Molecular Recognition of Inhibitors, Metal Ions and Substrates by Ribonuclease P

Total Page:16

File Type:pdf, Size:1020Kb

Molecular Recognition of Inhibitors, Metal Ions and Substrates by Ribonuclease P MOLECULAR RECOGNITION OF INHIBITORS, METAL IONS AND SUBSTRATES BY RIBONUCLEASE P by Xin Liu A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Chemistry) in the University of Michigan 2013 Doctoral Committee: Professor Carol A. Fierke, Chair Professor David R. Engelke Professor George A. Garcia Professor Anna K. Mapp Professor Nils G. Walter © Xin Liu 2013 DEDICATION To Lei Shi (石磊) Lei, you believe in me and listen to my wildest dreams. You bring out the best in me. Thank you for your endless love, patience and support! 愛你的馨! ii ACKNOWLEDGEMENTS This work would not be possible without support from many mentors, friends and family members. First of all, I want to thank my advisor Professor Carol Fierke for her great guidance and enormous patience for the past few years. Without her encouragement and critical suggestions, I would have not been able to learn such a great deal of experimental and analytical methods and to finish this dissertation. Carol has set a role model for me as an extraordinary scientist and inspiring mentor that I hope to learn from in my future careers. I would also like to thank my committee members who have been patient and helped me in many different ways. Prof. David Engelke helped me to think and communicate my research more clearly during the monthly RNase P meetings. Prof. Ann Mapp allowed me to use the TECAN instruments in her laboratory and wrote letters for supporting my various fellowship applications. I have learned about many different research projects when attending the Midwest enzyme mechanism conference organized by Prof. George Garcia. I have also used the HPLC instrument and received help from many members in Prof. Nils Walter’s laboratory (Matt Marek, Mario Blanco, Visha Krishnan and Sethu Pitchaiya). I want to acknowledge all past and current members of the Fierke lab for being such wonderful and supportive colleagues. Dr. Daina Zeng showed me the basic experimental procedures for handling RNA samples and measuring RNase P iii activity. Dr. John Hsieh has been answering all my questions about RNase P over the years. Dr. Wan Lim is a great friend and provided many insightful discussions. Dr. Elaina Zverina has been a great friend since my first day of class in graduate school at Michigan and offered me numerous help in adjusting to a foreign country and gave me many excellent suggestions for my experiments. Yu Chen is a colleague, friend but also a mentor who inspired me in improving efficiency and communications in my research. I want to thank Andrea Stoddard for providing her expertise in molecular biology, gracious support and encouragement to me over the years. I also thank Elia Wright for offering me experimental help as well as work-life balance strategies. Thanks also go to Michael Howard who taught me valuable tricks in protein purification and has been a great source of inspiration. I would like to thank Noah Wolfson for his support and discussions about research, science and life. I want to acknowledge all members of the RNase P subgroup for insightful discussions during the monthly meetings (Prof. Carol Fierke, Prof. David Engelke, Dr. John Hsieh, Dr. Nathan Zahler, Dr. Kristin Koutmos, Dr. Scott Walker, Dr. Michael Marvin, Dr. Wan Lim, Yu Chen, Micheal Howard, and Bradley Klemm). I also thank Dr. Manoj Cheriyan, Dr. James Hougland and Dr. Terry Watt for their help in my early years in the lab. Special thanks go to Paul Lin and Justin Liedel whom are the first two undergraduate students I have worked with. They have done great experiments and inspired me in many ways. The work presented in each of my dissertation chapters was conducted not only by me, but also by many collaborators. I want to also list my acknowledgement to my collaborators and source of funding. For Chapter 2, I thank Dr. Lyra Chang, iv Professor Jason Gestwicki, Professor Anna Mapp, Dr. Elaina Zverina, Dr. John Hsieh, Dr. Daina Zeng and Yu Chen for help with the development of this assay. I want to thank Dr. Jonas Hojfeldt, Dr. Chinmay Majmudar and Dr. Ningkun Wang (Mapp lab) for sharing their experience with fluorescence polarization and high- throughput screening techniques. I also acknowledge the help of Martha Larsen, Steven Swaney and Paul Kirchhoff at the Center for Chemical Genetics at University of Michigan with the compound library screen and data mining. I want to thank two internal grants that partially made the high-throughput screening project possible: the Rackham Graduate Student Research Grant and a Pilot Screening Grant from the Life Science Institute at University of Michigan. For Chapter 3, I want to thank Yu Chen, Dr. Katja Petzold and Prof. Hashim Al-Hashimi for their insightful discussions on the dynamics and structure studies of P4 helix. For Chapter 4, I want to specially thank Paul Lin for performing molecular cloning experiments for subcloning human mt-pre-tRNA genes and for his general help in preparing cell cultures, growth media and plates in the laboratory. I would like to thank Andrea Stoddard and Elia Wright for their help in growing HEK293 cells. The initial subcloning, purification and activity measurements of each human mtRNase P proteins were accomplished by Dr. Wan Lim and I also thank her for sharing regents and useful ideas during discussions. I would like to thank Michael Howard for help with protein purifications. Dr. Elaina Zverina provided valuable suggestions for purification of MRPP3 and experimental assistance in purification of MRPP1∙MRPP2 complex. Thanks also go to Dr. Lubomir Dostal who performed ICP-MS experiments. I want to thank Yueyang Zhong (Ruotolo lab) for her passion and expertise in the IM-MS experiments. I would also v like to thank Department of Chemistry for a Research Excellence Award, which funded me for one winter semester when a large part of this work was undertaken. Special thanks go to who have critically read my thesis chapters (Prof. Carol Fierke, Yu Chen, Carol Ann Pitcairn, Elia Wright, Nancy Wu, Andrea Stoddard, Byung Chul Kim and Michael Howard). Last but not least, millions of thanks go to my dear friends and families whom I have not yet mentioned above. I must thank Dr. Tracy Xiao Liu for bringing happiness in my life and for being understanding and caring to me all these years. Dr. Lyra Chang is my role model as a scientist and a dear friend whom I can trust even without much talking between us. Dr. Wenjing Chen taught me optimism and resilience. Dr. Jing Chen, Dr. Chenxi Shen, Dr. Penny Bo Peng and Dr. Liuling Gong also took care of me during hard times and taught me accountability. Dr. Yipei Wang showed me importance of efficiency in work and in life. I also want to thank Dr. Boyangzi Li for her encouragement and inspiration for pursuing life’s dream courageously. I also thank Guangming Lang for inspiring me with wisdom in Buddhism. I want to express my utmost gratitude to my parents, who raised me up with unconditional love and support. Thanks go to my parents-in-laws who also gave me endless love. Finally, I thank my husband Lei Shi. I could not get to this point without his love, support and help. Thank you all! vi TABLE OF CONTENTS DEDICATION............................................................................................................. ii ACKNOWLEDGEMENTS ........................................................................................ iii LIST OF FIGURES ................................................................................................. xiv LIST OF TABLES ................................................................................................... xix ABSTRACT ............................................................................................................. xx CHAPTER 1 INTRODUCTION: MOLECULAR RECOGNITION BY RNASE P ........ 1 Introduction ...................................................................................................... 1 RNase P Enzymes: Essential yet Diverse ....................................................... 6 1.2.1 Ribonucleoprotein (RNP) RNase P .......................................................... 6 1.2.2 RNase P without RNA ............................................................................ 15 1.2.3 RNase P as a Drug Target ..................................................................... 19 Catalytic Mechanism ...................................................................................... 23 1.3.1 Catalysis and Role of Divalent Metal Ions .............................................. 23 1.3.2 Identification of Metal Binding Sites in RNP RNase P ............................ 25 Substrate Recognition ................................................................................... 30 1.4.1 Structural Features of tRNA ................................................................... 30 1.4.2 Sequence-specific Interactions by Bacterial RNase P ............................ 31 vii 1.4.3 Substrate Specificity ............................................................................... 34 Conclusion ..................................................................................................... 39 Objectives of this Research ........................................................................... 39 References .................................................................................................... 41 CHAPTER 2 DEVELOPMENT OF A FLUORESCENCE POLARIZATION ASSAY TO MEASURE ACTIVITY AND SCREEN FOR INHIBITORS OF B. SUBTILIS RNASE P ................................................................................................................
Recommended publications
  • SUPPLEMENTARY TABLE 1 Non-Destructive Characterisation Of
    Electronic Supplementary Material (ESI) for Analyst. This journal is © The Royal Society of Chemistry 2016 SUPPLEMENTARY TABLE 1 Non-destructive characterisation of mesenchymal stem cell differentiation using LC-MS-based metabolite footprinting Amal Surrati 1, Rob Linforth 2, Ian Fisk 2, VirginieSottile1*, Dong-Hyun Kim 3*. 1Wolfson Centre for Stem Cells, Tissue, Engineering and Modelling (STEM), School of Medicine, The University of Nottingham, CBS Building - University Park, Nottingham NG7 2RD (U.K.) 2Division of Food Sciences, University of Nottingham, Sutton Bonington Campus, Sutton Bonington, Leicestershire, LE12 5RD (U.K.) 3Centre for Analytical Bioscience, Division of Molecular and Cellular Sciences, School of Pharmacy, The University of Nottingham, Nottingham, NG7 2RD (U.K.) *Correspondence to: Email: [email protected] Tel: +44 1158231235 Email: [email protected] Tel: +44 1157484697 Supplementary Table 1: Metabolites changed in MSC-conditioned medium compared to fresh medium (blank). ↑ indicates the metabolites that increased in all MSC-conditioned medium (control and OS) compared to their corresponding blanks, and ↓ indicates decreased metabolites. ID confidence: Metabolite identification level according to the metabolomics standards initiative 29,30 ; L1 – Level 1, L2 – Level 2. Change RT ID Identifier compared Exact mass Formula Putative metabolite (min) confidence (PubChem) to blank medium 179.0946 5.30 C10H13NO2 (-)-Salsolinol L2 91588 ↑ 358.1410 10.12 C20H22O6 (+)-Pinoresinol L2 7741 ↑ 148.0371
    [Show full text]
  • Supporting Information
    Supporting Information Figure S1. The functionality of the tagged Arp6 and Swr1 was confirmed by monitoring cell growth and sensitivity to hydeoxyurea (HU). Five-fold serial dilutions of each strain were plated on YPD with or without 50 mM HU and incubated at 30°C or 37°C for 3 days. Figure S2. Localization of Arp6 and Swr1 on chromosome 3. The binding of Arp6-FLAG (top), Swr1-FLAG (middle), and Arp6-FLAG in swr1 cells (bottom) are compared. The position of Tel 3L, Tel 3R, CEN3, and the RP gene are shown under the panels. Figure S3. Localization of Arp6 and Swr1 on chromosome 4. The binding of Arp6-FLAG (top), Swr1-FLAG (middle), and Arp6-FLAG in swr1 cells (bottom) in the whole chromosome region are compared. The position of Tel 4L, Tel 4R, CEN4, SWR1, and RP genes are shown under the panels. Figure S4. Localization of Arp6 and Swr1 on the region including the SWR1 gene of chromosome 4. The binding of Arp6- FLAG (top), Swr1-FLAG (middle), and Arp6-FLAG in swr1 cells (bottom) are compared. The position and orientation of the SWR1 gene is shown. Figure S5. Localization of Arp6 and Swr1 on chromosome 5. The binding of Arp6-FLAG (top), Swr1-FLAG (middle), and Arp6-FLAG in swr1 cells (bottom) are compared. The position of Tel 5L, Tel 5R, CEN5, and the RP genes are shown under the panels. Figure S6. Preferential localization of Arp6 and Swr1 in the 5′ end of genes. Vertical bars represent the binding ratio of proteins in each locus.
    [Show full text]
  • Supplementary Table S4. FGA Co-Expressed Gene List in LUAD
    Supplementary Table S4. FGA co-expressed gene list in LUAD tumors Symbol R Locus Description FGG 0.919 4q28 fibrinogen gamma chain FGL1 0.635 8p22 fibrinogen-like 1 SLC7A2 0.536 8p22 solute carrier family 7 (cationic amino acid transporter, y+ system), member 2 DUSP4 0.521 8p12-p11 dual specificity phosphatase 4 HAL 0.51 12q22-q24.1histidine ammonia-lyase PDE4D 0.499 5q12 phosphodiesterase 4D, cAMP-specific FURIN 0.497 15q26.1 furin (paired basic amino acid cleaving enzyme) CPS1 0.49 2q35 carbamoyl-phosphate synthase 1, mitochondrial TESC 0.478 12q24.22 tescalcin INHA 0.465 2q35 inhibin, alpha S100P 0.461 4p16 S100 calcium binding protein P VPS37A 0.447 8p22 vacuolar protein sorting 37 homolog A (S. cerevisiae) SLC16A14 0.447 2q36.3 solute carrier family 16, member 14 PPARGC1A 0.443 4p15.1 peroxisome proliferator-activated receptor gamma, coactivator 1 alpha SIK1 0.435 21q22.3 salt-inducible kinase 1 IRS2 0.434 13q34 insulin receptor substrate 2 RND1 0.433 12q12 Rho family GTPase 1 HGD 0.433 3q13.33 homogentisate 1,2-dioxygenase PTP4A1 0.432 6q12 protein tyrosine phosphatase type IVA, member 1 C8orf4 0.428 8p11.2 chromosome 8 open reading frame 4 DDC 0.427 7p12.2 dopa decarboxylase (aromatic L-amino acid decarboxylase) TACC2 0.427 10q26 transforming, acidic coiled-coil containing protein 2 MUC13 0.422 3q21.2 mucin 13, cell surface associated C5 0.412 9q33-q34 complement component 5 NR4A2 0.412 2q22-q23 nuclear receptor subfamily 4, group A, member 2 EYS 0.411 6q12 eyes shut homolog (Drosophila) GPX2 0.406 14q24.1 glutathione peroxidase
    [Show full text]
  • Ribonuclease P
    14 Ribonuclease P Sidney Altman Department of Molecular, Cellular and Developmental Biology Yale University New Haven, Connecticut 06520 Leif Kirsebom Department of Microbiology Biomedical Center Uppsala University Uppsala S-751 23, Sweden RNase P was first characterized in Escherichia coli as an enzyme that is required for the processing of the 5؅ termini of tRNA in the pathway of biosynthesis of tRNA from precursor tRNAs (ptRNAs; Altman and Smith 1971; for review, see Altman 1989). Subsequently, it was discov- ered that this enzyme consisted of one protein and one RNA subunit, the latter being the catalytic subunit (Guerrier-Takada et al. 1983). In retro- spect, it should not be surprising that an enzyme with the chemical compo- sition of RNase P exists. Ribosomes are also ribonucleoproteins (RNPs), but they are much more complicated than RNase P. It seems unreasonable that ribosomes, with three RNAs and about 50 proteins, would exist with- out less complex RNPs having come into existence first and having per- sisted throughout evolution. Indeed, relatively simple RNPs with and without catalytic activity have been discovered with regularity during the past 20 years. What important questions about RNase P have not yet been an- swered? Certainly, for the biochemist, problems not yet solved for E. coli RNase P include a full understanding of enzyme–substrate interac- tions, RNA–protein subunit interactions, and the chemical details of the hydrolysis reaction. In every case, much progress has been made, but much has yet to be learned. A second issue of interest to biochemists and “evolutionists” is the puzzle presented by the different compositions of RNase P from eubac- teria (one catalytic RNA and one protein subunit) and from eukaryotes (one RNA subunit and several protein subunits: no understanding yet of which subunit is responsible for catalysis).
    [Show full text]
  • Unveiling Structural and Functional Divergences Of
    Unveiling structural and functional divergences of bacterial tRNA dihydrouridine synthases: perspectives on the evolution scenario Charles Bou-Nader, Hugo Montémont, Vincent Guérineau, Olivier Jean-Jean, Damien Brégeon, Djemel Hamdane To cite this version: Charles Bou-Nader, Hugo Montémont, Vincent Guérineau, Olivier Jean-Jean, Damien Brégeon, et al.. Unveiling structural and functional divergences of bacterial tRNA dihydrouridine synthases: per- spectives on the evolution scenario. Nucleic Acids Research, Oxford University Press, 2018, 46 (3), pp.1386-1394. 10.1093/nar/gkx1294. hal-01727508 HAL Id: hal-01727508 https://hal.sorbonne-universite.fr/hal-01727508 Submitted on 9 Mar 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License 1386–1394 Nucleic Acids Research, 2018, Vol. 46, No. 3 Published online 27 December 2017 doi: 10.1093/nar/gkx1294 Unveiling structural and functional divergences of bacterial tRNA dihydrouridine synthases: perspectives on the evolution scenario Charles
    [Show full text]
  • Catalybc Rnas
    Felix Loosli ITG/KIT (Karlsruhe) Developmental neurobiology of vertebrates Introduc*on to Gene*cs Cataly@c RNAs Lewin‘s GeneX Chapter 23 Albert‘s Molecular Biology of the Cell 5th ed. Chapter 6 Ribozyme : a RNA that has catalytic activity Group I and II self splicing introns Ribonuclease P (RNase P: t-RNA maturaon) Viroids Ribosome Evolu@onary consideraons Tetrahymena thermophilus Thomas R. Cech rRNA self-splicing Splicing occurred without added cell extract Sidney Altman Cataly@c RNA of RNase P which contains a RNA molecule essen@al for catalysis rRNA genes Mitochondrial/Chloroplast genes Bound G nucleo@de (cofactor) aacks phosphodiester bond Two consecuve transesterificaons; no ATP required 2nd structure of RNA is essen@al promoter β-gal β-gal tetrahymena intron transfect E. coli transcrip@on and splicing blue colonies on agar plate GTP conc. >rRNA conc. change of 2nd structure of products (products are ‘removed’ from the reac@on) -> reac@on proceeds to comple@on In vitro self splicing is very slow, in vivo proteins have accessory funcons Group I introns share a common 2nd structure: core structure is the ac@ve site Group I introns can also catalyse: Sequence specific RNA cleavage (ribo endonuclease) RNA ligase Phospatase (not related to self-splicing ac@vity) Group II Introns May Code for Multifunction Proteins • Group II introns can autosplice in vitro, but are usually assisted by protein activities encoded by the intron • A single open reading frame codes for a protein with reverse transcriptase activity, maturase activity, a DNA-binding
    [Show full text]
  • N6-Methyladenosine (M6a) Is an Endogenous A3 Adenosine Receptor Ligand
    bioRxiv preprint doi: https://doi.org/10.1101/2020.11.21.391136; this version posted November 22, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. N6-methyladenosine (m6A) is an endogenous A3 adenosine receptor ligand Akiko Ogawa,1, 2, 3 Chisae Nagiri,4, 13 Wataru Shihoya,4, 13 Asuka Inoue,5, 6, 7, 13 Kouki Kawakami,5 Suzune Hiratsuka,5 Junken Aoki,7, 8 Yasuhiro Ito,3 Takeo Suzuki,9 Tsutomu Suzuki,9 Toshihiro Inoue,3 Osamu Nureki,4 Hidenobu Tanihara,10 Kazuhito Tomizawa,2, 11 Fan-Yan Wei1, 2, 12, 14 1Department of Modomics Biology & Medicine, Institute of Development, Aging and Cancer (IDAC), Tohoku University, Sendai 980-8575, Japan. 2Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan. 3Department of Ophthalmology, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan. 4Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan. 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.11.21.391136; this version posted November 22, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 5Laboratory of Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan.
    [Show full text]
  • Detection of a Novel Avian Influenza a (H7N9)
    Fan et al. BMC Infectious Diseases 2014, 14:541 http://www.biomedcentral.com/1471-2334/14/541 RESEARCH ARTICLE Open Access Detection of a novel avian influenza A (H7N9) virus in humans by multiplex one-step real-time RT-PCR assay Jian Fan1†, David Cui1†, Siuying Lau3, Guoliang Xie1, Xichao Guo1, Shufa Zheng1, Xiaofeng Huang3, Shigui Yang2, Xianzhi Yang1, Zhaoxia Huo1, Fei Yu1, Jianzhou Lou1, Li Tian1, Xuefen Li1, Yuejiao Dong1, Qiaoyun Zhu1 and Yu Chen1,2* Abstract Background: A novel avian influenza A (H7N9) virus emerged in eastern China in February 2013. 413 confirmed human cases, including 157 deaths, have been recorded as of July 31, 2014. Methods: Clinical specimens, including throat swabs, sputum or tracheal aspirates, etc., were obtained from patients exhibiting influenza-like illness (ILIs), especially from those having pneumonia and a history of occupational exposure to poultry and wild birds. RNA was extracted from these samples and a multiplex one-step real-time RT-PCR assay was developed to specifically detect the influenza A virus (FluA). PCR primers targeted the conserved M and Rnase P (RP) genes, as well as the hemagglutinin and neuraminidase genes of the H7N9 virus. Results: The multiplex assay specifically detected the avian H7N9 virus, and no cross-reaction with other common respiratory pathogens was observed. The detection limit of the assay was approximately 0.05 50% tissue culture infective doses (TCID50), or 100 copies per reaction. Positive detection of the H7N9 virus in sputum/tracheal aspirates was higher than in throat swabs during the surveillance of patients with ILIs. Additionally, detection of the matrix (M) and Rnase P genes aided in the determination of the novel avian H7N9 virus and ensured the quality of the clinical samples.
    [Show full text]
  • Human Induced Pluripotent Stem Cell–Derived Podocytes Mature Into Vascularized Glomeruli Upon Experimental Transplantation
    BASIC RESEARCH www.jasn.org Human Induced Pluripotent Stem Cell–Derived Podocytes Mature into Vascularized Glomeruli upon Experimental Transplantation † Sazia Sharmin,* Atsuhiro Taguchi,* Yusuke Kaku,* Yasuhiro Yoshimura,* Tomoko Ohmori,* ‡ † ‡ Tetsushi Sakuma, Masashi Mukoyama, Takashi Yamamoto, Hidetake Kurihara,§ and | Ryuichi Nishinakamura* *Department of Kidney Development, Institute of Molecular Embryology and Genetics, and †Department of Nephrology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan; ‡Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Hiroshima, Japan; §Division of Anatomy, Juntendo University School of Medicine, Tokyo, Japan; and |Japan Science and Technology Agency, CREST, Kumamoto, Japan ABSTRACT Glomerular podocytes express proteins, such as nephrin, that constitute the slit diaphragm, thereby contributing to the filtration process in the kidney. Glomerular development has been analyzed mainly in mice, whereas analysis of human kidney development has been minimal because of limited access to embryonic kidneys. We previously reported the induction of three-dimensional primordial glomeruli from human induced pluripotent stem (iPS) cells. Here, using transcription activator–like effector nuclease-mediated homologous recombination, we generated human iPS cell lines that express green fluorescent protein (GFP) in the NPHS1 locus, which encodes nephrin, and we show that GFP expression facilitated accurate visualization of nephrin-positive podocyte formation in
    [Show full text]
  • A Role of Human Rnase P Subunits, Rpp29 and Rpp21, in Homology
    www.nature.com/scientificreports OPEN A role of human RNase P subunits, Rpp29 and Rpp21, in homology directed-repair of double-strand Received: 22 December 2016 Accepted: 22 March 2017 breaks Published: xx xx xxxx Enas R. Abu-Zhayia1, Hanan Khoury-Haddad1, Noga Guttmann-Raviv1, Raphael Serruya2, Nayef Jarrous2 & Nabieh Ayoub1 DNA damage response (DDR) is needed to repair damaged DNA for genomic integrity preservation. Defective DDR causes accumulation of deleterious mutations and DNA lesions that can lead to genomic instabilities and carcinogenesis. Identifying new players in the DDR, therefore, is essential to advance the understanding of the molecular mechanisms by which cells keep their genetic material intact. Here, we show that the core protein subunits Rpp29 and Rpp21 of human RNase P complex are implicated in DDR. We demonstrate that Rpp29 and Rpp21 depletion impairs double-strand break (DSB) repair by homology-directed repair (HDR), but has no deleterious effect on the integrity of non-homologous end joining. We also demonstrate that Rpp29 and Rpp21, but not Rpp14, Rpp25 and Rpp38, are rapidly and transiently recruited to laser-microirradiated sites. Rpp29 and Rpp21 bind poly ADP-ribose moieties and are recruited to DNA damage sites in a PARP1-dependent manner. Remarkably, depletion of the catalytic H1 RNA subunit diminishes their recruitment to laser-microirradiated regions. Moreover, RNase P activity is augmented after DNA damage in a PARP1-dependent manner. Altogether, our results describe a previously unrecognized function of the RNase P subunits, Rpp29 and Rpp21, in fine- tuning HDR of DSBs. The human genome is susceptible to endogenous and exogenous DNA damaging agents1, 2.
    [Show full text]
  • 4. Chemical Stability of Nucleic Acids
    4. Chemical stability of nucleic acids NH2 N 8 N H O 2 Heterocycle: stable - O N P O N H except for reactions with alkylating O HO agents, nitrite and radicals Cleavage of the N-glycosidic bond Purinyl-N-glycosides are cleaved by acid HO OH or hydrazine treatment Cleavage of the phosphodiester linkage: RNA: hydrolyzed by 0.3 M KOH DNA: stable Chemical hydrolysis of phosphoesters Comparison: Ester hydrolysis of carboxylic acid O - O HO- O - R O-R´ + O-R´ R O-R´ R OH OH O tetrahedral transition state Acyl cleavage R O- + HO-R´ Proof: Reaction in 18O labeled water O + H2O, H O + R O R OH HO Alkyl cleavage in specific cases only Chemical hydrolysis of phosphoesters 1.Phosphotriester Apical ligand 1 M NaOH OMe O O 24 h, 20 °C Equatorial ligand - P O P MeO OMe MeO P MeO OMe OMe OMe O- + OH MeOH Trimethyl phosphate Dimethyl phosphate Transition state: dsp3-hybrid! Phosphoryl cleavage Chemical hydrolysis of phosphoesters 2.Phosphodiester 1 M NaOH O 100 °C O P P MeO O-Me MeO O- + MeOH O- O- HO- Dimethyl phosphate Methyl phosphate Alkyl cleavage Half life time: 16 days! Chemical hydrolysis of phosphoesters 2.Phosphodiester HO- H Cyclic phosphodiester (ring strain!) H O - O HO O O O P P O- O O-Me O P O - O- O O O- 2-Hydroxyethyl-methyl-phosphate 2-Hydroxyethyl phosphate Δ H = -26.8 kJ/mol Cf: Dimethyl phosphate: -7.5 kJ/ mol Half life time at 25 °C 25 min! Neighboring group participation Anchimeric assistance OH O H+ O OH OH O-Me + P P P O O H2O O O-Me O O O 2-Hydroxyethyl-methyl Ethylene-phosphate phosphate O 70% 30% P O O „Pseudorotation“: Interchange
    [Show full text]
  • Global Proteome Changes in Liver Tissue 6 Weeks After FOLFOX Treatment of Colorectal Cancer Liver Metastases
    Proteomes 2016, 4, 30; doi:10.3390/proteomes4040030 S1 of S5 Supplementary Materials: Global Proteome Changes in Liver Tissue 6 Weeks After FOLFOX Treatment of Colorectal Cancer Liver Metastases Jozef Urdzik, Anna Vildhede, Jacek R. Wiśniewski, Frans Duraj, Ulf Haglund, Per Artursson and Agneta Norén Table S1. Clinical data. FOLFOX All Patients No Chemotherapy Clinical Characteristics Expressed By Treatment p-Value (n = 15) (n = 7) (n = 8) Gender (male) n (%) 11 (73%) 5 (63%) 6 (86%) 0.57 Age (years) median, IQR 59 (58–69) 63 (58–70) 58 (53–70) 0.40 BMI median, IQR 25.6 (24.1–30.0) 25.0 (23.7–27.6) 29.8 (24.2–31.0) 0.19 Number of FOLFOX cures median, IQR - 5 (4–7) - Delay after FOLFOX cessation median, IQR - 6 (5–8) - (weeks) Major liver resection n (%) 12 (80%) 7 (88%) 5 (71%) 0.57 Bleeding preoperatively (mL) median, IQR 600 (300–1700) 450 (300–600) 1100 (400–2200) 0.12 Transfusion units median, IQR 0 (0–0) 0 (0–0) 0 (0–0) 1.00 peroperatively Transfusion units median, IQR 0 (0–0) 0 (0–0) 0 (0–0) 0.69 postoperatively Hospital stay (days) median, IQR 10 (8–15) 10 (8–14) 10 (7–16) 0.78 Clavien complication grade 3 n (%) 5 (33%) 2 (25%) 3 (43%) 0.61 or more Table S2. Classifying proteins according Recursive Feature Elimination-Support Vector Machine model resulting in list of 184 proteins with classifying error rate 20%. Gene Names Fold Unique Protein Names Ranks Peptides Alt. Protein ID Change Peptides MCM2 DNA replication licensing factor MCM2 0 3.40 12 12 CAMK2G; Calcium/calmodulin-dependent protein kinase type CAMK2A; II subunit gamma;
    [Show full text]