Ceratitis Capitata) (Tephritidae) Bisexual and Genetic Sexing Strains: Development, Evaluation and Economics

Total Page:16

File Type:pdf, Size:1020Kb

Ceratitis Capitata) (Tephritidae) Bisexual and Genetic Sexing Strains: Development, Evaluation and Economics Proceedings of 6th International Fruit Fly Symposium 6–10 May 2002, Stellenbosch, South Africa pp. 367–381 Comparison of Mediterranean fruit fly (Ceratitis capitata) (Tephritidae) bisexual and genetic sexing strains: development, evaluation and economics C. Caceres1, J.P. Cayol2, W. Enkerlin2*, G. Franz1, J. Hendrichs2 & A.S. Robinson1 1Entomology Unit, Agriculture and Biotechnology Laboratory, Agency’s Laboratories, A-2444 Seibersdorf, Austria 2Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, IAEA, Wagramerstrasse 5, A-1400, Vienna, Austria In Medfly, Ceratitis capitata, sterile insect technique (SIT) programmes, the use of genetic sexing strains (GSS) is now routine. The use of these strains in mass-rearing facilities enables them to produce only males for irradiation and release.The advantages of using these strains are described together with genetic approaches used for their construction. The early use of the strains in mass- rearingfacilitieshighlightedimportantlimitationsthatwerenotapparentduringtheirconstruction and small-scale evaluation. Using a combination of new genetic and rearing approaches the problems have essentially been solved. The potential use of one GSS in many different geographic locations raised concerns about mating compatibility. A very detailed field-cage study using populations from very diverse areas showed that these strains had no unexpected impact on mating compatibility. The economics of the use of GSS in SIT programmes is described in detail, covering both their mass production and use in the field. The analysis reveals a much improved cost/benefit ratio when GSS are used. Future improvements that will further enhance the use of GSS are also discussed. BACKGROUND Laboratories at Seibersdorf in Austria, and the The sterile insect technique (SIT) is an estab- funding of three Coordinated Research Projects lished technology for the suppression and/or (CRPs) (IAEA 1990, 1997; Genetica 2002). With eradication of selected key insect pests of man, his the completion of the final CRP, almost all of livestock and crops (Tan 2000). The technology the Medfly rearing facilities worldwide are using involves the mass production and release, on an these genetic sexing strains (GSS) for their SIT area-wide basis,of large numbers of sexually sterile programmes (Robinson et al. 1999; Table 1). insects into a field population. The released males Prior to the start of the first CRP very little was mate with the females in the field resulting in no known about the genetics of Medfly, and the task production of offspring. Following repeated of this CRP was to develop many of the essential releases of the sterilized insects, the field popula- genetic tools, e.g. mutations, polytene chromo- tion is suppressed and in certain circumstances some analysis and male-linked translocations, eradication can be achieved (Hendrichs 2000). which are essential for the construction of a GSS. To be effective,SIT does not require the release of Table 1. Medfly mass-rearing facilities using GSS with sterile females as they do not contribute to the the potential capacity in millions of males/week. transfer of sterility to the wild population. Thus, mass production of sterile females is unnecessary Country Strain Capacity and the technique requires that only sterile male insects are released (Knipling 1955; Robinson et al. Argentina SEIB 6 (VIENNA 7/Tol) 80 1999; McInnis et al. 1994; Franz & McInnis 1995; Australia VIENNA 7/Mix 7 Hendrichs et al. 1995). In some cases the release Chile SEIB 6 (VIENNA 7) 40 of females can have a negative impact. Greece (Crete) SEIB 7/Mix 3 As a result of this situation, the Joint FAO/IAEA Guatemala VIENNA 7/Tol 1600 Division of Nuclear Techniques in Food and Hawaii (CDFA) VIENNA 7/Tol 100 Agriculture initiated activities in 1981 to develop Peru VIENNA 7/Mix 100 special strains for the Medfly, Ceratitis capitata, Portugal (Madeira) VIENNA 7/Mix 50 that could be used to produce only males for area- Seibersdorf VIENNA 7-D53/Mix 25 wide SIT programmes. These activities included South Africa VIENNA 7-D53/Mix 7 Hawaii VIENNA 7/Tol 200 research and development at the FAO/IAEA (USDA/APHIS) *To whom correspondence should be addressed. Total 2212 E-mail: [email protected] 368 Proceedings of the 6th International Fruit Fly Symposium At the conclusion of the second CRP, the first sterile females) and thus released at a more transfer of a GSS to an operational SIT programme mature age, thereby reducing losses before in Guatemala took place. males reach full sexual capacity; Studies carried out during the second CRP e. simplified and more precise monitoring demonstrated the efficacy of an all-male release activities when using female attractants, in the field (McInnis et al. 1994) and included infor- as the recapture of sterile males is largely mation on a temperature-sensitive mutation, tsl, reduced, thus also significantly reducing the in Medfly (Franz et al. 1996). The use of this risk of mis-identification (plus the value of mutation has been central to the practical applica- not removing many valuable sterile males); tion of GSS in Medfly. Some of the most serious f. no damage in certain types of fruit due to problems to be confronted in the use of GSS in absence of oviposition stings by sterile females, operational programmes concerned the stability and reduced transfer of pathogenic fungi and of the strains under mass-rearing conditions. bacteria to such fruit; These have now been essentially solved by a g. increased applicability of SIT for Medfly combination of new rearing methods and the suppression in fruit growing regions, because use of more appropriate translocations. the reduced cost and absence of oviposition Initially it was assumed that the sex determina- damage to the fruit enables the routine use tion mechanism of Medfly would be very similar to of sterile males as a biological ‘insecticide’ to that of Drosophila melanogaster. However, it is replace chemical bait-sprays during fruiting now known that in most tephritid fruit flies there is seasons; probably a single gene that initiates male sex h. increased bio-safety,as an accidental release of determination (Zapater & Robinson 1986; Will- non-irradiated flies would only include males, hoeft & Franz 1996) in contrast to D. melanogaster, and escaping females from mass-rearing where a chromosomal balance system operates. would have reduced fitness. This is particu- The use of polytene chromosome analysis larly important for mass-rearing facilities (Kerremans et al. 1990, 1992; Zacharopoulou located in fruit fly-free areas or areas where et al. 1991) has been essential for the develop- Medfly eradication is the objective. ment of stable GSS, by enabling both mutations In conclusion, the most important benefit is the and translocation breakpoints to be accurately increased efficiency of SIT, as it has been shown mapped (Franz & Kerremans 1993; Franz et al. in many Medfly studies that male-only releases 1994; Kerremans & Franz 1994, 1995). introduce 3–4 times more sterility into the target population than do bi-sexual releases (McInnis DEVELOPMENT,IMPROVEMENTS AND et al. 1986; Robinson et al. 1986; McInnis et al. REARING OF MEDFLY GENETIC SEXING 1994; Rendon et al. 2000). STRAINS FOR USE IN SIT Choice of sexing system Benefits of genetic sexing strains (GSS) The practicality and economics of GSS use The benefits of using GSS for Medfly SIT have depends on the choice of the appropriate been articulated many times and were summa- selectable marker in the sexing system. Initially rized by Hendrichs et al. (1995) as follows: the white pupae (wp) mutation (Rössler 1979) was a. economic savings in rearing, irradiation, used in combination with seed sorters to separate packaging, transport and release; white (female) and brown (male) pupae. However, b. increased male quality as male pupae can be it became clear that this type of selectable marker irradiated 24 h before emergence, instead of has two significant disadvantages. First of all, the 48 h when also irradiating females; sex separation can be achieved only after the costly c. several-fold increase in field effectiveness as mass-rearing step, i.e. expensive diet has to be the sterile sperm is not wasted in matings with wasted on rearing females and, in addition, the sterile females, and sterile males compete females had to be killed and disposed of in a safe better for wild females. Some studies also way. Second, the use of seed sorters is not easy. showed that sterile males disperse more in Such machines are very expensive, especially the absence of sterile females; considering the separation capacity needed in d. in the absence of sterile females in the fly most mass-rearing facilities; they are relatively emergence containers, sterile males can be complicated and are not very accurate (c. 5% held longer (without mating taking place with contamination with females in the ‘male-only’ Caceres et al.: Medfly bisexual and genetic sexing strains: development, evaluation and economics 369 product and a significant loss of male pupae). translocation breakpoint on that chromosome Furthermore, the sorting process can damage made it possible to significantly reduce the the pupae, resulting in flies with reduced flight impact of a particular genetic destabilizing ability. event. Acknowledging these severe disadvantages led There is now a clear understanding of the ge- to the development of an alternative sexing netic factors that are involved in the stability of system. This is
Recommended publications
  • Structure of Nora Virus at 2.7 Å Resolution and Implications for Receptor Binding, Capsid Stability and Taxonomy
    This document is downloaded from the VTT’s Research Information Portal https://cris.vtt.fi VTT Technical Research Centre of Finland Structure of Nora virus at 2.7 Å resolution and implications for receptor binding, capsid stability and taxonomy Laurinmäki, Pasi; Shakeel, Shabih; Ekström, Jens Ola; Mohammadi, Pezhman; Hultmark, Dan; Butcher, Sarah J. Published in: Scientific Reports DOI: 10.1038/s41598-020-76613-1 Published: 01/12/2020 Document Version Publisher's final version License CC BY Link to publication Please cite the original version: Laurinmäki, P., Shakeel, S., Ekström, J. O., Mohammadi, P., Hultmark, D., & Butcher, S. J. (2020). Structure of Nora virus at 2.7 Å resolution and implications for receptor binding, capsid stability and taxonomy. Scientific Reports, 10(1), [19675]. https://doi.org/10.1038/s41598-020-76613-1 VTT By using VTT’s Research Information Portal you are bound by the http://www.vtt.fi following Terms & Conditions. P.O. box 1000FI-02044 VTT I have read and I understand the following statement: Finland This document is protected by copyright and other intellectual property rights, and duplication or sale of all or part of any of this document is not permitted, except duplication for research use or educational purposes in electronic or print form. You must obtain permission for any other use. Electronic or print copies may not be offered for sale. Download date: 03. Oct. 2021 www.nature.com/scientificreports OPEN Structure of Nora virus at 2.7 Å resolution and implications for receptor binding, capsid stability and taxonomy Pasi Laurinmäki 1,2,7, Shabih Shakeel 1,2,5,7, Jens‑Ola Ekström3,4,7, Pezhman Mohammadi 1,6, Dan Hultmark 3,4 & Sarah J.
    [Show full text]
  • Mango Fruit Fly, Ceratitis Cosyra (Walker) (Insecta: Diptera: Tephritidae)1 G
    EENY286 Mango Fruit Fly, Ceratitis cosyra (Walker) (Insecta: Diptera: Tephritidae)1 G. J. Steck2 Introduction Fruit flies known as Ceratitis giffardi Bezzi and Ceratitis sarcocephali (Bezzi) may be the same as C. cosyra, but the The mango fruit fly, Ceratitis cosyra (Walker), is also taxonomy remains ambiguous (De Meyer 1998). commonly known as the marula fruit fly, based on its common occurrence in these host plants. Marula is a native African fruit related to mango and sometimes known Description locally as wild plum. This fly is a serious pest in smallholder Body and wing color yellowish; sides and posterior of tho- and commercial mango across sub-Saharan Africa, where it rax prominently ringed with black spots, dorsum yellowish is more destructive than either the Mediterranean fruit fly except for two tiny black spots centrally and two larger (Medfly; Ceratitis capitata (Wiedemann)) or the Natal fruit black spots near scutellum; scutellum with three wide, black fly (Ceratitis rosa Karsch) (Malio 1979, Labuschagne et al. stripes separated by narrow yellow stripes; wing length 4–6 1996, Javaid 1979, De Lima 1979, Rendell et al. 1995, Lux et mm, costal band and discal crossband joined. Adults are al. 1998). similar in size, coloration, and wing markings to Medfly. However, the thorax of Medfly has much more black, and The fly’s impact is growing along with the more widespread the apex of its scutellum is solid black; the costal band and commercialization of mango. Late maturing varieties of discal crossband of the Medfly wing are not joined. mango suffer most in Zambia (Javaid 1986).
    [Show full text]
  • A STERILE INSECT TECHNIQUE (S.L.T.) STUDY PROJECT to CONTROL MEDFLY in a SOUTHERN REGION of ITALY
    ENTE PER LE NUOVE TECNOLOGIE, ISSN/1120-5571 L’ENERGIA E L’AMBIENTE Dipartimento Innovazione OSTI A STERILE INSECT TECHNIQUE (S.l.T.) STUDY PROJECT TO CONTROL MEDFLY IN A SOUTHERN REGION OF ITALY A. TATA, U. CIRIO, R. BALDUCCI ENEA - Dipartimento Innovazione Centro Ricerche Casaccia, Roma STRIBUTON OF THIS DOCUMENT IS UNUWKE FOREIGN SALES PROHIBITED V>T Work presented at the “First International Symposium on Nuclear and related techniques in Agriculture, Industry, Health and Environment (NURT1997) October, 28-30, 1997 - La Habana, Cuba RT/1NN/97/28 ENTE PER LE NUOVE TECNOLOGIE, L'ENERGIA E L'AMBIENTE Dipartimento Innovazione A STERILE INSECT TECHNIQUE (S.I.T.) STUDY PROJECT TO CONTROL MEDFLY IN A SOUTHERN REGION OF ITALY A. TATA, U. CIRIO, R. BALDUCCI ENEA - Dipartimento Innovazione Centro Ricerche Casaccia, Roma Work presented at the “First International Symposium onNuclear and related techniques in Agriculture, Industry, Health and Environment (NURT1997) October, 28-30, 1997 - La Habana, Cuba RT/INN/97/28 Testo pervenuto net dicembre 1997 I contenuti tecnico-scientifici del rapporti tecnici dell'ENEA rispecchiano I'opinione degli autori e non necessariamente quella dell'Ente. DISCLAIMER Portions of this document may be illegible electronic image products. Images are produced from the best available original document. SUMMARY A Sterile Insect Technique (S.I. T.) Study Project to control Medflyin a Southern region of Italy Since 1967 ENEA, namely the main Italian governmental technological research organization, is carrying out R&D programmes and demonstrative projects aimed to set up S.I.T. (Sterile Insect Technique) processes. In the framework of a world-wide growing interest concerning pest control technology, ENEA developed a very large industrial project aimed to control Medfly (Ceratitis capitata Wied.) with reference to fruit crops situation in Sicily region (southern of Italy), through the production and spreading of over 250 million sterile flies per week.
    [Show full text]
  • Molecular Phylogenetics of the Genus Ceratitis (Diptera: Tephritidae)
    Molecular Phylogenetics and Evolution 38 (2006) 216–230 www.elsevier.com/locate/ympev Molecular phylogenetics of the genus Ceratitis (Diptera: Tephritidae) Norman B. Barr ¤, Bruce A. McPheron Department of Entomology, Pennsylvania State University, University Park, PA 16802, USA Received 29 March 2005; revised 3 October 2005; accepted 5 October 2005 Abstract The Afrotropical fruit Xy genus Ceratitis MacLeay is an economically important group that comprises over 89 species, subdivided into six subgenera. Cladistic analyses of morphological and host use characters have produced several phylogenetic hypotheses for the genus. Only monophyly of the subgenera Pardalaspis and Ceratitis (sensu stricto) and polyphyly of the subgenus Ceratalaspis are common to all of these phylogenies. In this study, the hypotheses developed from morphological and host use characters are tested using gene trees pro- duced from DNA sequence data of two mitochondrial genes (cytochrome oxidase I and NADH-dehydrogenase subunit 6) and a nuclear gene (period). Comparison of gene trees indicates the following relationships: the subgenus Pardalaspis is monophyletic, subsection A of the subgenus Pterandrus is monophyletic, the subgenus Pterandrus may be either paraphyletic or polyphyletic, the subgenus Ceratalaspis is polyphyletic, and the subgenus Ceratitis s. s. might not be monophyletic. In addition, the genera Ceratitis and Trirhithrum do not form reciprocally monophyletic clades in the gene trees. Although the data statistically reject monophyly for Trirhithrum under the Shimoda- ira–Hasegawa test, they do not reject monophyly of Ceratitis. 2005 Elsevier Inc. All rights reserved. Keywords: Ceratitis; Trirhithrum; Tephritidae; ND6; COI; period 1. Introduction cies, C. capitata (Wiedemann) (commonly known as the Mediterranean fruit Xy), is already an invasive species The genus Ceratitis MacLeay (Diptera: Tephritidae) with established populations throughout tropical, sub- comprises over 89 Afrotropical species of fruit Xy (De tropical, and mild temperate habitats worldwide (Vera Meyer, 2000a).
    [Show full text]
  • Virus Prospecting in Crickets—Discovery and Strain Divergence of a Novel Iflavirus in Wild and Cultivated Acheta Domesticus
    viruses Article Virus Prospecting in Crickets—Discovery and Strain Divergence of a Novel Iflavirus in Wild and Cultivated Acheta domesticus Joachim R. de Miranda 1,* , Fredrik Granberg 2 , Piero Onorati 1, Anna Jansson 3 and Åsa Berggren 1 1 Department of Ecology, Swedish University of Agricultural Sciences, 756 51 Uppsala, Sweden; [email protected] (P.O.); [email protected] (Å.B.) 2 Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, 756 51 Uppsala, Sweden; [email protected] 3 Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, 756 51 Uppsala, Sweden; [email protected] * Correspondence: [email protected]; Tel.: +46-18-672437 Abstract: Orthopteran insects have high reproductive rates leading to boom-bust population dy- namics with high local densities that are ideal for short, episodic disease epidemics. Viruses are particularly well suited for such host population dynamics, due to their supreme ability to adapt to changing transmission criteria. However, very little is known about the viruses of Orthopteran insects. Since Orthopterans are increasingly reared commercially, for animal feed and human consumption, there is a risk that viruses naturally associated with these insects can adapt to commercial rearing conditions, and cause disease. We therefore explored the virome of the house cricket Acheta domesti- cus, which is both part of the natural Swedish landscape and reared commercially for the pet feed market. Only 1% of the faecal RNA and DNA from wild-caught A. domesticus consisted of viruses. Citation: de Miranda, J.R.; Granberg, These included both known and novel viruses associated with crickets/insects, their bacterial-fungal F.; Onorati, P.; Jansson, A.; Berggren, Å.
    [Show full text]
  • THE USE of IONIZING RADIATION to IMPROVE REGIONAL FRUIT PRODUCTION and EXPORTS THROUGH MEDITERRANEAN FRUIT FLY PEST CONTROL Pedro A
    PANEL ON THE SUSTAINABLE USE OF RADIOACTIVE SOURCES FOR AGRICULTURE, FOOD SECURITY AND HEALTH. IAEA THE USE OF IONIZING RADIATION TO IMPROVE REGIONAL FRUIT PRODUCTION AND EXPORTS THROUGH MEDITERRANEAN FRUIT FLY PEST CONTROL Pedro A. Rendón VIENNA, AUGUST, 21st - 2018 INSECT INFESTATIONS – ARTHROPOD INVASIONS INTERNATIONAL TRADE AND GLOBAL WARMING. Are two main phenomena leading increased frequency of introductions of the costliest insect invaders (1). RISING HUMAN POPULATIONS, movement, migration, wealth and international trade, favor Invasions expansions (1). CLIMATE CHANGE PROJECTIONS TO 2050 predict an average increase of 18% in the area of occurrence of current arthropod invaders (1). INVASIVE INSECTS COST A MINIMUM OF US$70.0 BILLION/YEAR globally for goods and services (1). Insect Infestations are a reality and a concern! FRUIT FLY INTRODUCTIONS IN THE AMERICAS Olive Fruit Fly California, 1998 Caribbean Fruit Fly Florida, 1965 Mediterranean fruit Fly DR, 2015 Mediterranean fruit Fly Carambola Fruit Fly Costa Rica, 1955, GT, 1975 Surinam, 1975 Efforts have been made to stop the spread of the pest and avoid Mediterranean Fruit Fly production and market losses of the Brazil, 1901; Peru, 1956 CHILE, countries involved, by forming a tri- 1963. national commission U.S., MEXICO AND GUATEMALA, the REGIONAL PROGRAMA MOSCAMED to stop the northward movement of the pest. The ‘triple burden’ of malnutrition The WHO is promoting fresh fruit / vegetable Overweight consumption; the Under and obesity demand is nutrition growing. 400 – 600 grams of fruit & vegetables/day. Micronutrient deficiencies USE OF IONIZING RADIATION FOR PEST CONTROL *Photo from (2) Ionizing radiation and the Sterile Insect Technique (SIT) have been used since then for pest control and has allowed successful eradication efforts NEW WORLD SCREWWORM (Cochliomyia hominovorax, Coquerel) eradicated from the United States, Mexico, Central America and Libya.
    [Show full text]
  • White Pupae Genes in the Tephritids Ceratitis Capitata, Bactrocera Dorsalis and 2 Zeugodacus Cucurbitae: a Story of Parallel Mutations
    bioRxiv preprint doi: https://doi.org/10.1101/2020.05.08.076158; this version posted May 10, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 White pupae genes in the Tephritids Ceratitis capitata, Bactrocera dorsalis and 2 Zeugodacus cucurbitae: a story of parallel mutations 3 Short title: Genetic mutations causing white pupae phenotypes 4 Ward CMa,1, Aumann RAb,1, Whitehead MAc, Nikolouli Kd, Leveque G e,f, Gouvi Gd,g, Fung Eh, 5 Reiling SJe, Djambazian He, Hughes MAc, Whiteford Sc, Caceres-Barrios Cd, Nguyen TNMa,k, 6 Choo Aa, Crisp Pa,h, Sim Si, Geib Si, Marec Fj, Häcker Ib, Ragoussis Je, Darby ACc, Bourtzis 7 Kd,*, Baxter SWk,*, Schetelig MFb,* 8 9 a School of Biological Sciences, University of Adelaide, Australia, 5005 10 b Justus-Liebig-University Gießen, Institute for Insect Biotechnology, Department of Insect 11 Biotechnology in Plant Protection, Winchesterstr. 2, 35394 Gießen, Germany 12 c Centre for Genomic Research, Institute of Integrative Biology, The Biosciences Building, Crown Street, 13 Liverpool, L69 7ZB, United Kingdom 14 d Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and 15 Agriculture, Seibersdorf, A-1400 Vienna, Austria 16 e McGill University Genome Centre, McGill University, Montreal, Quebec, Canada 17 f Canadian Centre for Computational Genomics (C3G), McGill University, Montreal, Quebec, Canada 18 g Department of Environmental Engineering, University of Patras, 2 Seferi str., 30100 Agrinio, Greece 19 h South Australian Research and Development Institute, Waite Road, Urrbrae, South Australia 5064 20 i USDA-ARS Daniel K.
    [Show full text]
  • Mediterranean Fruit Fly, Ceratitis Capitata (Wiedemann) (Insecta: Diptera: Tephritidae)1 M
    EENY-214 Mediterranean Fruit Fly, Ceratitis capitata (Wiedemann) (Insecta: Diptera: Tephritidae)1 M. C. Thomas, J. B. Heppner, R. E. Woodruff, H. V. Weems, G. J. Steck, and T. R. Fasulo2 Introduction Because of its wide distribution over the world, its ability to tolerate cooler climates better than most other species of The Mediterranean fruit fly, Ceratitis capitata (Wiede- tropical fruit flies, and its wide range of hosts, it is ranked mann), is one of the world’s most destructive fruit pests. first among economically important fruit fly species. Its The species originated in sub-Saharan Africa and is not larvae feed and develop on many deciduous, subtropical, known to be established in the continental United States. and tropical fruits and some vegetables. Although it may be When it has been detected in Florida, California, and Texas, a major pest of citrus, often it is a more serious pest of some especially in recent years, each infestation necessitated deciduous fruits, such as peach, pear, and apple. The larvae intensive and massive eradication and detection procedures feed upon the pulp of host fruits, sometimes tunneling so that the pest did not become established. through it and eventually reducing the whole to a juicy, inedible mass. In some of the Mediterranean countries, only the earlier varieties of citrus are grown, because the flies develop so rapidly that late-season fruits are too heav- ily infested to be marketable. Some areas have had almost 100% infestation in stone fruits. Harvesting before complete maturity also is practiced in Mediterranean areas generally infested with this fruit fly.
    [Show full text]
  • The Ceratotoxin Gene Family in the Medfly Ceratitis Capitata and The
    Heredity (2003) 90, 382–389 & 2003 Nature Publishing Group All rights reserved 0018-067X/03 $25.00 www.nature.com/hdy The ceratotoxin gene family in the medfly Ceratitis capitata and the Natal fruit fly Ceratitis rosa (Diptera: Tephritidae) M Rosetto1,3, D Marchini1, T de Filippis1, S Ciolfi1, F Frati1, S Quilici2 and R Dallai1 1Department of Evolutionary Biology, University of Siena, Siena, Italy; 2CIRAD-FLHOR, Laboratoire d’Entomologie, Saint-Pierre, France Ceratotoxins (Ctxs) are a family of antibacterial sex-specific with an anti-Ctx serum. Four nucleotide sequences encoding peptides expressed in the female reproductive accessory Ctx-like precursors in C. rosa were determined. Sequence glands of the Mediterranean fruit fly Ceratitis capitata.Asa and phylogenetic analyses show that Ctxs from C. rosa fall first step in the study of molecular evolution of Ctx genes in into different groups as C. capitata Ctxs. Our results suggest Ceratitis, partial genomic sequences encoding four distinct that the evolution of the ceratotoxin gene family might be Ctx precursors have been determined. In addition, anti- viewed as a combination of duplication events that occurred Escherichia coli activity very similar to that of the accessory prior to and following the split between C. capitata and C. gland secretion from C. capitata was found in the accessory rosa. Genomic hybridization demonstrated the presence of gland secretion from Ceratitis (Pterandrus) rosa. SDS–PAGE multiple Ctx-like sequences in C. rosa, but low-stringency analysis of the female reproductive accessory glands from C. Southern blot analyses failed to recover members of this rosa showed a band with a molecular mass (3 kDa) gene family in other tephritid flies.
    [Show full text]
  • On the Geographic Origin of the Medfly Ceratitis Capitata (Wiedemann) (Diptera: Tephritidae)
    Proceedings of 6th International Fruit Fly Symposium 6–10 May 2002, Stellenbosch, South Africa pp. 45–53 On the geographic origin of the Medfly Ceratitis capitata (Wiedemann) (Diptera: Tephritidae) M. De Meyer1*, R.S. Copeland2,3, R.A. Wharton2 & B.A. McPheron4 1Entomology Section, Koninklijk Museum voor Midden Afrika, Leuvensesteenweg 13, B-3080 Tervuren, Belgium 2Department of Entomology, Texas A&M University, College Station, TX 77843, U.S.A. 3International Centre for Insect Physiology and Ecology, P.O. Box 30772, Nairobi, Kenya 4College of Agricultural Sciences, Penn State University, University Park, PA , U.S.A. The Mediterranean fruit fly, Ceratitis capitata (Wiedemann), is a widespread species found on five continents. Evidence indicates that the species originated in the Afrotropical Region and may have spread worldwide, mainly through human activities. Historical accounts on adventive populations outside Africa date back at least 150 years. The exact geographic origin of the Medfly within Africa has been much debated. Recent research regarding phylogeny, biogeography, host plant range, and abundance of the Medfly and its congeners within the subgenus Ceratitis s.s., all support the view that the species originated in eastern Africa,possibly the Highlands,and dispersed from there. Only molecular evidence contradicts this view, with higher mitochondrial DNA diversity in western Africa, suggesting that the hypothesis of a West African origin should still be considered. INTRODUCTION dance records,and parasitoid data.There is consid- The Mediterranean fruit fly, or Medfly, Ceratitis erable evidence that the geographic origin of the capitata (Wiedemann),is among the most important Medfly must have been situated in southern or pests of cultivated fruits (White & Elson-Harris eastern Africa, although there are contradictory 1992).
    [Show full text]
  • The Ceratitis Capitata Cellular Encapsulation Response Richard Paul Sorrentino*
    & Herpeto gy lo lo gy o : h C Sorrentino, Entomol Ornithol Herpetol 2016, 5:2 it u n r r r e O n , t DOI: 10.4172/2161-0983.1000175 y R g Entomology, Ornithology & Herpetology: e o l s o e a m r o c t h n E ISSN: 2161-0983 Current Research ResearchReview Article Article OpenOpen Access Access The Avoided Target: The Ceratitis capitata Cellular Encapsulation Response Richard Paul Sorrentino* Department of Biological Sciences, Auburn University, Auburn, Alabama, USA Abstract The three most common and most successful methods for controlling fruit-fly pest species (particularly Ceratitis capitata) are the sterile-insect technique, insecticide use, and biological control. Yet while innovative research in the first two have meant significant improvement in the efficiency of these techniques over the past two decades, by comparison, improvements in the efficiency of biological-control techniques have lagged. It is asserted that such will continue to be the case until more researchers systematically address how to overcome, evade, deactivate the immune systems of target host species, in particular the cellular encapsulation response. The encapsulation response to wasp parasitization in both Drosophila and Ceratitis are reviewed. It is suggested that the past four decades of cellular, molecular and genetic research in Drosophila immunity and defense against parasitoid wasps can serve as a springboard for rapid significant improvement of our present, nearly non-existent model of Ceratitis immunity. Keywords: Medfly; Ceratitis; Drosophila; Encapsulation; Cellular exposure to organophosphates and carbamate esters (including immunity; Hemocyte malathion and carbamyl) has been linked to significantly increased likelihood of sister-chromatid exchange events in people [11-13].
    [Show full text]
  • Ceratitis Cosyra (Walker) (Diptera:Tephritidae)1
    Entomology Circular No. 403 Fla. Dept. Agric. & Consumer Services November/December 2000 Division of Plant Industry Ceratitis cosyra (Walker) (Diptera:Tephritidae)1 Gary J. Steck2 INTRODUCTION: Ceratitis cosyra is commonly known as the mango fruit fly or marula fruit fly based on its common occurrence in these host plants. Marula is a native African fruit related to mango and sometimes known locally as wild plum. The fly is a serious pest in smallholder and commercial mango across sub-Saharan Africa and has been recorded in Ivory Coast, Kenya, South Africa, Tanzania, Uganda, Zambia and Zimbabwe, where it is more destructive than either the Mediterranean fruit fly (Medfly; Ceratitis capitata (Wiedemann)) or the Natal fruit fly (Ceratitis rosa Karsch) (Malio 1979; Labuschagne et al. 1996; Javaid 1979; De Lima 1979; Rendell et al. 1995; Lux et al. 1998). Its impact is growing along with the more widespread commercialization of mango in these countries. Late maturing varieties of mango suffer most in Zambia (Javaid 1986). In Ivory Coast, C. cosyra and Ceratitis anonae Graham are the main pests in guava (N’Guetta 1993). Ceratitis cosyra, as larvae in infested mangoes from Africa, is one of the most commonly intercepted fruit flies in Europe (I. M. White, The Natural History Museum, London, personal communication). Fruit flies known as Ceratitis giffardi Bezzi and Ceratitis sarcocephali (Bezzi) may be the same as C. cosyra, but the taxonomy remains ambiguous (De Meyer 1998). DESCRIPTION: Body and wing color yellowish; sides and posterior of thorax prominently ringed with black spots, dorsum yellowish except for two tiny black spots centrally and two larger black spots near scutellum; scutellum with three wide, black stripes separated by narrow yellow stripes; wing length 4-6 mm, costal band and discal crossband joined; see Fig.
    [Show full text]