entropy Article Non-Deterministic Semantics for Quantum States Juan Pablo Jorge 1 and Federico Holik 2,* 1 Physics Department, University of Buenos Aires, Buenos Aires 1428, Argentina;
[email protected] 2 Instituto de Física La Plata, UNLP, CONICET, Facultad de Ciencias Exactas, 1900 La Plata, Argentina * Correspondence:
[email protected] Received: 16 October 2019; Accepted: 27 January 2020; Published: 28 January 2020 Abstract: In this work, we discuss the failure of the principle of truth functionality in the quantum formalism. By exploiting this failure, we import the formalism of N-matrix theory and non-deterministic semantics to the foundations of quantum mechanics. This is done by describing quantum states as particular valuations associated with infinite non-deterministic truth tables. This allows us to introduce a natural interpretation of quantum states in terms of a non-deterministic semantics. We also provide a similar construction for arbitrary probabilistic theories based in orthomodular lattices, allowing to study post-quantum models using logical techniques. Keywords: quantum states; non-deterministic semantics; truth functionality 1. Introduction According to the principle of truth-functionality or composability (TFP), the truth-value of a complex formula is uniquely determined by the truth-values of its subformulas. It is a basic principle of logic. However, as explained in [1], many real-world situations involve dealing with information that is incomplete, vague or uncertain. This is especially true for quantum phenomena, where only probabilistic assertions about possible events can be tested in the lab. These situations pose a threat to the application of logical systems obeying the principle of truth-functionality in those problems.