Grassland Management in Wildlife Protected Areas (PA's) in India
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Photosynthesis and Shade Tolerance in Tropical Range Grasses and Legumes
Indian J. Plant Physiol., Vol. 11, No. 2, (N.S.) pp. 172-177 (April-June, 2006) PHOTOSYNTHESIS AND SHADE TOLERANCE IN TROPICAL RANGE GRASSES AND LEGUMES R.K. BHATT*, H.S. TIWARI, VANDANA AND L.P. MISRA Indian Grassland and Fodder Research Institute, Jhansi - 284003, U.P. SUMMARY Seventeen tropical grasses (Bothriochloa bladhii, Brachiaria mutica, Brachiaria decumbens, Brachiaria brizantha, Cenchrus ciliaris, Cenchrus setiger, Chloris gayana, Chrysopogon fulvus, Dichanthium annulatum, Heteropogon contortus, Panicum maximum cv. IGFRI, Panicum maximum cv. PGG 289, Paspalum notatum, Panicum antidotale, Pennisetum polystachyon, Setaria sphacelata, Tri - specific Hybrid (TSH) [(Pennisetum americanum x P. purpureeum) x P. squamulatum] and two legumes [Stylosanthes hamata (Caribbean stylo), and Macroptilium atropurpureum] were studied for their physiological attributes under different light intensities in rain-fed semi-arid conditions. Rate of photosynthesis (PN) and stomatal conductance (CS) decreased with decreasing light intensity and reached the minimum level under high shading (25% light intensity). TSH, P. antidotale, P. maximum and S. sphacelata maintained the highest PN and CS under shade followed by B. mutica, P. polystachyon and C. ciliaris indicating their adaptation to shade. In legumes, S. hamata maintained higher PN than M. atropurpureum under moderate shading (50%) and can be grown with trees having sparse canopies in tree-crop inter-cropping systems. Transpiration rate (TR) at 25% light intensity was half that in full sunlight. TSH, B. mutica, P. maximum, P. antidotale, S. sphacelata, P. polystachyon and S. hamata relatively maintained higher carboxylation efficiency and water-use efficiency (WUE) under shade followed by C. ciliaris, C. setiger, C. fulvus and B. bladhii. Chlorophyll content (a + b) was maximum under 50-75% shading in most of the species. -
Flora of China 22: 604–605. 2006. 201. DICHANTHIUM Willemet, Ann
Flora of China 22: 604–605. 2006. 201. DICHANTHIUM Willemet, Ann. Bot. (Usteri) 18: 11. 1796. 双花草属 shuang hua cao shu Chen Shouliang (陈守良); Sylvia M. Phillips Eremopogon Stapf; Lepeocercis Trinius. Perennial, rarely annual. Leaf blades often cauline, linear; ligule membranous. Inflorescence of single or subdigitate racemes, terminal or also axillary and sometimes supported by spathes; racemes usually with 1 or more basal homogamous spikelet pairs, spikelets often imbricate; rachis internodes and pedicels slender, solid, bearded, truncate or oblique at apex. Sessile spikelet dorsally compressed; callus short, obtuse; lower glume papery to cartilaginous, broadly convex to slightly concave, sometimes pitted, rounded on flanks, becoming 2-keeled upward, apex obtuse; upper glume boat-shaped, dorsally keeled, awnless; lower floret reduced to an empty hyaline lemma; upper lemma stipitiform, entire, awned from apex; awn geniculate, glabrous or puberulous. Stamens (2–) 3. Pedicelled spikelet similar to the sessile, male or barren, awnless. About 20 species: Africa through India to SE Asia and Australia; three species in China. Dichanthium is closely related to Bothriochloa, but can be distinguished by its pedicels and rachis internodes being solid and lacking a median, purple line. The species present in China are not clear-cut and are also variable within themselves due to polyploidy and apomixis. All three species provide good grazing and now occur widely in tropical regions as introductions or escapes. 1a. Peduncle pilose below inflorescence ........................................................................................................................... 1. D. aristatum 1b. Peduncle glabrous. 2a. Lower glume of sessile spikelet obovate, winged along keels; leaf sheaths compressed; ligule less than 1 mm, margin ciliate ........................................................................................................................................................ 2. D. caricosum 2b. -
Recognise the Important Grasses
Recognise the important grasses Desirable perennial grasses Black speargrass Heteropogon contortus - Birdwood buffel Cenchrus setiger Buffel grass Cenchrus ciliaris Cloncury buffel Cenchrus pennisetijormis Desert bluegrass Bothriochloa ewartiana - Forest bluegrass Bothriochloa bladhii - Giant speargrass Heteropogon triticeus - Gulf or curly bluegrass Dichanthiumjecundum - Indian couch Bothriochloa pertusa + Kangaroo grass Themeda triandra - Mitchell grass, barley Astrebla pectinata Mitchell grass, bull Astrebla squarrosa Mitchell grass, hoop Astrebla elymoides Plume sorghum Sorghum plumosum + Sabi grass Urochloa mosambicensis - Silky browntop Eulalia aurea (E. julva) - +" Wild rice Oryza australiensis Intermediate value grasses (perennials and annuals) Barbwire grass Cymbopogon rejractus Bottle washer or limestone grass Enneapogon polyphyllus + Early spring grass Eriochloa procera + Fire grass Schizachyrium spp. Flinders grass Iseilema spp. + Ribbon grass Chrysopogon jallax Liverseed Urochloa panico ides + Love grasses Eragrostis species + Pitted bluegrass Bothriochloa decipiens Annual sorghum Sorghum timorense Red natal grass Melinis repens (Rhynchelytrum) + Rice grass Xerochloa imburbis Salt water couch Sporobolus virginicus Spinifex, soft Triodia pungens Spinifex, curly Triodia bitextusa (Plectrachne pungens) Spiny mud grass Pseudoraphis spinescens White grass Sehima nervosum Wanderrie grass Eriachne spp. Native millet Panicum decompositum + Annual and less desirable grasses Asbestos grass Pennisetum basedowii Button grass Dacty loctenium -
Field Guide for Managing Yellow and Caucasian (Old World) Bluestems in the Southwest
USDA United States Department of Agriculture - Field Guide for Managing Yellow and Caucasian (Old World) Bluestems in the Southwest Forest Southwestern Service Region TP-R3-16-36 October 2018 Cover Photos Top left — Yellow bluestem; courtesy photo by Max Licher, SEINet Top right — Yellow bluestem panicle; courtesy photo by Billy Warrick; Soil, Crop and More Information Lower left — Caucasian bluestem panicle; courtesy photo by Max Licher, SEINet Lower right — Caucasian bluestem; courtesy photo by Max Licher, SEINet Authors Karen R. Hickman — Professor, Oklahoma State University, Stillwater OK Keith Harmoney — Range Scientist, KSU Ag Research Center, Hays KS Allen White — Region 3 Pesticides/Invasive Species Coord., Forest Service, Albuquerque NM Citation: USDA Forest Service. 2018. Field Guide for Managing Yellow and Caucasian (Old World) Bluestems in the Southwest. Southwestern Region TP-R3-16-36, Albuquerque, NM. In accordance with Federal civil rights law and U.S. Department of Agriculture (USDA) civil rights regulations and policies, the USDA, its Agencies, offices, and employees, and institutions participating in or administering USDA programs are prohibited from discriminating based on race, color, national origin, religion, sex, gender identity (including gender expression), sexual orientation, disability, age, marital status, family/parental status, income derived from a public assistance program, political beliefs, or reprisal or retaliation for prior civil rights activity, in any program or activity conducted or funded by USDA (not all bases apply to all programs). Remedies and complaint filing deadlines vary by program or incident. Persons with disabilities who require alternative means of communication for program information (e.g., Braille, large print, audiotape, American Sign Language, etc.) should contact the responsible Agency or USDA’s TARGET Center at (202) 720-2600 (voice and TTY) or contact USDA through the Federal Relay Service at (800) 877-8339. -
Australian Savanna Eco System S J.J
AUSTRALIAN SAVANNA ECO SYSTEM S J.J. Mott*, John Williams**, M.H. Andrew*** and A.N. Gillisonf * CSIRO Division of Tiopical Crops and Pastures,Cmnirgh;; Laboratory, St. Lucia, Australia e. 4067, ** CSIRO Division of Soils,Davies Laboratory, Private Mail Bag,P.O. Aitkenvale, 4g14, Australia :F:t* CSIRO Division e. of TropicalCrops and Pastures, Darwin Labor-atories,private Bag No. 44, Winnellie, NT 5789,Australia. t cSIRo Division of Water and Land Resources,P.O. Box 1666, Canberra City, AcT Australia. 2601, SUMMARY within the Australiansavannas-six.major groupshave been recognisedon the basisof the graminoid understorey'I.n all groupsthere is a dominant stimm,ergrowing season ,rrltr, lttt. productivity in winter months. characterisationof the mainlimiting.factors to produciivityrf,o*, thut ttretropical Monsoon Tallgrass has the most scvereenvironment system with a winter'droughtani pred<rminaninutrient limitation subhumid svstems to grofih. In the the higher-soil fertility in the S"ubtropi;Ji;ii;;; compensates climaticenvironment' for a less favourable but in the inlandsemi-arid communities bottiincreasing aridity combineto limit plant production. and low nutrientsoils Throughoutthe subhumid,uuunnu" ii..,iither natural almostannual occurrence. or man-inducedis an In termsof functionaladaptations to the stressesof the savannaenvironment, plants show to thoseoccurring in manysimilarities speciesin othercontinental savaffia systems. In ecosystemfunctioning limitation of the severenutrient the northerngroups closely parallel those conditiorr .*lrtirg savannas. in west and central African vertebratebiomass is low on all savannatypes with p-roductivityof both nativeand introducedspecies being curtailedbv low herbagequality in the driei months.'Invertef;"1";,;;;;;i"lly termites,reach high biomass levelsand play a majorpart in tirefunctioning of the ecosystems,especially in termsof nutrientcycling. -
Effect of Fire Regime on Plant Abundance in a Tropical Eucalypt
Austral Ecology (2003) 28, 327–338 Effect of fire regime on plant abundance in a tropical eucalypt savanna of north-eastern Australia PAUL R. WILLIAMS,1,2* ROBERT A. CONGDON,2 ANTHONY C. GRICE3 AND PETER J. CLARKE4 1†Queensland Parks and Wildlife Service, PO Box 5597 Townsville, Queensland 4810 (Email: [email protected]), 2School of Tropical Biology, James Cook University, Townsville, Queensland, 3Sustainable Ecosystems, CSIRO, Townsville, Queensland, and 4Botany, School of Environmental Sciences and Natural Resource, Management, University of New England, Armidale, New South Wales, Australia Abstract Changes in plant abundance within a eucalypt savanna of north-eastern Australia were studied using a manipulative fire experiment. Three fire regimes were compared between 1997 and 2001: (i) control, savanna burnt in the mid-dry season (July) 1997 only; (ii) early burnt, savanna burnt in the mid-dry season 1997 and early dry season (May) 1999; and (iii) late burnt, savanna burnt in the mid-dry season 1997 and late dry season (October) 1999. Five annual surveys of permanent plots detected stability in the abundance of most species, irrespective of fire regime. However, a significant increase in the abundance of several subshrubs, ephemeral and twining perennial forbs, and grasses occurred in the first year after fire, particularly after late dry season fires. The abundance of these species declined toward prefire levels in the second year after fire. The dominant grass Heteropogon triticeus significantly declined in abundance with fire intervals of 4 years. The density of trees (>2 m tall) significantly increased in the absence of fire for 4 years, because of the growth of saplings; and the basal area of the dominant tree Corymbia clarksoniana significantly increased over the 5-year study, irrespective of fire regime. -
Dynamics of Plant Populations in Heteropogon Contortus (Black Speargrass) Pastures on a Granite Landscape in Southern Queensland
Tropical Grasslands (2004) Volume 38, 17–30 17 Dynamics of plant populations in Heteropogon contortus (black speargrass) pastures on a granite landscape in southern Queensland. 1. Dynamics of H. contortus populations D.M. ORR1, C.J. PATON2 AND D.J. REID1 Introduction 1 Department of Primary Industries, Rockhampton 2 Department of Primary Industries, Heteropogon contortus (black speargrass) Brian Pastures Research Station, Gayndah, pastures are an important forage resource for the Queensland, Australia breeding and finishing of 3–4 million beef cattle in Queensland and are, therefore, of considerable economic importance (Burrows et al. 1988). Abstract These pastures occupy 25 M ha and occur on a The dynamics of Heteropogon contortus (black wide variety of soil types which receive between speargrass) populations were measured in a 700 and 1200 mm of annual rainfall (Weston et subset of treatments contained within an exten- al. 1981). However, recent evidence (Tothill and sive grazing study conducted between 1990 and Gillies 1992) indicates that these pastures have 1996 in H. contortus pasture in southern Queens- undergone deleterious changes in pasture com- land. This subset included 2 landscape positions position under some current grazing management and 3 stocking rates in both native pasture and practices. legume-oversown native pasture. Plant population dynamics is the study of indi- Severe drought conditions throughout much of vidual plants within a population and how plant the study necessitated ongoing adjustments to the numbers change with time (Harper 1977). Little original stocking rates and, as a result, drought is known of the dynamics of H. contortus popula- was the major influence on the dynamics of tions under grazing despite their economic H. -
Effect of Fire on Flowering of Hyparrhenia Hirta (L.) Stapf (C4)
Vol. 8(14), pp. 1225-1228, 18 April, 2013 DOI: 10.5897/AJAR2013.7033 African Journal of Agricultural ISSN 1991-637X ©2013 Academic Journals Research http://www.academicjournals.org/AJAR Full Length Research Paper Effect of fire on flowering of Hyparrhenia hirta (L.) Stapf (C4), Merxmuellera disticha (Nees) Conert (C3) and Themeda triandra Forsskal (C4) on the Signal Hill, Cape Town, South Africa M. H. Ligavha-Mbelengwa and R. B. Bhat* Department of Botany, University of Venda, Thohoyandou, Limpopo 0950, South Africa. Accepted 18 March, 2013 Flowering in Merxmuellera disticha was more strongly stimulated by fire in summer. Flowering tillers produced between 9 and 11 months after fire were significantly more abundant than those produced 21 to 24 months thereafter. Growth in terms of size of individuals was considered insignificant for analysis. Neighbored Hyparrhenia hirta showed, to a certain degree, an out-of-season growth, production and reproduction, whilst M. disticha and Themeda triandra on the same plots did not. The xylem water potential of H. hirta [-10.9(±0.29)], M. disticha [-14.6(±0.80)] and T. triandra [-13.8(±0.29)] on one stand differed significantly from one another (p < 0.0001), and that of H. hirta [-19.7(±0.81] and M. disticha [-34.5(±1.26)] on the other stand also differed significantly from each other (p < 0.0001). One way analysis of variance (ANOVA) thereof produced the following (F-ratio = 13.893; degrees of freedom = 29, p < 0.0001), and for H. hirta versus M. disticha, (F-ratio = 97.605; degrees of freedom = 23, p < 0.0001). -
TAXONOMIC STUDIES and GENERIC DELIMITATION in the GRASS SUBTRIBE Sorghinae
TAXONOMIC STUDIES AND GENERIC DELIMITATION IN THE GRASS SUBTRIBE Sorghinae. Moffat Pinkie Setshogo A thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy University of Edinburgh March 1997 Dedicated to the memory of my father, Tonkana, and to my mother, Kerileng. Acknowledgements. This work was carried out under the supervision of Dr. P.M. Smith. I wish to express my sincere gratitude to him for the advice and assistance throughout the progress of the study. I also want to thank Dr. C.E. Jeffree who has been very supportive and proof read a substantial portion of the thesis. I am indebted to the University of Botswana for the financial support and for offering me a study leave to enable me to carry out this study. The work was carried out at the Department of Botany, University of Edinburgh, as well as at the Royal Botanic Garden, Edinburgh. I would like to extend my thanks to the authorities of both institutions, and their staff, who offered help in many ways. My collection of living material was cared for by Messrs Billy Adams and Bob Astles. I wish to thank them for their help. My thanks also go to members of the photographic unit of ICMB, particularly John Anthony, Dave Haswell and Frank Johnston, for their help. Mr. John Findlay (Botany Department) gave me guidance with my SEM work, for which I am grateful. I am indebted to the Directors of various herbaria who loaned me specimens. Helen Hoy and Marisa Main were in charge of the Edinburgh side of these loans. -
Dichanthium Aristatum Scientific Name Dichanthium Aristatum (Poir.) C.E
Tropical Forages Dichanthium aristatum Scientific name Dichanthium aristatum (Poir.) C.E. Hubb. Synonyms Basionym: Andropogon aristatus Poir.; Andropogon nodosus auct. Tufted, shortly rhizomatous perennial Creeping naturalized ecotype, Family/tribe with slender stems and varying degrees Fitzroyvale, Central Qld, Australia of stolon development (CPI 84136) Family: Poaceae (alt. Gramineae) subfamily: Panicoideae tribe: Andropogoneae subtribe: Anthristiriinae. Morphological description Tufted, shortly rhizomatous perennial with slender stems and varying degrees of stolon development. Young plants prostrate to semi-erect with foliage to 80 cm, becoming erect at maturity, culms geniculate to 1‒1.8 m at maturity; nodes glabrous or short woolly. Leaf blades linear, 3‒25 cm long, 2‒8 (‒10) mm wide, glabrous or Dispersal units (seed) thinly pilose on both surfaces; ligule c. 0.6 mm, minutely Inflorescence a sub-digitate panicle, comprising mostly 2 - 6 racemes; fimbriate. Primary peduncle softly pilose for 1.5‒2.5 cm dense pubescence on peduncle immediately below the inflorescence. Inflorescence a immediately below lowest raceme (distinguishing feature) sub-digitate panicle, comprising (1–) 2‒6 (‒10) flexuous racemes 2‒5 (‒8) cm long; secondary peduncles pubescent; racemes hairy, awns on each spikelet pair from (12‒) 16‒30 mm long. Caryopsis ellipsoid, longitudinally grooved, hilum long-linear; c. 1.8 mm long. 500,000-1 million seed units (sessile spikelet + pedicellate spikelet)/kg. Similar species Seed production stand of cv. Floren, north Queensland, Australia D. aristatum: peduncle nodes glabrous or shortly pubescent; short, dense pubescence on peduncle immediately below lowest raceme. 'Floren' pasture on black clay soil, southern Queensland, Australia D. annulatum: peduncle nodes with annulus of long hairs; peduncle internodes glabrous. -
Fire in the Southeastern Grasslands, By
Fire in the Southeastern Grasslands RICHARD J. VOGL Department of Biology California State University Los Angeles, CA 90032 INTRODUCTION ~ERE has been more research on the effects of fire in the southeastern United States than in any region of North America. Most studies have been concerned with the effects of fire on the trees, including the role of fire in controlling hardwood suc cession, fire damage to trees, the effects of fire on soils and litter, the influence of fire on conifer growth and reproduction, and the relationships of fire to tree diseases (Garren 1943; Ahlgren and Ahlgren 1960; Cushwa 1968). A lesser, but stilI substantial number of studies have been focused on the effects of fire on forage yields and livestock production (Wahlenberg et al. 1939), and the use of fire in wildlife management in the Southeast. But academic or phy tosociological studies of the vegetational composition and of the effects of fire on the understory vegetation are generally lacking. Except for some range and wildlife research and several general studies (Wells and Shunk 1931; Leukel and St<Jkes 1939; Biswell and Lemon 1943; Burton 1944; Lemon 1949, 1967; Campbell 1955; Biswell1958; Hodgkins 1958; Arata 1959; Cushwa et al. 1966, 1970; Wolters 1972) , most investigators have ignored the herbaceous cover or grassland vegetation under southeastern trees. Even early botanists often became more interested in the unusual botanical features such as the southern extent of Appalachian tree species (Harper 1943, 1952), the description of the silaceous dunes of the 175 RICHARD J. VOGL Gulf Coast (Kurz 1942), the habits of eastern red cedar (Harper 1912), the vegetation of the Okefenokee Swamp (Wright and Wright 1932), or why the Black Belt Prairie of Alabama was treeless (Ranking and Davis 1971), thereby neglecting the widespread and common grassland vegetation and its relationship to fire. -
Grasses of Namibia Contact
Checklist of grasses in Namibia Esmerialda S. Klaassen & Patricia Craven For any enquiries about the grasses of Namibia contact: National Botanical Research Institute Private Bag 13184 Windhoek Namibia Tel. (264) 61 202 2023 Fax: (264) 61 258153 E-mail: [email protected] Guidelines for using the checklist Cymbopogon excavatus (Hochst.) Stapf ex Burtt Davy N 9900720 Synonyms: Andropogon excavatus Hochst. 47 Common names: Breëblaarterpentyngras A; Broad-leaved turpentine grass E; Breitblättriges Pfeffergras G; dukwa, heng’ge, kamakama (-si) J Life form: perennial Abundance: uncommon to locally common Habitat: various Distribution: southern Africa Notes: said to smell of turpentine hence common name E2 Uses: used as a thatching grass E3 Cited specimen: Giess 3152 Reference: 37; 47 Botanical Name: The grasses are arranged in alphabetical or- Rukwangali R der according to the currently accepted botanical names. This Shishambyu Sh publication updates the list in Craven (1999). Silozi L Thimbukushu T Status: The following icons indicate the present known status of the grass in Namibia: Life form: This indicates if the plant is generally an annual or G Endemic—occurs only within the political boundaries of perennial and in certain cases whether the plant occurs in water Namibia. as a hydrophyte. = Near endemic—occurs in Namibia and immediate sur- rounding areas in neighbouring countries. Abundance: The frequency of occurrence according to her- N Endemic to southern Africa—occurs more widely within barium holdings of specimens at WIND and PRE is indicated political boundaries of southern Africa. here. 7 Naturalised—not indigenous, but growing naturally. < Cultivated. Habitat: The general environment in which the grasses are % Escapee—a grass that is not indigenous to Namibia and found, is indicated here according to Namibian records.