ- ory / category of fractions Hopro(C) which, in this case, is distinct from the prohomotopy category&#x3E;&#x3E; proHo ( C ) .
    [Show full text]
  • Lectures on Local Cohomology
    Contemporary Mathematics Lectures on Local Cohomology Craig Huneke and Appendix 1 by Amelia Taylor Abstract. This article is based on five lectures the author gave during the summer school, In- teractions between Homotopy Theory and Algebra, from July 26–August 6, 2004, held at the University of Chicago, organized by Lucho Avramov, Dan Christensen, Bill Dwyer, Mike Mandell, and Brooke Shipley. These notes introduce basic concepts concerning local cohomology, and use them to build a proof of a theorem Grothendieck concerning the connectedness of the spectrum of certain rings. Several applications are given, including a theorem of Fulton and Hansen concern- ing the connectedness of intersections of algebraic varieties. In an appendix written by Amelia Taylor, an another application is given to prove a theorem of Kalkbrenner and Sturmfels about the reduced initial ideals of prime ideals. Contents 1. Introduction 1 2. Local Cohomology 3 3. Injective Modules over Noetherian Rings and Matlis Duality 10 4. Cohen-Macaulay and Gorenstein rings 16 d 5. Vanishing Theorems and the Structure of Hm(R) 22 6. Vanishing Theorems II 26 7. Appendix 1: Using local cohomology to prove a result of Kalkbrenner and Sturmfels 32 8. Appendix 2: Bass numbers and Gorenstein Rings 37 References 41 1. Introduction Local cohomology was introduced by Grothendieck in the early 1960s, in part to answer a conjecture of Pierre Samuel about when certain types of commutative rings are unique factorization 2000 Mathematics Subject Classification. Primary 13C11, 13D45, 13H10. Key words and phrases. local cohomology, Gorenstein ring, initial ideal. The first author was supported in part by a grant from the National Science Foundation, DMS-0244405.
    [Show full text]
  • Commutative Ideal Theory Without Finiteness Conditions: Completely Irreducible Ideals
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 358, Number 7, Pages 3113–3131 S 0002-9947(06)03815-3 Article electronically published on March 1, 2006 COMMUTATIVE IDEAL THEORY WITHOUT FINITENESS CONDITIONS: COMPLETELY IRREDUCIBLE IDEALS LASZLO FUCHS, WILLIAM HEINZER, AND BRUCE OLBERDING Abstract. An ideal of a ring is completely irreducible if it is not the intersec- tion of any set of proper overideals. We investigate the structure of completely irrreducible ideals in a commutative ring without finiteness conditions. It is known that every ideal of a ring is an intersection of completely irreducible ideals. We characterize in several ways those ideals that admit a representation as an irredundant intersection of completely irreducible ideals, and we study the question of uniqueness of such representations. We characterize those com- mutative rings in which every ideal is an irredundant intersection of completely irreducible ideals. Introduction Let R denote throughout a commutative ring with 1. An ideal of R is called irreducible if it is not the intersection of two proper overideals; it is called completely irreducible if it is not the intersection of any set of proper overideals. Our goal in this paper is to examine the structure of completely irreducible ideals of a commutative ring on which there are imposed no finiteness conditions. Other recent papers that address the structure and ideal theory of rings without finiteness conditions include [3], [4], [8], [10], [14], [15], [16], [19], [25], [26]. AproperidealA of R is completely irreducible if and only if there is an element x ∈ R such that A is maximal with respect to not containing x.
    [Show full text]
  • 9 the Injective Envelope
    9 The Injective Envelope. In Corollaries 3.6 and 3.11 we saw that every module RM is a factor of a projective and the submodule of an injective. So we would like to learn whether there exist such projective and injective modules that are in some sense minimal and universal for M, sort of closures for M among the projective and injective modules. It turns out, strangely, that here we discover that our usual duality for projectives and injectives breaks down; there exist minimal injective extensions for all modules, but not minimal projectives for all modules. Although we shall discuss the projective case briey, in this section we focus on the important injective case. The rst big issue is to decide what we mean by minimal projective and injective modules for M. Fortunately, the notions of of essential and superuous submodules will serve nice as criteria. Let R be a ring — initially we place no further restriction. n epimorphism superuous Ker f M A(n) f : M → N is essential in case monomorphism Im f –/ N So for example, if M is a module of nite length, then the usual map M → M/Rad M is a superuous epimorphism and the inclusion map Soc M → M is an essential monomorphism. (See Proposition 8.9.) 9.1. Lemma. (1) An epimorphism f : M → N is superuous i for every homomorphism g : K → M,iff g is epic, then g is epic. (2) A monomorphism f : M → N is essential i for every homomorphism g : N → K,ifg f is monic, then g is monic.
    [Show full text]
  • Injective Hulls of Simple Modules Over Some Noetherian Rings
    Osman Can Hatipoglu˘ Injective Hulls of Simple Modules Over Some Noetherian Rings Faculdade de Ciências da Universidade do Porto Osman Can Hatipoglu˘ Injective Hulls of Simple Modules Over Some Noetherian Rings Tese submetida à Faculdade de Ciências da Universidade do Porto para obtenção do grau de Doutor em Matemática Outubro de 2013 Resumo Estudamos a seguinte propriedade de finitude de um anel Noetheriano esquerdo R: (⋄) Os envolucros injectivos de R-módulos simples são localmente Artinianos. A propriedade (⋄) é estudada em duas classes de anéis. Motivados pelo resul- tado de Musson: nenhuma álgebra envolvente duma álgebra de Lie de dimensão finita solúvel mas não nilpotent sobre um corpo algebricamente fechado satisfaz a propriedade (⋄), começamos por considerar as super álgebras de Lie nilpotentes e descrevemos as de dimensão finita cuja álgebra envolvente satisfaz a propriedade (⋄). A segunda classe de anéis que estudamos são os anéis de operadores diferen- ciais sobre um anel de polinómios com coeficientes num corpo, S = k[x][y;δ]. Para esta classe de anéis obtemos condições suficientes para a existência de extensões essenciais de módulos simples que não são Artinianos. Combinando os obtidos com resultados de Awami, Van den Bergh, e van Oystaeyen e de Alev e Dumas relativa- mente a classificação das extensões de Ore obtemos a caracterização completa de extensões de Ore S = k[x][y;σ,δ] que satisfazem a propriedade (⋄). Consideramos ainda a relaço entre teorias de torção estáveis e a propriedade (⋄) em anéis Noetherianos. Em particular, mostramos que um anel Noetheriano R tem a propriedade (⋄) se e só se a teoria de torção de Dickson em R-Mod é estável.
    [Show full text]