Channel Geomorphology Along the Fluvial- Tidal Transition, Santee River, USA
Fluvial-tidal transition channel Channel geomorphology along the fluvial- tidal transition, Santee River, USA Raymond Torres† Department of Earth and Ocean Sciences, University of South Carolina, 701 Sumter Street, EWS617, Columbia, South Carolina 29208, USA ABSTRACT INTRODUCTION Pittaluga et al., 2015). Since terrestrial runoff, tidal forcing, and storm surge vary with time, There exists a rich understanding of chan- Along the river continuum, a single channel the tidal effects on channel form vary along the nel forms and processes for rivers with uni- can transition from fluvial to tidal dominance in channel (Wright et al., 1973; Dalrymple and directional flows, and for their estuarine flow and sedimentary processes, and in benthic Choi, 2007). For instance, river flow responses components with bidirectional flows. On the ecology (Dalrymple and Choi, 2007; Jablon- to tidal oscillations can vary temporally with lo- other hand, complementary insight on the ski and Dalrymple, 2016). In particular, many cal weather effects (<day), dam releases (days), transitional reach linking these flows has not coastal river systems experience the combined terrestrial flood waves (weeks), seasonal effects been well developed. This study highlights influence of terrestrial runoff processes and ma- (months), or changes in climate (decades). The analyses of high-resolution, high-accuracy rine storms and tides (e.g., Wright et al., 1973; way in which these conditions translate to tide- bathymetric surveys along a coastal plain Bokuniewicz, 1995; Ensign et al., 2013; Sassi influenced channel geomorphology remains river at 30–94 km upstream of the estuary and Hoitink, 2013), giving rise to at-a-station largely unexplored (Phillips and Slattery, 2007; mouth.
[Show full text]