Pantoea Spp: a New Bacterial Threat to Rice Production in Sub-Saharan Africa

Total Page:16

File Type:pdf, Size:1020Kb

Pantoea Spp: a New Bacterial Threat to Rice Production in Sub-Saharan Africa Pantoea spp : a new bacterial threat to rice production in sub-Saharan Africa Kossi Kini To cite this version: Kossi Kini. Pantoea spp : a new bacterial threat to rice production in sub-Saharan Africa. Botan- ics. Université Montpellier; AfricaRice (Abidjan), 2018. English. NNT : 2018MONTG015. tel- 02868182v2 HAL Id: tel-02868182 https://tel.archives-ouvertes.fr/tel-02868182v2 Submitted on 16 Jun 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. THÈSE POUR OBTENIR LE GRADE DE DOCTEUR DE L’UNIVERSITÉ DE M ONTPELLIER En ÉVOLUTION DES SYSTÈMES INFECTIEUX École doctorale GAIA (N°584) Unité Mixte de recherche IPME Interactions Plantes-Microorganismes-Environnement (IRD, CIRAD, UM) Pantoea spp: a new bacterial threat for rice production in sub-Saharan Africa. Présentée par par Kossi KINI Le 22 Mai 2018 Sous la direction de Ralf KOEBNIK et Drissa SILUÉ Devant le jury composé de : RAPPORT DE GESTION Ralf KOEBNIK, Directeur de Recherche, IRD Directeur de thèse 2015 Drissa SILUÉ, Chargé de Recherche, AfricaRice Co directeur de thèse Claude BRAGARD, Professeur des Universités, UCL Rapporteur Marie-Agnès JACQUES, Directrice de Recherche, INRA Présidente du jury Monique ROYER, Cadre Scientifique, CIRAD Examinatrice Alice BOULANGER, Directrice de Recherche, INRA Examinatrice Kossi KINI PhD manuscript 22/05/2018 i Kossi KINI PhD manuscript 22/05/2018 Résumé Parmi les 24 espèces de Pantoea décrites jusqu'à présent, cinq ont été signalées jusqu'à 46 fois dans 21 pays comme phytopathogènes d'au moins 31 cultures. En effet, P. ananatis et P. agglomerans ont été signalés comme bactéries phytopathogènes pour au moins dix cultures économiquement importantes, y compris le riz. Récemment, le Centre du Riz pour l'Afrique et ses partenaires ont soupçonné la présence d'une bactérie émergente qui cause la bactériose du riz dans plusieurs pays africains. L'agent causal a été confirmé comme appartenant au genre Pantoea . Les objectifs de notre projet de thèse étaient (i) d'améliorer la collection d’isolats d'AfricaRice par de nouvelles collections (ii) de développer des outils de diagnostic et de génotypage. Nos résultats ont montré que les bactéries capables de produire des symptômes flétrissement bactérien du riz en Afrique forment un complexe d'espèces composé principalement de P. ananatis , P. stewartii et P. agglomerans . Différents types d'outils de diagnostic et de caractérisations ont ensuite été développés et validés. Les résultats de l'utilisation de ces outils ont permis de mettre en évidence la présence de ce complexe bactérien dans plusieurs pays africains et ont fourni des détails sur sa structuration géographique. En effet, nous avons diagnostiqué un complexe d'espèces bactériennes, phytopathogènes du riz dans 11 pays africains (Bénin, Burkina Faso, Burundi, Ghana, Côte d'Ivoire, Mali, Niger, Nigeria, Sénégal, Tanzanie, Togo). En plus, nous avons analysé trois génomes de P. ananatis africains puis développé, évalué et validé des outils d'analyse VNTR à locus multiples. Les résultats ont fourni un aperçu des relations phylogénétiques qui existent entre les souches de P. ananatis isolées du riz et les souches provenant d'autres sources (plantes, animaux et environnement). En effet, les résultats préliminaires ont montré que plusieurs souches de P. ananatis isolées du riz en Afrique, en Asie et en Europe étaient phylogénétiquement liées et formaient un groupe qui les différenciait de P. ananatis d'autres sources. En conclusion, les résultats de ce projet de thèse constituent une base solide pour de futures études de Pantoea spp.en Afrique. ii Kossi KINI PhD manuscript 22/05/2018 Abstract Among the 24 species of Pantoea described so far, five have been reported up to 46 times in 21 countries as phytopathogens of at least 31 crop plants. Indeed, P. ananatis and P. agglomerans have been reported as phytopathogenic bacteria for at least ten economically important crops, including rice. Recently, Africa Rice Center and its partners have suspected the presence of an emerging bacterium that causes rice bacterial blight in several African countries. The causal agent has been confirmed as belonging to the genus Pantoea . The objectives of our thesis project were (i) to improve the collection of existing AfricaRice isolates through new collections, and (ii) to develop diagnostic and genotyping tools. Our results showed that bacteria capable of producing bacterial blight symptoms of rice in Africa form a species complex composed mainly of P. ananatis , P. stewartii and P. agglomerans . Various types of diagnostic tools were developed and validated. The results obtained using these tools helped to point out the presence of this bacterial complex in several African countries. Moreover, it provided details on its geographical structure. As a result, we diagnosed a bacterial species complex, which is phytopathogenic of rice in 11 African countries (Benin, Burkina Faso, Burundi, Ghana, Ivory Coast, Mali, Niger, Nigeria, Senegal, Tanzania, Togo). In addition, we analyzed three genomes of African P. ananatis and developed, evaluated, and validated Multiple Locus VNTR Analysis (MLVA) tools. The data provided insights into the phylogenetic and phylogenomic relationships that exist between P. ananatis strains isolated from rice and strains from other sources (plants, animals and environment). Indeed, preliminary results showed that several strains of P. ananatis isolated from rice in Africa, Asia and Europe were phylogenetically linked and formed a group that differentiated them from P. ananatis from other sources. In conclusion, the results of this thesis project lay a solid foundation for the future studies of Pantoea spp.in Africa. iii Kossi KINI PhD manuscript 22/05/2018 Acknowledgements This project was carried out in sandwich program with a collaboration between Africa Rice Cotonou (Benin) and Research Institute for Development (IRD) Montpellier (France). As such, I would like to give thanks to the management of the two institutes and their directors for having offered me good conditions to work. This project was realized with the financial support of IRD's Research Allocation for Southern Thesis program (ARTS) and International Foundation for Science (IFS) grants. We thank the first officials of ARTS and IFS for their financial support. I would like to give thanks to the President of the jury and all its members for agreeing to evaluate this thesis. Special thanks go to: Þ Dr Valérie VERDIER for allowing me to join her team: Interaction Plantes Microorganismes Environment (IPME). Þ The management of IPME for all the given services and support. Þ The Presidency of Montpellier’s university and the direction of the Doctoral School GAIA for having allowed me to register at UM as PhD student. At the end of this project, I was convinced that thise thesis was far from being a solitary work. It represents a long-term job, and is, therefore, the thread of a slice of life during its duration. Briefly, I couldn't have done this doctoral work without the support of a broad number of people whose generosity, good humor and interest in our thesis allowed me to progress in this delicate "apprentice researcher phase" THANKS, to Ralf KOEBNIK and Drissa SILUE, my two thesis co-supervisors who form a complementary duet, which made our thesis a completed work. Without your involvement and dedication in obtaining this scholarship for my thesis, I do not know what my wife will, my children and I would have been right now. As a Christian, I request every time that God provides you an excellent health and long life. With Drissa, I have understood what the following expressions mean: Producing results by being able to work autonomously under pressure, resistant to stress, be tactful and diplomatic in the exercise of your duties. With Ralf, I have understood what lies behind the expressions, demonstrating initiative and liking teamwork, having the ability to plan, organize and put in place effective working procedures, work with flexibility, while having the attention to detail and rigor in the accomplishment of his work. For this reason, during this project, I immersed myself in these expressions and made them my work and life mottoes. I sincerely thank the members of my thesis Committee, who during the three years, were the lighthouse that guided our ship aboard port. Special thanks to Christian Vernière, my Reference for the ED GAIA, for his advice and for sharing his experience with us. I would like to thank all the members of my two teams (GTIPP of UMR IPME in Montpellier in France and the Phytopathology Lab of Africa Rice Cotonou Benin) who allowed me spend these pleasant years in the laboratory. Thank also to all the staff (researcher, engineers, iv Kossi KINI PhD manuscript 22/05/2018 technicians, observers, trainees ...) for their help and their kindness. I extend sincere thanks to the other PhD students and MSc students from both teams. I know, I'm not the most available friend and the most smiling because of the experiences during this thesis but you supported my moods, my awkwardness, the problems and incomprehension generated during all these years. At IRD Montpellier, I address a special thanks to Boris, Emmanuel, Servane, and Charlotte for the discussions and the practical advises. Thanks to Sandrine and Florence for their kindness and availability. To other PhD students and postdocs, past and present, who are: Céline, Mathilde, Tu, Hinda, Alvaro, Jonathan, Taca, Kader, Ganna some thanks for your presence and smiles. I thank all the permanent members of the GTIPP team for their availability.
Recommended publications
  • Characterization of the Aerobic Anoxygenic Phototrophic Bacterium Sphingomonas Sp
    microorganisms Article Characterization of the Aerobic Anoxygenic Phototrophic Bacterium Sphingomonas sp. AAP5 Karel Kopejtka 1 , Yonghui Zeng 1,2, David Kaftan 1,3 , Vadim Selyanin 1, Zdenko Gardian 3,4 , Jürgen Tomasch 5,† , Ruben Sommaruga 6 and Michal Koblížek 1,* 1 Centre Algatech, Institute of Microbiology, Czech Academy of Sciences, 379 81 Tˇreboˇn,Czech Republic; [email protected] (K.K.); [email protected] (Y.Z.); [email protected] (D.K.); [email protected] (V.S.) 2 Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark 3 Faculty of Science, University of South Bohemia, 370 05 Ceskˇ é Budˇejovice,Czech Republic; [email protected] 4 Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 370 05 Ceskˇ é Budˇejovice,Czech Republic 5 Research Group Microbial Communication, Technical University of Braunschweig, 38106 Braunschweig, Germany; [email protected] 6 Laboratory of Aquatic Photobiology and Plankton Ecology, Department of Ecology, University of Innsbruck, 6020 Innsbruck, Austria; [email protected] * Correspondence: [email protected] † Present Address: Department of Molecular Bacteriology, Helmholtz-Centre for Infection Research, 38106 Braunschweig, Germany. Abstract: An aerobic, yellow-pigmented, bacteriochlorophyll a-producing strain, designated AAP5 Citation: Kopejtka, K.; Zeng, Y.; (=DSM 111157=CCUG 74776), was isolated from the alpine lake Gossenköllesee located in the Ty- Kaftan, D.; Selyanin, V.; Gardian, Z.; rolean Alps, Austria. Here, we report its description and polyphasic characterization. Phylogenetic Tomasch, J.; Sommaruga, R.; Koblížek, analysis of the 16S rRNA gene showed that strain AAP5 belongs to the bacterial genus Sphingomonas M. Characterization of the Aerobic and has the highest pairwise 16S rRNA gene sequence similarity with Sphingomonas glacialis (98.3%), Anoxygenic Phototrophic Bacterium Sphingomonas psychrolutea (96.8%), and Sphingomonas melonis (96.5%).
    [Show full text]
  • The 2014 Golden Gate National Parks Bioblitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event
    National Park Service U.S. Department of the Interior Natural Resource Stewardship and Science The 2014 Golden Gate National Parks BioBlitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event Natural Resource Report NPS/GOGA/NRR—2016/1147 ON THIS PAGE Photograph of BioBlitz participants conducting data entry into iNaturalist. Photograph courtesy of the National Park Service. ON THE COVER Photograph of BioBlitz participants collecting aquatic species data in the Presidio of San Francisco. Photograph courtesy of National Park Service. The 2014 Golden Gate National Parks BioBlitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event Natural Resource Report NPS/GOGA/NRR—2016/1147 Elizabeth Edson1, Michelle O’Herron1, Alison Forrestel2, Daniel George3 1Golden Gate Parks Conservancy Building 201 Fort Mason San Francisco, CA 94129 2National Park Service. Golden Gate National Recreation Area Fort Cronkhite, Bldg. 1061 Sausalito, CA 94965 3National Park Service. San Francisco Bay Area Network Inventory & Monitoring Program Manager Fort Cronkhite, Bldg. 1063 Sausalito, CA 94965 March 2016 U.S. Department of the Interior National Park Service Natural Resource Stewardship and Science Fort Collins, Colorado The National Park Service, Natural Resource Stewardship and Science office in Fort Collins, Colorado, publishes a range of reports that address natural resource topics. These reports are of interest and applicability to a broad audience in the National Park Service and others in natural resource management, including scientists, conservation and environmental constituencies, and the public. The Natural Resource Report Series is used to disseminate comprehensive information and analysis about natural resources and related topics concerning lands managed by the National Park Service.
    [Show full text]
  • Succession and Persistence of Microbial Communities and Antimicrobial Resistance Genes Associated with International Space Stati
    Singh et al. Microbiome (2018) 6:204 https://doi.org/10.1186/s40168-018-0585-2 RESEARCH Open Access Succession and persistence of microbial communities and antimicrobial resistance genes associated with International Space Station environmental surfaces Nitin Kumar Singh1, Jason M. Wood1, Fathi Karouia2,3 and Kasthuri Venkateswaran1* Abstract Background: The International Space Station (ISS) is an ideal test bed for studying the effects of microbial persistence and succession on a closed system during long space flight. Culture-based analyses, targeted gene-based amplicon sequencing (bacteriome, mycobiome, and resistome), and shotgun metagenomics approaches have previously been performed on ISS environmental sample sets using whole genome amplification (WGA). However, this is the first study reporting on the metagenomes sampled from ISS environmental surfaces without the use of WGA. Metagenome sequences generated from eight defined ISS environmental locations in three consecutive flights were analyzed to assess the succession and persistence of microbial communities, their antimicrobial resistance (AMR) profiles, and virulence properties. Metagenomic sequences were produced from the samples treated with propidium monoazide (PMA) to measure intact microorganisms. Results: The intact microbial communities detected in Flight 1 and Flight 2 samples were significantly more similar to each other than to Flight 3 samples. Among 318 microbial species detected, 46 species constituting 18 genera were common in all flight samples. Risk group or biosafety level 2 microorganisms that persisted among all three flights were Acinetobacter baumannii, Haemophilus influenzae, Klebsiella pneumoniae, Salmonella enterica, Shigella sonnei, Staphylococcus aureus, Yersinia frederiksenii,andAspergillus lentulus.EventhoughRhodotorula and Pantoea dominated the ISS microbiome, Pantoea exhibited succession and persistence. K. pneumoniae persisted in one location (US Node 1) of all three flights and might have spread to six out of the eight locations sampled on Flight 3.
    [Show full text]
  • (Pentatomidae) DISSERTATION Presented
    Genome Evolution During Development of Symbiosis in Extracellular Mutualists of Stink Bugs (Pentatomidae) DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Alejandro Otero-Bravo Graduate Program in Evolution, Ecology and Organismal Biology The Ohio State University 2020 Dissertation Committee: Zakee L. Sabree, Advisor Rachelle Adams Norman Johnson Laura Kubatko Copyrighted by Alejandro Otero-Bravo 2020 Abstract Nutritional symbioses between bacteria and insects are prevalent, diverse, and have allowed insects to expand their feeding strategies and niches. It has been well characterized that long-term insect-bacterial mutualisms cause genome reduction resulting in extremely small genomes, some even approaching sizes more similar to organelles than bacteria. While several symbioses have been described, each provides a limited view of a single or few stages of the process of reduction and the minority of these are of extracellular symbionts. This dissertation aims to address the knowledge gap in the genome evolution of extracellular insect symbionts using the stink bug – Pantoea system. Specifically, how do these symbionts genomes evolve and differ from their free- living or intracellular counterparts? In the introduction, we review the literature on extracellular symbionts of stink bugs and explore the characteristics of this system that make it valuable for the study of symbiosis. We find that stink bug symbiont genomes are very valuable for the study of genome evolution due not only to their biphasic lifestyle, but also to the degree of coevolution with their hosts. i In Chapter 1 we investigate one of the traits associated with genome reduction, high mutation rates, for Candidatus ‘Pantoea carbekii’ the symbiont of the economically important pest insect Halyomorpha halys, the brown marmorated stink bug, and evaluate its potential for elucidating host distribution, an analysis which has been successfully used with other intracellular symbionts.
    [Show full text]
  • First Report of Pathogenic Bacterium Kalamiella Piersonii Isolated
    pathogens Article First Report of Pathogenic Bacterium Kalamiella piersonii Isolated from Urine of a Kidney Stone Patient: Draft Genome and Evidence for Role in Struvite Crystallization 1, 1,2, 1, Punchappady Devasya Rekha *, Asif Hameed y, Muhammed A. P. Manzoor y , 1, 1 1 1, 1, Mangesh V. Suryavanshi y , Sudeep D. Ghate , A. B. Arun , Sneha S. Rao y, Athmika y, Sukesh Kumar Bajire 1, M. Mujeeburahiman 3 and C.-C. Young 2 1 Yenepoya Research Centre, Yenepoya Deemed to be University, Mangalore 575018, India; [email protected] (A.H.); [email protected] (M.A.P.M.); [email protected] (M.V.S.); [email protected] (S.D.G.); [email protected] (A.B.A.); [email protected] (S.S.R.); [email protected] (A.); [email protected] (S.K.B.) 2 Department of Soil and Environmental Sciences, College of Agriculture and Natural Resources, National Chung Hsing University, Taichung 40227, Taiwan; [email protected] 3 Department of Urology, Yenepoya Medical College and Hospital, Yenepoya Deemed to be University, Mangalore 575018, India; [email protected] * Correspondence: [email protected] These authors contributed equally to this work. y Received: 24 July 2020; Accepted: 17 August 2020; Published: 29 August 2020 Abstract: Uropathogenic bacteria are widely distributed in the environment and urinary tract infection is implicated in kidney stone disease. Here, we report on a urease negative bacterium Kalamiella piersonii (strain YU22) isolated from the urine of a struvite stone (MgNH PO 6H O) 4 4· 2 patient. The closest species, K. piersonii IIIF1SW-P2T was reported from International Space Station samples.
    [Show full text]
  • Clinical Effects of Orally Administered Lipopolysaccharide Derived from Pantoea Agglomerans on Malignant Tumors
    ANTICANCER RESEARCH 36: 3747-3752 (2016) Clinical Effects of Orally Administered Lipopolysaccharide Derived from Pantoea agglomerans on Malignant Tumors ATSUTOMO MORISHIMA1 and HIROYUKI INAGAWA2,3 1Lavita Medical Clinic, Hiradai-cho, Moriguchi-shi, Osaka, Japan; 2Faculty of Medicine, Kagawa University, Miki-cho, Kita-gun, Kagawa, Japan; 3Research Institute for Healthy Living, Niigata University of Pharmacy and Applied Life Sciences, Niitsu-shi, Niigata, Japan Abstract. Background/Aim: It has been reported that oral contains macrophage-activating substances derived from administration of lipopolysaccharide (LPS) recovers an concomitant Gram-negative plant-associated bacteria, such as individual’s immune condition and induces the exclusion of Pantoea agglomerans. LPS of this bacterium is a major foreign matter, inflammation and tissue repair. We orally macrophage-activating substance (2, 3). It has been reported that administered LPS from the wheat symbiotic bacteria Pantoea Pantoea agglomerans were found to be symbiotic in many agglomerans, which has been ingested and proven to be safe, plants, such as wheat and brown rice (4, 5). Oral administration to cancer patients. Our observation of clinical improvements of LPS from Pantoea aggomerans amplified phagocytic activity resulting from this treatment are reported. Patients and of peritoneal macrophages through TLR 4 (6). It has been Methods: Sixteen cancer patients who exhibited declined small reported in animal models and clinical studies of humans that intestinal immune competence were treated between June and oral intake of LPS from Pantoea agglomerans can prevent the September, 2015. Diagnosis was based on our evaluation on onset of type I diabetes, control blood glucose levels in type II small intestinal immune competence and macrophage activity.
    [Show full text]
  • A Review of Alocasia (Araceae: Colocasieae) for Thailand Including a Novel Species and New Species Records from South-West Thailand
    THAI FOR. BULL. (BOT.) 36: 1–17. 2008. A review of Alocasia (Araceae: Colocasieae) for Thailand including a novel species and new species records from South-West Thailand PETER C. BOYCE* ABSTRACT. A review of Alocasia in Thailand is presented. One new species (A. hypoleuca) and three new records (A. acuminata, A. hypnosa & A. perakensis) are reported. A key to Alocasia in Thailand is presented and the new species is illustrated. INTRODUCTION Alocasia is a genus of in excess of 100 species of herbaceous, laticiferous, diminutive to gigantic, usually robust herbs. The genus has recently been revised for New Guinea (Hay, 1990), Australasia (Hay & Wise, 1991), West Malesia and Sulawesi (Hay, 1998), the Philippines (Hay, 1999) while post main-treatment novelties have been described for New Guinea (Hay, 1994) Borneo (Hay, Boyce & Wong, 1997; Hay, 2000; Boyce, 2007) & Sulawesi (Yuzammi & Hay, 1998). Currently the genus is least well understood in the trans-Himalaya (NE India to SW China) including the northern parts of Burma, Thailand, Lao PDR and Vietnam with only the flora of Bhutan (Noltie, 1994) partly covering this range. In the absence of extensive fieldwork the account presented here for Thailand can at best be regarded as provisional. STRUCTURE & TERMINOLOGY Alocasia plants are often complex in vegetative and floral structure and some notes on their morphology (based here substantially on Hay, 1998) are useful to aid identification. The stem of Alocasia, typically of most Araceae, is a physiognomically unbranched sympodium. The number of foliage leaves per module is variable between and within species and individuals, but during flowering episodes in some species it may be reduced to one.
    [Show full text]
  • Complete Genome Sequence of Pantoea Ananatis Strain NN08200, an Endophytic Bacterium Isolated from Sugarcane
    Current Microbiology https://doi.org/10.1007/s00284-020-01972-x Complete Genome Sequence of Pantoea ananatis Strain NN08200, an Endophytic Bacterium Isolated from Sugarcane Quan Zeng1 · GuoYing Shi1 · ZeMei Nong1 · XueLian Ye1 · ChunJin Hu1 Received: 19 July 2019 / Accepted: 27 March 2020 © The Author(s) 2020 Abstract Stain NN08200 was isolated from the surface-sterilized stem of sugarcane grown in Guangxi province of China. The stain was Gram-negative, facultative anaerobic, non-spore-forming bacteria. The complete genome SNP-based phylogenetic analysis indicate that NN08200 is a member of the genus Pantoea ananatis. Here, we summarize the features of strain NN08200 and describe its complete genome. The genome contains a chromosome and two plasmids, in total 5,176,640 nucleotides with 54.76% GC content. The chromosome genome contains 4598 protein-coding genes, and 135 ncRNA genes, including 22 rRNA genes, 78 tRNA genes and 35 sRNA genes, the plasmid 1 contains 149 protein-coding genes and the plasmid 2 contains 308 protein-coding genes. We identifed 130 tandem repeats, 101 transposon genes, and 16 predicted genomic islands on the chromosome. We found an indole pyruvate decarboxylase encoding gene which involved in the biosynthesis of the plant hormone indole-3-acetic acid, it may explain the reason why NN08200 stain have growth-promoting efects on sugarcane. Considering the pathogenic potential and its versatility of the species of the genus Pantoea, the genome information of the strain NN08200 give us a chance to determine the genetic background of interactions between endophytic enterobacteria and plants. Introduction and for the development of agricultural and environmental products [9, 10].
    [Show full text]
  • The Rice Sheath Rot Pathogen Pseudomonas Fuscovaginae;
    Neuroscience Area - PhD course in MOLECULAR BIOLOGY The rice sheath rot pathogen Pseudomonas fuscovaginae; microbiome and cell-cell signalling studies Candidate: Supervisor: Samson Musonerimana Vittorio Venturi, PhD. Academic year 2019-2020 2 Abstract Rice sheath rot has been mainly associated with the bacterial pathogen Pseudomonas fuscovaginae and in some cases to the fungal pathogen Sarocladium oryzae; it is yet unclear if they are part of a complex disease. In this thesis the bacterial and fungal community associated with rice sheath rot symptomatic and asymptomatic rice plants was determined/studied with the main aim to shed light on the pathogen(s) causing rice sheath rot. Three experimental work chapters are presented; the first concerns the pathobiome and microbiome performed on rice plant samples collected from different rice varieties in two locations (highland and lowland) in two rice-growing seasons (wet and dry season) in Burundi. The results have showed that in symptomatic samples the bacterial Pseudomonas genus was prevalent in highland in both rice-growing seasons and was not affected by rice plant varieties. Pseudomonas sequence reads displayed a significant high similarity to Pseudomonas fuscovaginae indicating that it is the causal agent of rice sheath rot as previously reported. The fungal Sarocladium genus was on the other hand prevalent in symptomatic samples in lowland only in the wet season; the sequence reads were most significantly similar to Sarocladium oryzae. These studies showed that plant microbiome analysis is a very useful approach in determining the microorganisms involved in a plant disease. The second experimental chapter presents the culturable microbiome on rice sheath asymptomatic samples from highland where P.
    [Show full text]
  • In Vitro Pharmacology Studies on Alocasia Sanderiana W. Bull
    Journal of Pharmacognosy and Phytochemistry 2016; 5(2): 114-120 E-ISSN: 2278-4136 P-ISSN: 2349-8234 JPP 2016; 5(2): 114-120 In vitro pharmacology studies on Alocasia Sanderiana W. Received: 26-01-2016 Accepted: 27-02-2016 Bull P Selvakumar P Selvakumar, Devi Kaniakumari, V Loganathan Department of Chemistry, Periyar University, Salem, Tamilnadu, India. Abstract Objective: This research is to investigate the anti-inflammatory and antidiabetic activity of ethanolic Devi Kaniakumari leaf, stem and root tubers extracts of Alocasia Sanderiana W. Bull. Department of Chemistry, Methods: Anti-inflammatory activity of ethanolic extracts of leaf, stem and root tubers of Alocasia Quaid-E-Millath Government Sanderiana W. Bull was evaluated using proteinase inhibiting activity and protein denaturation inhibiting College for women, Chennai, activity methods. Asprin 20-100 μg/mL was used as standards for both the methods. Antidiabetic activity India. was measured using in vitro α-amylase inhibiting activity and in vitro α-glucosidase inhibition assay methods. Acarbose 20-100 μg/mL was used as standard for both the methods. V Loganathan Department of Chemistry, Results: Leaf shows more anti-inflammatory and antidiabetic activity than the stem and root. Periyar University, Salem, Conclusion: Alocasia sanderiana W. Bull plant shows anti-inflammatory and antidiabetic activity due to Tamilnadu, India. presence of various phytoconstituents and it could be a source of new compounds. Keywords: Anti-inflammatory activity, Antidiabetic activity, Araceae, Alocasia sanderiana 1. Introduction Alocasia sanderiana W. Bull is a plant in the Araceae family. Alocasia Sanderiana W. Bull is also known as the kris plant because of the resemblance of its leaf edges to the wavy blade of the kalis dagger (also known as kris plant).
    [Show full text]
  • Table S4. Phylogenetic Distribution of Bacterial and Archaea Genomes in Groups A, B, C, D, and X
    Table S4. Phylogenetic distribution of bacterial and archaea genomes in groups A, B, C, D, and X. Group A a: Total number of genomes in the taxon b: Number of group A genomes in the taxon c: Percentage of group A genomes in the taxon a b c cellular organisms 5007 2974 59.4 |__ Bacteria 4769 2935 61.5 | |__ Proteobacteria 1854 1570 84.7 | | |__ Gammaproteobacteria 711 631 88.7 | | | |__ Enterobacterales 112 97 86.6 | | | | |__ Enterobacteriaceae 41 32 78.0 | | | | | |__ unclassified Enterobacteriaceae 13 7 53.8 | | | | |__ Erwiniaceae 30 28 93.3 | | | | | |__ Erwinia 10 10 100.0 | | | | | |__ Buchnera 8 8 100.0 | | | | | | |__ Buchnera aphidicola 8 8 100.0 | | | | | |__ Pantoea 8 8 100.0 | | | | |__ Yersiniaceae 14 14 100.0 | | | | | |__ Serratia 8 8 100.0 | | | | |__ Morganellaceae 13 10 76.9 | | | | |__ Pectobacteriaceae 8 8 100.0 | | | |__ Alteromonadales 94 94 100.0 | | | | |__ Alteromonadaceae 34 34 100.0 | | | | | |__ Marinobacter 12 12 100.0 | | | | |__ Shewanellaceae 17 17 100.0 | | | | | |__ Shewanella 17 17 100.0 | | | | |__ Pseudoalteromonadaceae 16 16 100.0 | | | | | |__ Pseudoalteromonas 15 15 100.0 | | | | |__ Idiomarinaceae 9 9 100.0 | | | | | |__ Idiomarina 9 9 100.0 | | | | |__ Colwelliaceae 6 6 100.0 | | | |__ Pseudomonadales 81 81 100.0 | | | | |__ Moraxellaceae 41 41 100.0 | | | | | |__ Acinetobacter 25 25 100.0 | | | | | |__ Psychrobacter 8 8 100.0 | | | | | |__ Moraxella 6 6 100.0 | | | | |__ Pseudomonadaceae 40 40 100.0 | | | | | |__ Pseudomonas 38 38 100.0 | | | |__ Oceanospirillales 73 72 98.6 | | | | |__ Oceanospirillaceae
    [Show full text]
  • Fl. China 23: 75–79. 2010. 25. ALOCASIA (Schott) G. Don in Sweet, Hort. Brit., Ed. 3, 631. 1839, Nom. Cons., Not Necker Ex Ra
    Fl. China 23: 75–79. 2010. 25. ALOCASIA (Schott) G. Don in Sweet, Hort. Brit., ed. 3, 631. 1839, nom. cons., not Necker ex Rafinesque (1837). 海芋属 hai yu shu Li Heng (李恒 Li Hen); Peter C. Boyce Colocasia sect. Alocasia Schott in Schott & Endlicher, Melet. Bot. 18. 1832; Ensolenanthe Schott; Panzhuyuia Z. Y. Zhu; Schizocasia Schott ex Engler; Xenophya Schott. Herbs, evergreen, rarely seasonally dormant, latex-bearing, medium sized to rarely arborescent and gigantic. Stem thick, often hypogeal, sometimes stoloniferous and bulbiferous, epigeal stem usually erect and later decumbent, rather less often elongated and creeping. Leaves few to several in terminal crown, less often scattered, sometimes each subtended by a cataphyll; petiole long [sometimes minutely asperous, minutely puberulent, or glandular], sheath relatively long; leaf blade sometimes pubescent abaxially, juvenile blade peltate, at maturity usually sagittate, less often ± hastate or cordate, but remaining peltate in some species, margin entire or sinuate [or slightly to deeply pinnatifid]; posterior divisions ovate or triangular; basal ribs well developed, wax glands present in axils of primary lateral veins and midrib; primary lateral veins pinnate, forming submarginal collective vein, 1 or 2 closely adjacent marginal veins also present, secondary and tertiary lateral veins arising from primaries at a wide angle, then arching strongly toward leaf margin, sometimes forming interprimary veins, higher order venation reticulate. Inflorescences 1 or 2 to many in each floral sympodium; peduncle usually shorter than petioles. Spathe persistent, erect, convolute, gaping only basally, strongly con- stricted between tube and blade, rarely not; tube with convolute margins, shorter than limb, ovoid or oblong, persistent and then splitting irregularly in fruit; limb oblong, usually boat-shaped, rarely arching, at anthesis at first erect, then reflexing and later usually deciduous.
    [Show full text]