Time Ordered Perturbation Theory

Total Page:16

File Type:pdf, Size:1020Kb

Time Ordered Perturbation Theory Time Ordered Perturbation Theory Physics 217 2013, Quantum Field Theory Michael Dine Department of Physics University of California, Santa Cruz October 2013 Physics 217 2013, Quantum Field Theory Time Ordered Perturbation Theory Quantization of the Free Electromagnetic Field We have so far quantized the free scalar field and the free Dirac field. We also would like to understand the free electromagnetic field, before proceeding to interacting theories. Your text deals with this very briefly, simply guessing a form for the propagator. We can be a little more systematic, in a fashion which is instructive. Physics 217 2013, Quantum Field Theory Time Ordered Perturbation Theory A Tension In a gauge theory like electromagnetism, there is a tension between two basic principles: Lorentz invariance and unitarity (unitarity is the statement that in quantum mechanics, time evolution is described by a unitary operator, as a result of which probability is conserved). If we choose Lorentz gauge: µ @µA = 0 (1) and follow our usual quantization procedure, we will be lead to write: Z d 3p Aµ(x) = (aµ(p)eip·x + ay µe−ip·x ) (2) 3p (2π) 2Ep [aµ(p); aν y(p)] = gµν(2π)3δ(~p − ~p0): (3) Physics 217 2013, Quantum Field Theory Time Ordered Perturbation Theory The problem is with the ao commutator. The states aoyj0 > have negative norm (check!). Doesn’t sound good for quantum mechanics. It turns out that the states with negative norm are never produced in scattering processes, but proving this is a bit involved. An alternative approach gives up manifest Lorentz invariance. One chooses the Coulomb (or “transverse" or “radiation") gauge: r~ · A~ = 0 (4) Physics 217 2013, Quantum Field Theory Time Ordered Perturbation Theory Note that in writing this condition, we are making a choice of Lorentz frame. The expansion of the gauge field is now: Z d 3p Ai (x) = (a(p; λ)i (p; λ)eip·x +ay(p; λ)i ∗(p; λ)e−ip·x ): 3p (2π) 2Ep (5) Physics 217 2013, Quantum Field Theory Time Ordered Perturbation Theory From the gauge condition, ~p · ~(p; λ) = 0: (6) The commutation relations of the a’s are just what you might expect: y 0 0 3 0 [a(p; λ); a (p ; λ )] = δλ,λ0 (2π) δ(~p − ~p ): (7) Physics 217 2013, Quantum Field Theory Time Ordered Perturbation Theory From these expressions we can work out the propagator. In this computation, analogous to what we saw in the Dirac case, one encounters: X pi pj i (p; λ)∗j (p; λ) = P (p) = (δ − ): (8) ij ij ~p2 λ Then (Exercise: check): Z d 4p iP (~p) T < Ai (x)Aj (y) >= eip·x ij (9) (2π)4 p2 + i Physics 217 2013, Quantum Field Theory Time Ordered Perturbation Theory It is also natural to define a propagator for the scalar potential, remembering that propagators are just Green’s functions. In momentum space, this is just 1 < A A >= i : (10) o o ~p2 Physics 217 2013, Quantum Field Theory Time Ordered Perturbation Theory Not surprisingly, these propagators don’t look very Lorentz invariant. But we can fix this by noting that the full propagator can be written (in momentum space, using the "west coast metric"): gµν pµpν ηµpν + ηνpµ Dµν = − − + (11) p2 + i ~p2(p2 + i) (p2 + i) o η = ( p ; ; ; ) where ~p2 0 0 0 is a fixed four vector. Exercise: Check this. Don’t worry about the i’s. Physics 217 2013, Quantum Field Theory Time Ordered Perturbation Theory Now in electrodynamics, Aµ couples to jµ, a conserved current. So pµ always multiplies jµ(p), and thus these terms vanish by current conservation. We will actually see how this works in scattering amplitudes later. As a result, we can use the covariant propagator. Note that this is the propagator one might have written in Lorentz gauge by analogy with the propagator for a scalar field. The fact that in the end one can write manifestly Lorentz invariant Feynman rules means that the non-Lorentz invariant gauge choice doesn’t matter in the end. It is possible to prove that, in Coulomb gauge, there are a nice set of operators which generate Lorentz invariance. But this is rather involved and, for the moment, not particularly instructive. Physics 217 2013, Quantum Field Theory Time Ordered Perturbation Theory Interacting Field Theories Consider, first, our scalar field. Lorentz invariance allows many other terms: 1 λ 1 L = ((@ φ)2 − m2φ2 − Γ3φ3 − φ4 − φ5 + :::: (12) 2 µ 4 M We will stop at φ4; generally we won’t include operators of negative mass dimension (“non-renormalizable"). Let’s look at φ3, in the language of old fashioned perturbation theory. We can have processes which change the number of particles. Physics 217 2013, Quantum Field Theory Time Ordered Perturbation Theory Quantum Electrodynamics So far we have free fields: 1 L = − F 2 + ¯(6@ − m) : (13) 4 µν To decide how to couple the gauge field, Aµ, to fermions, we will focus on the principle of gauge invariance. We take i!(x) Aµ ! Aµ + @µ!(x) ! e (x): (14) Then the covariant derivative transforms like : i!(x) Dµ = (@µ − iAµ) ; Dµ ! e Dµ (15) We also introduce a constant e, the electric charge: 1 L = − F 2 + ¯(D6 − m) : (16) 4e2 µν This lagrangian is Lorentz and gauge invariant. Physics 217 2013, Quantum Field Theory Time Ordered Perturbation Theory One often rescales the fields, Aµ ! eAµ (17) in which case 1 A ! A + @ !(x) ! ei!(x) (x): (18) µ µ e µ Dµ = (@µ − ieAµ) (19) In this form, the role of e as a coupling is clearer, but gauge invariance involves e in an odd way (it will be more odd when we confront renormalization). The alternative form gives gauge invariance a more “geometric" character. Physics 217 2013, Quantum Field Theory Time Ordered Perturbation Theory Now, adopting the methods of old fashioned (time-ordered) perturbation theory, we have, for the interaction Hamiltonian: ¯ µ HI = e A γµ (20) and we have the possibility of creating and destroying electrons, positrons and photons in physical processes. Our goal is to develop a more covariant treatment of these processes. Physics 217 2013, Quantum Field Theory Time Ordered Perturbation Theory Pictures in Quantum Mechanics We usually work with quantum mechanics in the Schrodinger picture, in which states depend on time, but operators like x and p are independent of time. In the Schrodinger picture: jΨS(t) >= U(t; to)jΨ(to) > : (21) The time-development operator is just: −iH(t−to) U(t; to) = e (22) and it satisfies: @ i U = HU: (23) @t Physics 217 2013, Quantum Field Theory Time Ordered Perturbation Theory U has the important properties that: y U (t; to) = U(to; t); U(t; t1)U(t1; to) = U(t; to) (24) Another picture which is convenient for certain purposes is the Heisenberg picture. In this picture, the states are independent of time, but operators are now time-dependent: y jΨH (t) >= U (t; to)jΨS(t) >= jΨS(to) > (25) while y OH (t) = U (t; to)OS U(t; to): (26) Physics 217 2013, Quantum Field Theory Time Ordered Perturbation Theory Note that with this definition: < ΨH jOH jΨH >=< ΨSjOSjΨS > (27) and @ i O = −UyHO U + UyO HU = −[H; O ] (28) @t H S S H This is actually an operator version of Ehrnfest’s theorem. You can check, for example, that for a particle in a potential, the operators obey the classical equations of motion. Physics 217 2013, Quantum Field Theory Time Ordered Perturbation Theory As an example, consider the raising and lowering operators for a harmonic oscillator. 1 H = !( + aya)[a; ay] = 1: (29) 2 [H; a] = −!a (30) So d a = −i!a : (31) dt H H So −i!t aH (t) = e aH (0) (32) which is the form that we have become familiar with in our field expansions. Physics 217 2013, Quantum Field Theory Time Ordered Perturbation Theory Probably the most useful picture is the “interaction picture." Here we suppose that the Hamiltonian is of the form: H = Ho + HI (33) where Ho is a Hamiltonian which we know how to diagonalize (in the field theory case, this will be the free Hamiltonian). The basic assumption of perturbation theory will be that HI is in some sense small. Physics 217 2013, Quantum Field Theory Time Ordered Perturbation Theory Then we remove the part of the time dependence we understand and write iHo(t−to) jΨI >= e jΨS(t) > (34) iHo(t−to) −iH(t−to) = e e jΨS(t0) > So we define the time-development operator in the interaction picture: iHo(t−to) −iH(t−to) UI(t; to) = e e (35) and define the time-dependent operators: iHo(t−to) −iHo(t−to) OI(t) = e OSe (36) Physics 217 2013, Quantum Field Theory Time Ordered Perturbation Theory It is a simple exercise to show that UI obeys: @ i U = H (t)U ; U (t; t) = 1: (37) @t I I I I where iHo(t−to) −iHo(t−to) HI(t) = e HIe (38) UI has composition properties similar to those of U. These are most easily proven by writing U in a slightly different form: 0 0 0 iHo(t−to) −iH(t−t ) −iHo(t −to) UI(t; t ) = e e e (39) This obeys the correct equation and boundary condition (check!). It also manifestly satisfies: y UI (t; to) = UI(to; t); UI(t; t1)UI(t1; t2) = U(t; t2) (40) Physics 217 2013, Quantum Field Theory Time Ordered Perturbation Theory Solving this equation iteratively (see your favorite quantum mechanics book, e.g.
Recommended publications
  • An Introduction to Quantum Field Theory
    AN INTRODUCTION TO QUANTUM FIELD THEORY By Dr M Dasgupta University of Manchester Lecture presented at the School for Experimental High Energy Physics Students Somerville College, Oxford, September 2009 - 1 - - 2 - Contents 0 Prologue....................................................................................................... 5 1 Introduction ................................................................................................ 6 1.1 Lagrangian formalism in classical mechanics......................................... 6 1.2 Quantum mechanics................................................................................... 8 1.3 The Schrödinger picture........................................................................... 10 1.4 The Heisenberg picture............................................................................ 11 1.5 The quantum mechanical harmonic oscillator ..................................... 12 Problems .............................................................................................................. 13 2 Classical Field Theory............................................................................. 14 2.1 From N-point mechanics to field theory ............................................... 14 2.2 Relativistic field theory ............................................................................ 15 2.3 Action for a scalar field ............................................................................ 15 2.4 Plane wave solution to the Klein-Gordon equation ...........................
    [Show full text]
  • Physical Masses and the Vacuum Expectation Value
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE PHYSICAL MASSES AND THE VACUUM EXPECTATION VALUE provided by CERN Document Server OF THE HIGGS FIELD Hung Cheng Department of Mathematics, Massachusetts Institute of Technology Cambridge, MA 02139, U.S.A. and S.P.Li Institute of Physics, Academia Sinica Nankang, Taip ei, Taiwan, Republic of China Abstract By using the Ward-Takahashi identities in the Landau gauge, we derive exact relations between particle masses and the vacuum exp ectation value of the Higgs eld in the Ab elian gauge eld theory with a Higgs meson. PACS numb ers : 03.70.+k; 11.15-q 1 Despite the pioneering work of 't Ho oft and Veltman on the renormalizability of gauge eld theories with a sp ontaneously broken vacuum symmetry,a numb er of questions remain 2 op en . In particular, the numb er of renormalized parameters in these theories exceeds that of bare parameters. For such theories to b e renormalizable, there must exist relationships among the renormalized parameters involving no in nities. As an example, the bare mass M of the gauge eld in the Ab elian-Higgs theory is related 0 to the bare vacuum exp ectation value v of the Higgs eld by 0 M = g v ; (1) 0 0 0 where g is the bare gauge coupling constant in the theory.We shall show that 0 v u u D (0) T t g (0)v: (2) M = 2 D (M ) T 2 In (2), g (0) is equal to g (k )atk = 0, with the running renormalized gauge coupling constant de ned in (27), and v is the renormalized vacuum exp ectation value of the Higgs eld de ned in (29) b elow.
    [Show full text]
  • B1. the Generating Functional Z[J]
    B1. The generating functional Z[J] The generating functional Z[J] is a key object in quantum field theory - as we shall see it reduces in ordinary quantum mechanics to a limiting form of the 1-particle propagator G(x; x0jJ) when the particle is under thje influence of an external field J(t). However, before beginning, it is useful to look at another closely related object, viz., the generating functional Z¯(J) in ordinary probability theory. Recall that for a simple random variable φ, we can assign a probability distribution P (φ), so that the expectation value of any variable A(φ) that depends on φ is given by Z hAi = dφP (φ)A(φ); (1) where we have assumed the normalization condition Z dφP (φ) = 1: (2) Now let us consider the generating functional Z¯(J) defined by Z Z¯(J) = dφP (φ)eφ: (3) From this definition, it immediately follows that the "n-th moment" of the probability dis- tribution P (φ) is Z @nZ¯(J) g = hφni = dφP (φ)φn = j ; (4) n @J n J=0 and that we can expand Z¯(J) as 1 X J n Z Z¯(J) = dφP (φ)φn n! n=0 1 = g J n; (5) n! n ¯ so that Z(J) acts as a "generator" for the infinite sequence of moments gn of the probability distribution P (φ). For future reference it is also useful to recall how one may also expand the logarithm of Z¯(J); we write, Z¯(J) = exp[W¯ (J)] Z W¯ (J) = ln Z¯(J) = ln dφP (φ)eφ: (6) 1 Now suppose we make a power series expansion of W¯ (J), i.e., 1 X 1 W¯ (J) = C J n; (7) n! n n=0 where the Cn, known as "cumulants", are just @nW¯ (J) C = j : (8) n @J n J=0 The relationship between the cumulants Cn and moments gn is easily found.
    [Show full text]
  • Appendix: the Interaction Picture
    Appendix: The Interaction Picture The technique of expressing operators and quantum states in the so-called interaction picture is of great importance in treating quantum-mechanical problems in a perturbative fashion. It plays an important role, for example, in the derivation of the Born–Markov master equation for decoherence detailed in Sect. 4.2.2. We shall review the basics of the interaction-picture approach in the following. We begin by considering a Hamiltonian of the form Hˆ = Hˆ0 + V.ˆ (A.1) Here Hˆ0 denotes the part of the Hamiltonian that describes the free (un- perturbed) evolution of a system S, whereas Vˆ is some added external per- turbation. In applications of the interaction-picture formalism, Vˆ is typically assumed to be weak in comparison with Hˆ0, and the idea is then to deter- mine the approximate dynamics of the system given this assumption. In the following, however, we shall proceed with exact calculations only and make no assumption about the relative strengths of the two components Hˆ0 and Vˆ . From standard quantum theory, we know that the expectation value of an operator observable Aˆ(t) is given by the trace rule [see (2.17)], & ' & ' ˆ ˆ Aˆ(t) =Tr Aˆ(t)ˆρ(t) =Tr Aˆ(t)e−iHtρˆ(0)eiHt . (A.2) For reasons that will immediately become obvious, let us rewrite this expres- sion as & ' ˆ ˆ ˆ ˆ ˆ ˆ Aˆ(t) =Tr eiH0tAˆ(t)e−iH0t eiH0te−iHtρˆ(0)eiHte−iH0t . (A.3) ˆ In inserting the time-evolution operators e±iH0t at the beginning and the end of the expression in square brackets, we have made use of the fact that the trace is cyclic under permutations of the arguments, i.e., that Tr AˆBˆCˆ ··· =Tr BˆCˆ ···Aˆ , etc.
    [Show full text]
  • Quantum Field Theory II
    Quantum Field Theory II T. Nguyen PHY 391 Independent Study Term Paper Prof. S.G. Rajeev University of Rochester April 20, 2018 1 Introduction The purpose of this independent study is to familiarize ourselves with the fundamental concepts of quantum field theory. In this paper, I discuss how the theory incorporates the interactions between quantum systems. With the success of the free Klein-Gordon field theory, ultimately we want to introduce the field interactions into our picture. Any interaction will modify the Klein-Gordon equation and thus its Lagrange density. Consider, for example, when the field interacts with an external source J(x). The Klein-Gordon equation and its Lagrange density are µ 2 (@µ@ + m )φ(x) = J(x); 1 m2 L = @ φ∂µφ − φ2 + Jφ. 2 µ 2 In a relativistic quantum field theory, we want to describe the self-interaction of the field and the interaction with other dynamical fields. This paper is based on my lecture for the Kapitza Society. The second section will discuss the concept of symmetry and conservation. The third section will discuss the self-interacting φ4 theory. Lastly, in the fourth section, I will briefly introduce the interaction (Dirac) picture and solve for the time evolution operator. 2 Noether's Theorem 2.1 Symmetries and Conservation Laws In 1918, the mathematician Emmy Noether published what is now known as the first Noether's Theorem. The theorem informally states that for every continuous symmetry there exists a corresponding conservation law. For example, the conservation of energy is a result of a time symmetry, the conservation of linear momentum is a result of a plane symmetry, and the conservation of angular momentum is a result of a spherical symmetry.
    [Show full text]
  • Interaction Representation
    Interaction Representation So far we have discussed two ways of handling time dependence. The most familiar is the Schr¨odingerrepresentation, where operators are constant, and states move in time. The Heisenberg representation does just the opposite; states are constant in time and operators move. The answer for any given physical quantity is of course independent of which is used. Here we discuss a third way of describing the time dependence, introduced by Dirac, known as the interaction representation, although it could equally well be called the Dirac representation. In this representation, both operators and states move in time. The interaction representation is particularly useful in problems involving time dependent external forces or potentials acting on a system. It also provides a route to the whole apparatus of quantum field theory and Feynman diagrams. This approach to field theory was pioneered by Dyson in the the 1950's. Here we will study the interaction representation in quantum mechanics, but develop the formalism in enough detail that the road to field theory can be followed. We consider an ordinary non-relativistic system where the Hamiltonian is broken up into two parts. It is almost always true that one of these two parts is going to be handled in perturbation theory, that is order by order. Writing our Hamiltonian we have H = H0 + V (1) Here H0 is the part of the Hamiltonian we have under control. It may not be particularly simple. For example it could be the full Hamiltonian of an atom or molecule. Neverthe- less, we assume we know all we need to know about the eigenstates of H0: The V term in H is the part we do not have control over.
    [Show full text]
  • Advanced Quantum Theory AMATH473/673, PHYS454
    Advanced Quantum Theory AMATH473/673, PHYS454 Achim Kempf Department of Applied Mathematics University of Waterloo Canada c Achim Kempf, September 2017 (Please do not copy: textbook in progress) 2 Contents 1 A brief history of quantum theory 9 1.1 The classical period . 9 1.2 Planck and the \Ultraviolet Catastrophe" . 9 1.3 Discovery of h ................................ 10 1.4 Mounting evidence for the fundamental importance of h . 11 1.5 The discovery of quantum theory . 11 1.6 Relativistic quantum mechanics . 13 1.7 Quantum field theory . 14 1.8 Beyond quantum field theory? . 16 1.9 Experiment and theory . 18 2 Classical mechanics in Hamiltonian form 21 2.1 Newton's laws for classical mechanics cannot be upgraded . 21 2.2 Levels of abstraction . 22 2.3 Classical mechanics in Hamiltonian formulation . 23 2.3.1 The energy function H contains all information . 23 2.3.2 The Poisson bracket . 25 2.3.3 The Hamilton equations . 27 2.3.4 Symmetries and Conservation laws . 29 2.3.5 A representation of the Poisson bracket . 31 2.4 Summary: The laws of classical mechanics . 32 2.5 Classical field theory . 33 3 Quantum mechanics in Hamiltonian form 35 3.1 Reconsidering the nature of observables . 36 3.2 The canonical commutation relations . 37 3.3 From the Hamiltonian to the equations of motion . 40 3.4 From the Hamiltonian to predictions of numbers . 44 3.4.1 Linear maps . 44 3.4.2 Choices of representation . 45 3.4.3 A matrix representation . 46 3 4 CONTENTS 3.4.4 Example: Solving the equations of motion for a free particle with matrix-valued functions .
    [Show full text]
  • The Path Integral Approach to Quantum Mechanics Lecture Notes for Quantum Mechanics IV
    The Path Integral approach to Quantum Mechanics Lecture Notes for Quantum Mechanics IV Riccardo Rattazzi May 25, 2009 2 Contents 1 The path integral formalism 5 1.1 Introducingthepathintegrals. 5 1.1.1 Thedoubleslitexperiment . 5 1.1.2 An intuitive approach to the path integral formalism . .. 6 1.1.3 Thepathintegralformulation. 8 1.1.4 From the Schr¨oedinger approach to the path integral . .. 12 1.2 Thepropertiesofthepathintegrals . 14 1.2.1 Pathintegralsandstateevolution . 14 1.2.2 The path integral computation for a free particle . 17 1.3 Pathintegralsasdeterminants . 19 1.3.1 Gaussianintegrals . 19 1.3.2 GaussianPathIntegrals . 20 1.3.3 O(ℏ) corrections to Gaussian approximation . 22 1.3.4 Quadratic lagrangians and the harmonic oscillator . .. 23 1.4 Operatormatrixelements . 27 1.4.1 Thetime-orderedproductofoperators . 27 2 Functional and Euclidean methods 31 2.1 Functionalmethod .......................... 31 2.2 EuclideanPathIntegral . 32 2.2.1 Statisticalmechanics. 34 2.3 Perturbationtheory . .. .. .. .. .. .. .. .. .. .. 35 2.3.1 Euclidean n-pointcorrelators . 35 2.3.2 Thermal n-pointcorrelators. 36 2.3.3 Euclidean correlators by functional derivatives . ... 38 0 0 2.3.4 Computing KE[J] and Z [J] ................ 39 2.3.5 Free n-pointcorrelators . 41 2.3.6 The anharmonic oscillator and Feynman diagrams . 43 3 The semiclassical approximation 49 3.1 Thesemiclassicalpropagator . 50 3.1.1 VanVleck-Pauli-Morette formula . 54 3.1.2 MathematicalAppendix1 . 56 3.1.3 MathematicalAppendix2 . 56 3.2 Thefixedenergypropagator. 57 3.2.1 General properties of the fixed energy propagator . 57 3.2.2 Semiclassical computation of K(E)............. 61 3.2.3 Two applications: reflection and tunneling through a barrier 64 3 4 CONTENTS 3.2.4 On the phase of the prefactor of K(xf ,tf ; xi,ti) ....
    [Show full text]
  • Superconducting Transmon Machines
    Quantum Computing Hardware Platforms: Superconducting Transmon Machines • CSC591/ECE592 – Quantum Computing • Fall 2020 • Professor Patrick Dreher • Research Professor, Department of Computer Science • Chief Scientist, NC State IBM Q Hub 3 November 2020 Superconducting Transmon Quantum Computers 1 5 November 2020 Patrick Dreher Outline • Introduction – Digital versus Quantum Computation • Conceptual design for superconducting transmon QC hardware platforms • Construction of qubits with electronic circuits • Superconductivity • Josephson junction and nonlinear LC circuits • Transmon design with example IBM chip layout • Working with a superconducting transmon hardware platform • Quantum Mechanics of Two State Systems - Rabi oscillations • Performance characteristics of superconducting transmon hardware • Construct the basic CNOT gate • Entangled transmons and controlled gates • Appendices • References • Quantum mechanical solution of the 2 level system 3 November 2020 Superconducting Transmon Quantum Computers 2 5 November 2020 Patrick Dreher Digital Computation Hardware Platforms Based on a Base2 Mathematics • Design principle for a digital computer is built on base2 mathematics • Identify voltage changes in electrical circuits that map base2 math into a “zero” or “one” corresponding to an on/off state • Build electrical circuits from simple on/off states that apply these basic rules to construct digital computers 3 November 2020 Superconducting Transmon Quantum Computers 3 5 November 2020 Patrick Dreher From Previous Lectures It was
    [Show full text]
  • Pictures and Equations of Motion in Lagrangian Quantum Field Theory
    Pictures and equations of motion in Lagrangian quantum field theory Bozhidar Z. Iliev ∗ † ‡ Short title: Picture of motion in QFT Basic ideas: → May–June, 2001 Began: → May 12, 2001 Ended: → August 5, 2001 Initial typeset: → May 18 – August 8, 2001 Last update: → January 30, 2003 Produced: → February 1, 2008 http://www.arXiv.org e-Print archive No.: hep-th/0302002 • r TM BO•/ HO Subject Classes: Quantum field theory 2000 MSC numbers: 2001 PACS numbers: 81Q99, 81T99 03.70.+k, 11.10Ef, 11.90.+t, 12.90.+b Key-Words: Quantum field theory, Pictures of motion, Schr¨odinger picture Heisenberg picture, Interaction picture, Momentum picture Equations of motion, Euler-Lagrange equations in quantum field theory Heisenberg equations/relations in quantum field theory arXiv:hep-th/0302002v1 1 Feb 2003 Klein-Gordon equation ∗Laboratory of Mathematical Modeling in Physics, Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences, Boul. Tzarigradsko chauss´ee 72, 1784 Sofia, Bulgaria †E-mail address: [email protected] ‡URL: http://theo.inrne.bas.bg/∼bozho/ Contents 1 Introduction 1 2 Heisenberg picture and description of interacting fields 3 3 Interaction picture. I. Covariant formulation 6 4 Interaction picture. II. Time-dependent formulation 13 5 Schr¨odinger picture 18 6 Links between different time-dependent pictures of motion 20 7 The momentum picture 24 8 Covariant pictures of motion 28 9 Conclusion 30 References 31 Thisarticleendsatpage. .. .. .. .. .. .. .. .. 33 Abstract The Heisenberg, interaction, and Schr¨odinger pictures of motion are considered in La- grangian (canonical) quantum field theory. The equations of motion (for state vectors and field operators) are derived for arbitrary Lagrangians which are polynomial or convergent power series in field operators and their first derivatives.
    [Show full text]
  • Casimir-Polder Interaction in Second Quantization
    Universitat¨ Potsdam Institut fur¨ Physik und Astronomie Casimir-Polder interaction in second quantization Dissertation zur Erlangung des akademischen Grades doctor rerum naturalium (Dr. rer. nat.) in der Wissen- schaftsdisziplin theoretische Physik. Eingereicht am 21. Marz¨ 2011 an der Mathematisch – Naturwissen- schaftlichen Fakultat¨ der Universitat¨ Potsdam von Jurgen¨ Schiefele Betreuer: PD Dr. Carsten Henkel This work is licensed under a Creative Commons License: Attribution - Noncommercial - Share Alike 3.0 Germany To view a copy of this license visit http://creativecommons.org/licenses/by-nc-sa/3.0/de/ Published online at the Institutional Repository of the University of Potsdam: URL http://opus.kobv.de/ubp/volltexte/2011/5417/ URN urn:nbn:de:kobv:517-opus-54171 http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-54171 Abstract The Casimir-Polder interaction between a single neutral atom and a nearby surface, arising from the (quantum and thermal) fluctuations of the electromagnetic field, is a cornerstone of cavity quantum electrodynamics (cQED), and theoretically well established. Recently, Bose-Einstein condensates (BECs) of ultracold atoms have been used to test the predic- tions of cQED. The purpose of the present thesis is to upgrade single-atom cQED with the many-body theory needed to describe trapped atomic BECs. Tools and methods are developed in a second-quantized picture that treats atom and photon fields on the same footing. We formulate a diagrammatic expansion using correlation functions for both the electromagnetic field and the atomic system. The formalism is applied to investigate, for BECs trapped near surfaces, dispersion interactions of the van der Waals-Casimir-Polder type, and the Bosonic stimulation in spontaneous decay of excited atomic states.
    [Show full text]
  • Quantum Mechanics Propagator
    Quantum Mechanics_propagator This article is about Quantum field theory. For plant propagation, see Plant propagation. In Quantum mechanics and quantum field theory, the propagator gives the probability amplitude for a particle to travel from one place to another in a given time, or to travel with a certain energy and momentum. In Feynman diagrams, which calculate the rate of collisions in quantum field theory, virtual particles contribute their propagator to the rate of the scattering event described by the diagram. They also can be viewed as the inverse of the wave operator appropriate to the particle, and are therefore often called Green's functions. Non-relativistic propagators In non-relativistic quantum mechanics the propagator gives the probability amplitude for a particle to travel from one spatial point at one time to another spatial point at a later time. It is the Green's function (fundamental solution) for the Schrödinger equation. This means that, if a system has Hamiltonian H, then the appropriate propagator is a function satisfying where Hx denotes the Hamiltonian written in terms of the x coordinates, δ(x)denotes the Dirac delta-function, Θ(x) is the Heaviside step function and K(x,t;x',t')is the kernel of the differential operator in question, often referred to as the propagator instead of G in this context, and henceforth in this article. This propagator can also be written as where Û(t,t' ) is the unitary time-evolution operator for the system taking states at time t to states at time t'. The quantum mechanical propagator may also be found by using a path integral, where the boundary conditions of the path integral include q(t)=x, q(t')=x' .
    [Show full text]