Evaluation of Wood Species and Preservatives for Wisdot Sign Posts October 2013 6

Total Page:16

File Type:pdf, Size:1020Kb

Evaluation of Wood Species and Preservatives for Wisdot Sign Posts October 2013 6 Technical Report Documentation Page 1. Report No. 2. Government Accession No 3. Recipient’s Catalog No 4. Title and Subtitle 5. Report Date Evaluation of Wood Species and Preservatives for WisDOT Sign Posts October 2013 6. Performing Organization Code 7. Authors 8. Performing Organization Report No. Stan Lebow, Robert Ross, Sam Zelinka, and Carol Clausen 9. Performing Organization Name and Address 10. Work Unit No. (TRAIS) USDA, Forest Service, Forest Products Laboratory One Gifford Pinchot Drive 11. Contract or Grant No. Madison, WI 53726 WisDOT SPR# 0092-13-15 12. Sponsoring Agency Name and Address 13. Type of Report and Period Covered Wisconsin Department of Transportation Division of Business Management 14. Sponsoring Agency Code Research & Library Unit 4802 Sheboygan Ave. Rm 104 Madison, WI 53707 15. Supplementary Notes 16. Abstract The Wisconsin Department of Transportation (WisDOT) uses preservative-treated wood posts for much of the signage along state highways because wood is relatively inexpensive, easy to install, and has the necessary strength properties to tolerate typical Wisconsin wind loads. Although WisDOT’s experience with wood sign posts has been generally positive, there are some areas of concern, as well as opportunities for diversifying the wood species and preservatives used. WisDOT and the USDA, Forest Products Laboratory began a collaborative project to address those concerns and opportunities. This report presents the findings of the comprehensive literature review. 17. Key Words 18. Distribution Statement Wood products, wood preservatives, sign supports, posts, Wisconsin Department of Transportation No restriction. This document is available to the public through the National Technical Information Service 5285 Port Royal Road Springfield VA 22161 18. Security Classif.(of this report) 19. Security Classif. (of this page) 20. No. of Pages 21. Price Unclassified Unclassified 86 Form DOT F 1700.7 (8-72) Reproduction of completed page authorized 1 DISCLAIMER This research was funded by the Wisconsin Department of Transportation and the Federal Highway Administration under Project 0092-13-15. The contents of this report reflect the views of the authors who are responsible for the facts and accuracy of the data presented herein. The contents do not necessarily reflect the official views of the Wisconsin Department of Transportation or the Federal Highway Administration at the time of publication. This document is disseminated under the sponsorship of the Department of Transportation in the interest of information exchange. The United States Government assumes no liability for its contents or use thereof. This report does not constitute a standard, specification or regulation. The United States Government does not endorse products or manufacturers. Trade and manufacturers’ names appear in this report only because they are considered essential to the object of the document. 2 3 Evaluation of Wood Species and Preservatives for WisDOT Sign Posts Comprehensive Literature Review Stan Lebow, Robert Ross, Sam Zelinka, Carol Clausen USDA, Forest Service, Forest Products Laboratory Prepared for: Wisconsin Department of Transportation October, 2013 4 Contents DISCLAIMER ...................................................................................................................................................... 2 Introduction .................................................................................................................................................. 8 Wisconsin’s Current Sign Post Standard Specifications ............................................................................ 8 Wood Species Considerations ................................................................................................................... 8 Wood Preservative Considerations .......................................................................................................... 9 Research Approach ................................................................................................................................. 10 Wood Preservative Background ................................................................................................................. 10 Remedial, in-place, field-applied, supplemental or non-pressure preservatives ............................... 10 Pressure treatment preservatives and pressure-treated wood ......................................................... 11 AWPA vs ICC-ES and AASHTO Preservative Listings ................................................................................ 11 Evaluating Preservative Efficacy ............................................................................................................. 12 Stake and post field tests .................................................................................................................... 12 Role of Solvent Characteristics in Durability ........................................................................................... 13 Corrosion testing ..................................................................................................................................... 13 AWPA Use Category System ................................................................................................................... 14 Wood Preservative Characteristics ............................................................................................................. 15 The Role of Copper in Wood Preservatives ............................................................................................ 15 Current Ground-contact Preservatives ................................................................................................... 16 Acid Copper Chromate (ACC) .............................................................................................................. 16 Ammoniacal Copper Quat (ACQ-B) ..................................................................................................... 18 Alkaline copper quat, (ACQ Types A, D and C and ESR-1980) ............................................................. 18 Ammoniacal Copper Zinc Arsenate (ACZA, previously ACA)............................................................... 20 Chromated Copper Arsenate (CCA) .................................................................................................... 21 Coal-tar creosote................................................................................................................................. 21 Copper Azole (CA-B and CA-C, ESR-1721, ESR-2240) .......................................................................... 23 Copper Naphthenate (CuN) ................................................................................................................ 24 KDS ...................................................................................................................................................... 25 Pentachlorophenol.............................................................................................................................. 25 Other Preservatives of Interest ............................................................................................................... 26 Copper Xyligen (CX-A) ......................................................................................................................... 26 Copper Borate (Cu-Bor) ...................................................................................................................... 26 Copper-8-quinolinolate (Cu8 and Cu8-W) .......................................................................................... 27 5 3-Iodo-2-proponyl carbamate (IPBC) .................................................................................................. 28 Didecyl dimethyl ammonium chloride (DDAC) and Alkyl benzyl ammonium chloride (BAC) ............ 29 Isothiazolone, 4,5-dichloro-2-N-octyl-4-isothiazolin-3-one (DCOI) .................................................... 29 Tebuconazole (TEB) and Propiconazole (PPZ) .................................................................................... 30 Chlorothalonil (CTL) ............................................................................................................................ 30 Borates ................................................................................................................................................ 31 Insecticidal Additives .......................................................................................................................... 31 Combinations of Non-metallic Preservatives ............................................................................................. 32 EL2: DCOI and Imidacloprid ................................................................................................................ 32 PTI: Propiconazole-Tebuconazole-Imidacloprid ................................................................................. 32 DDAC/IPBC Combinations (NP-1 and NP-1 Variations) ....................................................................... 32 IPBC/PPZ/TEB (3-Iodo-2-proponyl carbamate/Propiconazole/Tebuconazole) ................................. 33 IPBC/Permethrin (IPBC/PER) ............................................................................................................... 33 Corrosion aspects of selecting preservatives for sign posts ......................................................................
Recommended publications
  • This Code Was Put Together by Building Officials on the Peninusla As We As
    The Mudsill Connection in Retrofit Shearwalls Introduction Seismic Behavior of Level and Stepped Cripple Walls, a publication of the Consortium of Universities in Earthquake Engineering (CUREE), contains the following statement regarding damage from the Northridge Earthquake: “More than half of the $40 billion dollar property losses were due to failures of wood frame construction, primarily as a result of the damage or collapse of residential, single-family homes, multi-family apartments or condominiums.”(10) The San Francisco Bay Area is riddled with earthquake faults, some of which can rupture with an intensity far greater than that experienced at Northridge. The Association of Bay Area Governments (ABAG) expects that over 150,000 housing units in the Bay Area will be lost when just one of these, the Hayward Fault, ruptures with an expected magnitude of 7.2 or greater. Homeowners are not unaware of this fact. In response to homeowner demands to protect their homes from earthquake damage, many contracting firms in the Bay Area now specialize in residential wood frame seismic retrofit work. Through the transfer-tax retrofit rebate program the city of Berkeley actually pays 0.5% of the purchase price to every new homeowner if the money is spent on seismic retrofit work. Given that the average home in Berkeley costs close to $600,000, this can be a large amount of money. As a result of this policy, according to ABAG, Berkeley can be proud to say that over 80% of the homes in its jurisdiction have been retrofitted. Unfortunately, also according to ABAG, the majority of those retrofits will not perform as needed.
    [Show full text]
  • Copper Based Wood Preservative Systems Are Also Included
    A Comprehensive Review of CCooppppeerr--BBaasseedd WWoooodd PPrreesseerrvvaattiivveess With a focus on new micronized or dispersed copper systems By Mike H. Freeman * and Craig R. McIntyre * Abstract This paper focuses on the wood preservation aspects of copper based biocides. Included in this review are the following: Above ground and ground contact efficacy, permanence in above ground and ground contact uses, soil and water contact leaching, effects on wood properties and certain fixation aspects of copper systems. Previously unpublished data on the new micronized/dispersed copper based wood preservative systems are also included. These micronized systems now dominate the U .S. residential treated wood market which in turn accounts for roughly 50 percent of global wood preservation usage . opper is an essential micronutrient for most living Copper is needed against this challenge since very few Ccells. In larger doses though, the copper ion demon - organic molecules (other than creosote and penta ) possess strates activity as an algaecide, bactericide , fungi - activity towards soft rot fungi (Hughes 2004). cide, insecticide, and moldicide. Presently copper com - The volume of wood products treated with copper -based pounds are used for algal control, wood treatment, preservatives grew exponentially during the 1970s and antifouling pigments, and crop fungicides (Richardson 1980s and remains high today. Copper compounds also have 1997). The fungicidal properties of copper were recog - nized in the 1700 s, and copper-based preservatives have been widely and successfully used for more than a centu - This paper was received for publication in August 2008 and has ry. Although borates and organic biocides are gaining undergone the Journal’s peer review process.
    [Show full text]
  • The Impact of the Nation's Most Widely Used Insecticides on Birds
    The Impact of the Nation’s Most Widely Used Insecticides on Birds Neonicotinoid Insecticides and Birds The Impact of the Nation’s Most Widely Used Insecticides on Birds American Bird Conservancy, March 2013 Grasshopper Sparrow by Luke Seitz Cover photos: Horned Lark and chicks by Middleton Evans; Corn field, stock.xchng, sxc.hu; Calico Pennant dragonfly by David Cappaert, Michigan State University, Bugwood.org 1 Neonicotinoid Insecticides and Birds American Bird Conservancy would like to thank the Turner Foundation, Wallace Genetic Foundation, Jeff and Connie Woodman, Cornell Douglas Foundation and A.W. Berry Foundation for their ongoing support for American Bird Conservancy’s Pesticides Program. Written by Dr. Pierre Mineau and Cynthia Palmer Designed by Stephanie von Blackwood About the Authors Dr. Pierre Mineau began his long and distinguished scientific career studying the effects of persistent organochlorine compounds, like DDT and PCBs, on fish-eating birds. He then became responsible for the Canadian assessment of new and existing pesticides to determine their adverse impacts on wildlife. In 1994 he transitioned from regulatory reviews to full-time research on the environmental impacts of pesticides, achieving the rank of Senior Research Scientist at Environment Canada. Working with international collaborators and graduate students, he works on assessing globally the environmental footprint of pesticides. He also studies how birds are exposed to pesticides and how bird populations respond to pesticide use and agricultural practices. His work includes defining the ecological values of birds in cropland as well as estimating the incidental take of birds from various other human activities. He has written more than 100 peer-reviewed publications and has authored some 200 presentations.
    [Show full text]
  • Quantification of Neonicotinoid Pesticides in Six Cultivable Fish Species from the River Owena in Nigeria and a Template For
    water Article Quantification of Neonicotinoid Pesticides in Six Cultivable Fish Species from the River Owena in Nigeria and a Template for Food Safety Assessment Ayodeji O. Adegun 1, Thompson A. Akinnifesi 1, Isaac A. Ololade 1 , Rosa Busquets 2 , Peter S. Hooda 3 , Philip C.W. Cheung 4, Adeniyi K. Aseperi 2 and James Barker 2,* 1 Department of Chemical Sciences, Adekunle Ajasin University, Akungba Akoko P.M.B. 001, Ondo State, Nigeria; [email protected] (A.O.A.); [email protected] (T.A.A.); [email protected] (I.A.O.) 2 School of Life Sciences, Pharmacy and Chemistry, Kingston University, Kingston-upon-Thames KT1 2EE, UK; [email protected] (R.B.); [email protected] (A.K.A.) 3 School of Engineering and the Environment, Kingston University, Kingston-on-Thames KT1 2EE, UK; [email protected] 4 Department of Chemical Engineering, Imperial College, London SW7 2AZ, UK; [email protected] * Correspondence: [email protected] Received: 17 June 2020; Accepted: 24 August 2020; Published: 28 August 2020 Abstract: The Owena River Basin in Nigeria is an area of agricultural importance for the production of cocoa. To optimise crop yield, the cocoa trees require spraying with neonicotinoid insecticides (Imidacloprid, Thiacloprid Acetamiprid and Thiamethoxam). It is proposed that rainwater runoff from the treated area may pollute the Owena River and that these pesticides may thereby enter the human food chain via six species of fish (Clarias gariepinus, Clarias anguillaris, Sarotherodon galilaeus, Parachanna obscura, Oreochromis niloticus and Gymnarchus niloticus) which are cultured in the river mostly for local consumption.
    [Show full text]
  • Check out Lifeart Merchandise List
    www.LifeArtCabinetry.com www.LifeArtCabinetry.com Company Overview LifeArt Cabinetry Corp is a well-established kitchen cabinet wholesaler, owned and operated within the United States, with a manufacturing plant overseas. Our facility is headquartered in Norcross, Georgia with 100,000 square feet of distribution center and showroom, with a newly added loca- tion in Secaucus, NJ. As a cabinet wholesaler, LifeArt’s passion is to make sure it delivers the best quality kitchen cabinet solution to its dealers. With an organized logistics team, LifeArt ensures to provide only top-level ser- vice to dealers. Our Product LifeArt Cabinetry offers twelve cabinet lines in wholesale, each with its own style and color to set itself apart from the others. Whether the cabinets are used for home improvements in the kitchen, bathroom, or in an- other area of the house such as an entertainment center, custom closet, wet bars etc, they can be designed to maximize style, space, and organization. (770) 582-0098 6700 Best Friend Rd. Norcross, GA 30071 www.lifeartcabinetry.com SPECIFICATION AND PRICE SUBJECT TO CHANGE WITHOUT NOTICE • IMAGES ARE FOR REFERENCE ONLY • www.LifeartCabinetry.com www.LifeArtCabinetry.com Table of Contents Anchester_1 A1-1 - A1-14 Anchester_2 A2-1 - A2-14 Anchester_3 A3-1 - A3-14 Birmingham B1 - B14 Cambridge C1 - C15 Edinburgh E1 - E15 Heidelberg H1 - H15 Kingston K1 - K14 Oxford O1 - O15 Princeton P1 - P15 Wurzburg W1 - W14 Yorktown Y1 - Y14 lnformation Info 1- Info 31 SPECIFICATION AND PRICE SUBJECT TO CHANGE WITHOUT NOTICE • IMAGES
    [Show full text]
  • Capital-Framed-Collection-Specbook.Pdf
    FRAMED PRODUCT LINE SPECBOOK PHONE: 844-660-9889 · FAX: 770-767-3806 EMAIL: [email protected] WEBSITE: WWW.USCABINETDEPOT.COM CAPITAL COLLECTION (FRAMED CABINETS) PHONE: 844-660-9889 · FAX: 770-767-3806 · EMAIL: [email protected] · WEBSITE: WWW.USCABINETDEPOT.COM TABLE OF CONTENTS Section 1: Policies & Information About Us ..................................................................................... 2 Ordering Information ......................................................................... 3 Sample Doors ................................................................................ 4 Marketing Tools .............................................................................. 5 Terms & Conditions ........................................................................... 6 Frequently Asked Questions ................................................................. 10 Warranty .................................................................................... 12 Section 2: Styles & Pricing Highland (Prime) Series Door Styles & Specications Charleston ............................................................................ 13 Tahoe ................................................................................. 14 York ................................................................................... 15 Shaker ................................................................................ 16 Construction Specications ............................................................ 18 Cascade (Professional)
    [Show full text]
  • Tool Inventory 7.23.21
    Tool Name Category Retail Value Cost to Borrow Adjustable wrench: large Carpentry $10.46 $ 0.31 Adjustable wrench: small Carpentry $9.56 $ 0.29 Air compressor Power Tools $374.00 $ 11.22 Air ratchet wrench Power Tools $61.28 $ 1.84 Auger bit: small, drill powered Power Tools $33.50 $ 1.01 Auger: 1 person - medium duty (8 in bit included) Power Tools $587.00 $ 17.61 Auger: 2 person (8 in bit included) Power Tools $728.00 $ 21.84 Axe Earthwork $29.79 $ 0.89 Bar clamp: up to 18in Carpentry $11.48 $ 0.34 Bean bag toss (cornhole) Special Events $50.00 $ 1.50 Blower: backpack gas-powered Earthwork $299.00 $ 8.97 Blower: handheld corded (electric) Power Tools $67.65 $ 2.03 Blower: handheld cordless (electric) Power Tools $149.00 $ 4.47 Blower: handheld gas-powered Power Tools $149.00 $ 4.47 Bolt cutters Carpentry $19.97 $ 0.60 Bottle jack: hydraulic Carpentry $35.00 $ 1.05 Bow saw Earthwork $9.97 $ 0.30 Broadfork Earthwork $199.00 $ 5.97 Broom: push Custodial $16.65 $ 0.50 Broom: street sweeper Custodial $19.99 $ 0.60 Broom: sweep Custodial $8.82 $ 0.26 Buck saw Carpentry $10.97 $ 0.33 Bulb planter: long handle w/ release Earthwork $22.97 $ 0.69 Carpet Cleaner with Upholstery Cleaner Special Events $638.99 $ 19.17 Caulk gun: 10 oz Carpentry $2.98 $ 0.09 Chainsaw chaps Safety $59.98 $ 1.80 Chainsaw: gas-powered Power Tools $219.00 $ 6.57 Chair: folding Special Events $24.95 $ 0.75 Chalk line and chalk Carpentry $4.96 $ 0.15 Circular saw Power Tools $112.99 $ 3.39 Circular saw: cordless Power Tools $149.98 $ 4.50 Cultivator: long handle Earthwork
    [Show full text]
  • Toxicological Studies on Boric Acid, Imidacloprid And
    TOXICOLOGICAL STUDIES ON BORIC ACID, IMIDACLOPRID AND FIPRONIL AND THEIR BINARY MIXTURES AS INSECTICIDES ON GERMAN COCKROACH Blattellagermanica (L.) (DICTYOPTERA: BLATTELLIDAE) By FATMA SHERIF AHMED B.Sc. Agric. Sci. (Pesticides), Fac. Agric., Cairo Univ., 2007 THESIS Submitted in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE In Agricultural Sciences (Pesticides) Department of Economic Entomology and Pesticides Faculty of Agriculture Cairo University EGYPT 2015 ١ INTRODUCTION The German cockroaches, Blattellagermanica (L.), (Dictyoptera, Blattellidae) are the most common indoor pests, especially in multiple-family housing and the most significant pest in many parts of the world (Goddard, 2003). German cockroaches prefer warm, wet locations with high humidity such as kitchens, bathrooms and laundry areas. These conditions are available in several places as homes, apartments, restaurants, supermarkets, hospitals and other buildings where food are stored. Cockroaches are not only corrupt food but also transfer pathogens such as Salmonella, Shigella, Escherichia coli, Staphylococcus aureus and Bacillus cereus (Baumholtz et al., 1997 and Tachbeleet al., 2006). Medically important parasites such as bacteria, fungi and molds, protozoans, viruses were isolated from external and internal surface of cockroach (Brenner, 1995). Cockroaches can also transfer both gram-positive and negative bacteria (El-Sherbini and El- Sherbini, 2011). A large number of neurotoxic and non-neurotoxic insecticides were used for German cockroach control, as this pest has a considerable ability to develop resistance to a variety of chemical insecticides(Cochran, 1989 and 1995a; Scott et al., 1990; Rust and Reierson, 1991; Rust et al., 1993; Holbrook et al., 1999; Espinosa-Islas et al., 2002 and Rahayuet al., 2012).
    [Show full text]
  • Abstract Racking Performance Of
    ABSTRACT RACKING PERFORMANCE OF PAPERBOARD AND WOOD BASED SHEATHING MATERIALS By Benjamin Ong A small scale (16 x 16 inch) racking tester was used to evaluate the racking performance of the paperboard and wood based sheathing materials. In this study it was shown that the staple spacing, staple size and caliper of the paperboard affect racking performance. It was established in this study that extending staples length beyond 1 inch has no advantage for the paperboard and wood based sheathing materials. Similarly, using nails for fasteners has no advantage both for paperboard and wood based sheathing materials. This finding is limited to the present set up and does not represent other racking testers. The racking performance improved when adhesive was used in combination with staples to attach the sheathing to the wood frame. It was observed after the racking test, the physical state of the paperboard sheathings indicate that staples have a higher withdrawal resistance and less tear through when compared to the nails. The stretching of the paperboards during the racking test slightly affects the tensile properties and further study is needed. The hardboard was evaluated to have better racking stiffness and strength than that of plywood and oriented strand board. The comparison of staples and nails as fasteners based on the racking stiffness and strength show that nail will be preferred for hardboard but for plywood and oriented strand board, either nails or staples could be used as fasteners. The basis weight and racking strength have an inverse relationship for the wood based sheathing. THE RACKING PERFORMANCE OF PAPERBOARD AND WOOD BASED SHEATHING MATERIALS A thesis Submitted to the Faculty of Miami University in partial fulfillment of the requirements for the degree of Masters of Science Department of Paper and Chemical Engineering by Benjamin Ong Miami University Oxford, Ohio 2006 Approved by: Advisor ______________________________ Dr.
    [Show full text]
  • Proposed Interim Registration Review Decision for Imidacloprid
    Docket Number EPA-HQ-OPP-2008-0844 www.regulations.gov Imidacloprid Proposed Interim Registration Review Decision Case Number 7605 January 2020 Approved by: Elissa Reaves, Ph.D. Acting Director Pesticide Re-evaluation Division Date: __ 1-22-2020 __ Docket Number EPA-HQ-OPP-2008-0844 www.regulations.gov Table of Contents I. INTRODUCTION .................................................................................................................. 4 A. Summary of Imidacloprid Registration Review............................................................... 5 B. Summary of Public Comments on the Draft Risk Assessments and Agency Responses 7 II. USE AND USAGE ............................................................................................................... 14 III. SCIENTIFIC ASSESSMENTS ......................................................................................... 15 A. Human Health Risks....................................................................................................... 15 1. Risk Summary and Characterization .......................................................................... 15 2. Human Incidents and Epidemiology .......................................................................... 17 3. Tolerances ................................................................................................................... 18 4. Human Health Data Needs ......................................................................................... 18 B. Ecological Risks ............................................................................................................
    [Show full text]
  • Evaluation of Wood Species and Preservatives for Use in Wisconsin Highway Sign Posts
    United States Department of Agriculture Evaluation of Wood Species and Preservatives for Use in Wisconsin Highway Sign Posts Stan T. Lebow Robert J. Ross Samuel L. Zelinka Forest Forest Products General Technical Report July Service Laboratory FPL–GTR–231 2014 In cooperation with the Wisconsin Department of Transportation. Abstract hardwoods. Copper naphthenate is non-corrosive to alu- minum and would avoid warp associated with re-drying The Wisconsin Department of Transportation (WisDOT) after treatment with water-based preservatives. WisDOT uses wooden posts to support many types of signs along may want to consider purchasing a small volume of copper state highways. WisDOT currently uses red pine or Southern naphthenate-treated posts to evaluate the handling character- Pine posts treated with chromated copper arsenate (CCA) istics of this oil-based preservative. and has generally experienced satisfactory performance and service life. However, there are some areas of concern, as Keywords: wood preservatives, wood species, sign posts, well as potential opportunities for diversifying the wood highway, Wisconsin species and preservatives used. Warp is sometimes a prob- lem with the current pine posts, and increased use of locally Acknowledgment sourced wood species for the sign posts could decrease The authors acknowledge the valuable input received from transportation costs and potentially benefit Wisconsin in- Matt Rauch of WisDOT in refining the study problem areas, dustries. Although CCA is a highly effective preservative, it relating field experiences, and describing WisDOT practices may not be the optimum treatment for alternative wood spe- and procedures. cies. This study reviewed the characteristics of alternative wood species and wood preservatives and evaluated their potential for use in Wisconsin highway sign posts.
    [Show full text]
  • Estimated Impact of Neonicotinoid Insecticides on Pest Management Practices and Costs for U.S
    The Value of Neonicotinoids in North American Agriculture: AgInfomatics Estimated Impact of Neonicotinoid Insecticides on Pest Management Practices and Costs for U.S. Corn, Soybean, Wheat, Cotton and Sorghum Farmers 2014 This report series, researched and produced by AgInfomatics, LLC, is a comprehensive analysis of the economic and societal benefits of nitroguanidine neonicotinoid insecticides in North America. The research was sponsored by Bayer CropScience, Syngenta and Valent in support of regulatory review processes in the United States and Canada, with Mitsui providing additional support for the turf and ornamental studies. AgInfomatics, an agricultural consulting firm established in 1995 by professors from the University of Wisconsin-Madison and Washington State University, conducted independent analyses exploring the answer to the question: What would happen if neonicotinoids were no longer available? Comparing that answer to current product use revealed the value of neonicotinoids. Robust quantitative and qualitative study methods included econometrics modeling of insecticide use, crop yield data and market impacts; surveys of growers, professional applicators and consumers; regional listening panel sessions; and in-depth case studies. Active ingredients in the study included clothianidin, dinotefuran, imidacloprid and thiamethoxam. The Value of Neonicotinoids in North American The Value of Neonicotinoids in Turf and Agriculture Ornamentals Reports include: Reports include: Estimated Impact of Neonicotinoid Insecticides on Estimating the Economic Value of Neonicotinoid Pest Management Practices and Costs for U.S. Corn, Insecticides on Flowers, Shrubs, Home Lawns and Soybean, Wheat, Cotton and Sorghum Farmers Trees in the Homescape Methods and Assumptions for Estimating the The Value of Neonicotinoids to Turf and Ornamental Impact of Neonicotinoid Insecticides on Pest Professionals Management Practices and Costs for U.S.
    [Show full text]