Alewives on the Little Androscoggin: an Intersection of Politics and Ecology Jordan J

Total Page:16

File Type:pdf, Size:1020Kb

Alewives on the Little Androscoggin: an Intersection of Politics and Ecology Jordan J Bates College SCARAB Community Engaged Research Reports Environmental Studies 12-12-2013 Alewives on the Little Androscoggin: An Intersection of Politics and Ecology Jordan J. Buetow Ashleen O'Brien Benjamin James McCormack Hallie Grossman Follow this and additional works at: http://scarab.bates.edu/community_engaged_research Recommended Citation Buetow, Jordan J.; O'Brien, Ashleen; McCormack, Benjamin James; and Grossman, Hallie, "Alewives on the Little Androscoggin: An Intersection of Politics and Ecology" (2013). Community Engaged Research Reports. 5. http://scarab.bates.edu/community_engaged_research/5 This Article is brought to you for free and open access by the Environmental Studies at SCARAB. It has been accepted for inclusion in Community Engaged Research Reports by an authorized administrator of SCARAB. For more information, please contact [email protected]. Alewives on the Little Androscoggin: An Intersection of Politics and Ecology Jordan Buetow, Ashleen O’Brien, Ben McCormack, Hallie Grossman ENVR 417 12/12/13 1 Executive Summary In cooPeration with the Androscoggin River Alliance (ARA) our caPstone grouP undertook an assignment to work towards restoring alewives to the Little Androscoggin watershed. In 1995, due to the concern of negative impacts to the economically important bass fishery, a state law was Passed that banned the stocking of alewives in Hogan and Whitney Ponds. In 2019 the first two dams on the Little Androscoggin River, Lower and UPPer Barker Dams, will be uP for relicensing by the Federal Energy Regulatory Commission (FERC) and fish Passages will likely be installed to allow Atlantic salmon to migrate uPstream. Since alewives will be able to Pass the dams as well and enter the Little Androscoggin watershed, it is necessary to overturn the anti-alewife legislation to prevent any conflict. To aid the ARA in these efforts various research regarding the issue was conducted. The legislative history of the 1995 alewife bill and a similar anti-alewife case on the St. Croix River were gathered from the Maine State Law and Legislative Library. Detailed research was also done on the ecological, economic, and historical values of alewives through review of Primary literature, and interviews with biologists and fisheries sPecialists to be summarized in an education Pamphlet for distribution in Oxford County. Landowner information for Plots on Hogan and Whitney Ponds was gathered so Pamphlets could be mailed to the owners. Research revealed that alewives have no negative impact on water quality or bass fisheries. They are actually beneficial to water quality and critical sPecies to the food chain and many ecosystem functions, such as restoring the dePleted marine groundfish fisheries. They also are a historically important fish to the state of maine and have the potential to create a profitable industry if restored. In the legislative histories for the Hogan and Whitney Pond case of 1995 and St. Croix River case of 2013, the 1995 case showed what ideas and evidence the ARA must combat to overturn the legislation. The 2013 case provided scientific evidence that shows alewives do not harm the ecosystem or bass fisheries. The finding of this research suggest that if planned well, there should be enough scientific and historical data to change the minds of alewife antagonists. Looking ahead, the ARA Plans to sPend the next two years focusing on educating elected officials and the Public about alewives as much as Possible so that overturning the legislation can be as fast and Possible and be met with minimal resistance. Some more scientific research to investigate is the effects of a fully restored PoPulation of alewives on zooPlankton communities, which are resPonsible for the uPtake of PhosPhorus in lakes. This is important information to know before making claims that alewives will reduce PhosPhorus loading and algal blooms in the Little Androscoggin watershed. Eventually, a bill will be ProPosed that will hopefully overturn the current legislation, and when fish ladders are installed in the dams on the Little Androscoggin River the watershed will once again suPPort a robust Population of alewives whose benefits will be widespread through the ecosystem and community. 2 Table of Contents Executive Summary……………………………………………………………………………………………...2 Separate Lists of Tables and Figures……………………………………………………………………..3 Introduction…………………………………………………………………………………………………….......4 Methodological ApProach…………………………………………………………………………………… 6 Results and Discussion…………………………………………………………………………………………7 Outcomes and Implications………………………………………………………………………………...20 Future Steps………………………………………………………………………………………………...…….21 ApPendices………………………………………………………………………………………………………..26 Literature Review ……………………………………………………………………………………………...26 Detailed Methods ………………………………………………………………………………………………36 Graphs ………………………………………………………………………………………………………………40 Map …………………………………………………………………………………………………………………..42 Informational Brochure …………………………………………………………………………………..…43 Legislative Summaries ……………………………………………………………………………………… 44 Landowner Database ……………..…………………………………………………………………….……55 Separate List of Tables and Figures (Appendix C) Figure 1. Land use of Properties surrounding Hogan and Whitney Ponds…………….40 Figure 2. State residency of Plot owners…………………………………………………………….40 Figure 3. Full time residents on ProPerty ………………………………………………………….41 Figure 4. MaP of Hogan and Whitney Pond Landowners. ……………………………………42 3 Introduction In 2019 two of the lower dams on the Little Androscoggin River, uPPer and lower Barker Dams, are uP for relicensing by the Federal Energy Regulatory Commission (FERC). Part of the FERC relicensing Project will likely include discussion of fish Passage, because neither of these hydroelectric dams currently allow for fish passage. On the federal level, fish passage will likely be required at these dams because Atlantic salmon, which are listed under the Endangered SPecies Act, have been tracked sPending significant amounts of time at the base of Lower Barker Dam (Ward, Personal communication 12/10/13). This behavior is evidence of a desire for the salmon to move uPstream and demands the installation of a fish Passage by the Endangered SPecies Act (Ward, Personal communication 12/10/13). The problem is that the waters of the Little Androscoggin are connected to the waters of Hogan, Whitney, and Tripp Ponds in Oxford, Maine. In 1995, state legislation was passed which banned the stocking of alewives in these ponds and their adjacent waters, but a fish Passage would allow all tyPes of fish to swim uP the Little Androscoggin. This Poses a conflict of state and federal laws. To combat this Problem, the Androscoggin River Alliance (ARA) hoPes to overturn the Maine state legislation disallowing reintroduction of alewives in Hogan and Whitney Ponds, with the goal of Preventing conflicting laws from impeding a swift Process of dam relicensing and fish Passageway construction. This is Part of the ARA’s larger goal of ecosystem restoration in the Androscoggin. It is important to eliminate this legislative conflict and to engage the community in a discussion about the restoration of alewives for three main reasons. The first is ecological - as a 4 buffer species, a net exporter of phosphorous, and a source of food for larger species (Townsend 2013), alewives are an integral piece of restoring a functioning Androscoggin ecosystem to the same level that existed before the large-scale develoPment of mills. The restoration of the ecosystem is in the best interest of the river itself, the People living around the river, and the functioning of the connected marine ecosystem. The second reason is economic, as alewives have the Potential to be a small though Profitable industry for Androscoggin fishermen (Brown et al. 2010). The third has to do with engaging the community in environmental issues that impact them. By Providing the resources to educate community members and take a Political stance on the restoration of alewives, our work with the ARA will have the effect of creating a dialogue among stakeholders about the Possibilities of native species restoration as a whole. This will encourage individuals to consider their relationshiP to their environment (sPecifically their river) in a Political and ecological sense. As a grouP, we undertook a series of research and Product-oriented tasks to address the goal of educating landowners about the importance of alewives in the Androscoggin watershed. In order to educate these landowners, we undertook three main Projects: gathering and summarizing legislative documents (see appendix F) creating a landowner database (see appendix G), and creating educational materials for landowners (see aPPendix E). The final goal for the dissemination of this information is to overturn the law which bans alewives from Hogan and Whitney ponds, which carries vast implications that touch on the education of the community, ecosystem health, and economic increase. 5 Methodological Approach To create the database for landowner information around Hogan and Whitney Ponds we had to take a couple trips to the Oxford town office. There we began by finding the maPs of Hogan and Whitney Ponds with the ProPerty lots labeled. Each waterfront property parcel was looked up in a book and data was recorded for maP number, lot number, landowner name, ProPerty address, land use, owner’s Primary mailing address, date of last transfer, assessed land value, total ProPerty value, and taxes Paid on the ProPerty. All data was compiled in an Excel
Recommended publications
  • West Branch Penobscot Fishing Report
    West Branch Penobscot Fishing Report Tsarism and authorial Cal blacktops, but Tomlin interminably laving her Bodoni. Converted Christopher coups dumbstruck.horridly. Vasiform Joseph wambled no spindrift exhausts clerically after Elton temps meritoriously, quite Read across for example of the future uses and whitefish, west branch of things like anglers There certainly are patterns, year to year, day to day, but your fishing plans always need to be flexible this time of year. Maine has an equal vote with other states on the ASMFC Striped Bass Board, which meets next Tuesday, Feb. New fishing destinations in your area our Guiding! Continue reading the results are in full swing and feeding fish are looking. Atlantic Salmon fry have been stocked from the shores of Bowlin Camps Lodge each year. East Outlet dam is just as as! Of which flow into Indian Pond reach Season GEAR Species Length Limit Total Bag. Anyone ever fish the East and West Branches of Kennebec. And they provide a great fish for families to target. No sign of the first big flush of young of the year alewives moving down river, but we are due any day now. Good technique and local knowledge may be your ticket to catching trout. Salmon, smelt, shad, and alewife were historically of high value to the commercial fishing industry. As the tide dropped out of this bay there was one pack of striped bass that packed themselves so tightly together and roamed making tight circles as they went. Food, extra waterproof layers, and hot drinks are always excellent choices. John watershed including the Northwest, Southwest, and Baker branches, and the Little and Big Black Rivers.
    [Show full text]
  • NH Trout Stocking - April 2018
    NH Trout Stocking - April 2018 Town WaterBody 3/26‐3/30 4/02‐4/06 4/9‐4/13 4/16‐4/20 4/23‐4/27 4/30‐5/04 ACWORTH COLD RIVER 111 ALBANY IONA LAKE 1 ALLENSTOWN ARCHERY POND 1 ALLENSTOWN BEAR BROOK 1 ALLENSTOWN CATAMOUNT POND 1 ALSTEAD COLD RIVER 1 ALSTEAD NEWELL POND 1 ALSTEAD WARREN LAKE 1 ALTON BEAVER BROOK 1 ALTON COFFIN BROOK 1 ALTON HURD BROOK 1 ALTON WATSON BROOK 1 ALTON WEST ALTON BROOK 1 AMHERST SOUHEGAN RIVER 11 ANDOVER BLACKWATER RIVER 11 ANDOVER HIGHLAND LAKE 11 ANDOVER HOPKINS POND 11 ANTRIM WILLARD POND 1 AUBURN MASSABESIC LAKE 1 1 1 1 BARNSTEAD SUNCOOK LAKE 1 BARRINGTON ISINGLASS RIVER 1 BARRINGTON STONEHOUSE POND 1 BARTLETT THORNE POND 1 BELMONT POUT POND 1 BELMONT TIOGA RIVER 1 BELMONT WHITCHER BROOK 1 BENNINGTON WHITTEMORE LAKE 11 BENTON OLIVERIAN POND 1 BERLIN ANDROSCOGGIN RIVER 11 BRENTWOOD EXETER RIVER 1 1 BRISTOL DANFORTH BROOK 11 BRISTOL NEWFOUND LAKE 1 BRISTOL NEWFOUND RIVER 11 BRISTOL PEMIGEWASSET RIVER 11 BRISTOL SMITH RIVER 11 BROOKFIELD CHURCHILL BROOK 1 BROOKFIELD PIKE BROOK 1 BROOKLINE NISSITISSIT RIVER 11 CAMBRIDGE ANDROSCOGGIN RIVER 1 CAMPTON BOG POND 1 CAMPTON PERCH POND 11 CANAAN CANAAN STREET LAKE 11 CANAAN INDIAN RIVER 11 NH Trout Stocking - April 2018 Town WaterBody 3/26‐3/30 4/02‐4/06 4/9‐4/13 4/16‐4/20 4/23‐4/27 4/30‐5/04 CANAAN MASCOMA RIVER, UPPER 11 CANDIA TOWER HILL POND 1 CANTERBURY SPEEDWAY POND 1 CARROLL AMMONOOSUC RIVER 1 CARROLL SACO LAKE 1 CENTER HARBOR WINONA LAKE 1 CHATHAM BASIN POND 1 CHATHAM LOWER KIMBALL POND 1 CHESTER EXETER RIVER 1 CHESTERFIELD SPOFFORD LAKE 1 CHICHESTER SANBORN BROOK
    [Show full text]
  • Penobscot Rivershed with Licensed Dischargers and Critical Salmon
    0# North West Branch St John T11 R15 WELS T11 R17 WELS T11 R16 WELS T11 R14 WELS T11 R13 WELS T11 R12 WELS T11 R11 WELS T11 R10 WELS T11 R9 WELS T11 R8 WELS Aroostook River Oxbow Smith Farm DamXW St John River T11 R7 WELS Garfield Plt T11 R4 WELS Chapman Ashland Machias River Stream Carry Brook Chemquasabamticook Stream Squa Pan Stream XW Daaquam River XW Whitney Bk Dam Mars Hill Squa Pan Dam Burntland Stream DamXW Westfield Prestile Stream Presque Isle Stream FRESH WAY, INC Allagash River South Branch Machias River Big Ten Twp T10 R16 WELS T10 R15 WELS T10 R14 WELS T10 R13 WELS T10 R12 WELS T10 R11 WELS T10 R10 WELS T10 R9 WELS T10 R8 WELS 0# MARS HILL UTILITY DISTRICT T10 R3 WELS Water District Resevoir Dam T10 R7 WELS T10 R6 WELS Masardis Squapan Twp XW Mars Hill DamXW Mule Brook Penobscot RiverYosungs Lakeh DamXWed0# Southwest Branch St John Blackwater River West Branch Presque Isle Strea Allagash River North Branch Blackwater River East Branch Presque Isle Strea Blaine Churchill Lake DamXW Southwest Branch St John E Twp XW Robinson Dam Prestile Stream S Otter Brook L Saint Croix Stream Cox Patent E with Licensed Dischargers and W Snare Brook T9 R8 WELS 8 T9 R17 WELS T9 R16 WELS T9 R15 WELS T9 R14 WELS 1 T9 R12 WELS T9 R11 WELS T9 R10 WELS T9 R9 WELS Mooseleuk Stream Oxbow Plt R T9 R13 WELS Houlton Brook T9 R7 WELS Aroostook River T9 R4 WELS T9 R3 WELS 9 Chandler Stream Bridgewater T T9 R5 WELS TD R2 WELS Baker Branch Critical UmScolcus Stream lmon Habitat Overlay South Branch Russell Brook Aikens Brook West Branch Umcolcus Steam LaPomkeag Stream West Branch Umcolcus Stream Tie Camp Brook Soper Brook Beaver Brook Munsungan Stream S L T8 R18 WELS T8 R17 WELS T8 R16 WELS T8 R15 WELS T8 R14 WELS Eagle Lake Twp T8 R10 WELS East Branch Howe Brook E Soper Mountain Twp T8 R11 WELS T8 R9 WELS T8 R8 WELS Bloody Brook Saint Croix Stream North Branch Meduxnekeag River W 9 Turner Brook Allagash Stream Millinocket Stream T8 R7 WELS T8 R6 WELS T8 R5 WELS Saint Croix Twp T8 R3 WELS 1 Monticello R Desolation Brook 8 St Francis Brook TC R2 WELS MONTICELLO HOUSING CORP.
    [Show full text]
  • The Following Document Comes to You From
    MAINE STATE LEGISLATURE The following document is provided by the LAW AND LEGISLATIVE DIGITAL LIBRARY at the Maine State Law and Legislative Reference Library http://legislature.maine.gov/lawlib Reproduced from scanned originals with text recognition applied (searchable text may contain some errors and/or omissions) ACTS AND RESOLVES AS PASSED BY THE Ninetieth and Ninety-first Legislatures OF THE STATE OF MAINE From April 26, 1941 to April 9, 1943 AND MISCELLANEOUS STATE PAPERS Published by the Revisor of Statutes in accordance with the Resolves of the Legislature approved June 28, 1820, March 18, 1840, March 16, 1842, and Acts approved August 6, 1930 and April 2, 193I. KENNEBEC JOURNAL AUGUSTA, MAINE 1943 PUBLIC LAWS OF THE STATE OF MAINE As Passed by the Ninety-first Legislature 1943 290 TO SIMPLIFY THE INLAND FISHING LAWS CHAP. 256 -Hte ~ ~ -Hte eOt:l:llty ffi' ft*; 4tet s.e]3t:l:ty tfl.a.t mry' ~ !;;llOWR ~ ~ ~ ~ "" hunting: ffi' ftshiRg: Hit;, ffi' "" Hit; ~ mry' ~ ~ ~, ~ ft*; eounty ~ ft8.t rett:l:rRes. ~ "" rC8:S0R8:B~e tffi:re ~ ft*; s.e]38:FtaFe, ~ ~ ffi" 5i:i'ffi 4tet s.e]3uty, ~ 5i:i'ffi ~ a-5 ~ 4eeme ReCCSS8:F)-, ~ ~ ~ ~ ~ ffi'i'El, 4aH ~ eRtitles. 4E; Fe8:50nable fee5 ffi'i'El, C!E]3C::lSCS ~ ft*; sen-ices ffi'i'El, ~ ft*; ffi4s, ~ ~ ~ ~ -Hte tFeasurcr ~ ~ eouRty. BefoFc tfte sffi4 ~ €of' ~ ~ 4ep­ i:tt;- ~ ffle.t:J:.p 8:s.aitional e1E]3cfisc itt -Hte eM, ~ -Hte ~ ~~' ~, ftc ~ ~ -Hte conseRt ~"" lIiajority ~ -Hte COt:l:fity COfi111'lissioReFs ~ -Hte 5a+4 coufity. Whenever it shall come to the attention of the commis­ sioner
    [Show full text]
  • KENNEBEC SALMON RESTORATION: Innovation to Improve the Odds
    FALL/ WINTER 2015 THE NEWSLETTER OF MAINE RIVERS KENNEBEC SALMON RESTORATION: Innovation to Improve the Odds Walking thigh-deep into a cold stream in January in Maine? The idea takes a little getting used to, but Paul Christman doesn’t have a hard time finding volunteers to do just that to help with salmon egg planting. Christman is a scientist with Maine Department of Marine Resource. His work, patterned on similar efforts in Alaska, involves taking fertilized salmon eggs from a hatchery and planting them directly into the cold gravel of the best stream habitat throughout the Sandy River, a Kennebec tributary northwest of Waterville. Yes, egg planting takes place in the winter. For Maine Rivers board member Sam Day plants salmon eggs in a tributary of the Sandy River more than a decade Paul has brought staff and water, Paul and crews mimic what female salmon volunteers out on snowshoes and ATVs, and with do: Create a nest or “redd” in the gravel of a river waders and neoprene gloves for this remarkable or stream where she plants her eggs in the fall, undertaking. Finding stretches of open stream continued on page 2 PROGRESS TO UNDERSTAND THE HEALTH OF THE ST. JOHN RIVER The waters of the St. John River flow from their headwaters in Maine to the Bay of Fundy, and for many miles serve as the boundary between Maine and Quebec. Waters of the St. John also flow over the Mactaquac Dam, erected in 1968, which currently produces a substantial amount of power for New Brunswick. Efforts are underway now to evaluate the future of the Mactaquac Dam because its mechanical structure is expected to reach the end of its service life by 2030 due to problems with the concrete portions of the dam’s station.
    [Show full text]
  • Section 5-2 Androscoggin River (Friends of Merrymeeting Bay)
    Maine Department of Environmental Protection Androscoggin River (FOMB) 2018 Summary Data Report Section 5-2 Androscoggin River (Friends of Merrymeeting Bay) Androscoggin River The Androscoggin River is the third largest river in the state of Maine. It has a length of 177 miles and drainage area of 3,450 square miles (2,730 sq. mi. in Maine).1 The Androscoggin River’s headwaters are Umbagog Lake in Maine/New Hampshire. From there it flows into New Hampshire and then back into Maine through the towns of Gilead and Bethel. It continues flowing through the towns and cities of Rumford, Mexico, Dixfield, Jay, Livermore Falls, Lewiston, Auburn, Lisbon, Lisbon Falls, Durham, Brunswick, and Topsham where it joins the Kennebec River at Merrymeeting Bay. The Androscoggin River has a long history of industrial and municipal use over the last 200 years.1 Beginning in the early 1800s, many dams were constructed for mills, primarily in the lower part of the river. By the late 1800s, many textile and lumber mills were in operation, mostly from Lewiston to Brunswick. Pulp and paper mills that are still in operation today were established in the late 1800s in New Hampshire, Rumford, and Jay. Beginning in the late 1920s, Central Maine Power built hydroelectric dams that impounded much of the river from Lewiston to Livermore Falls. Some of these uses continue today. “Along its course to the sea, the river is repeatedly dammed. It receives discharges from industrial and municipal sources, as well as polluted runoff from a variety of sources.”2 Specific problems include mill discharges, combined sewer overflows (CSOs), dam impacts (28 dams exist), and historical sediment toxins.
    [Show full text]
  • Surface Water Supply of the United States 1915 Part I
    DEPARTMENT OF THE INTERIOR FRANKLIN K. LANE, Secretary UNITED STATES GEOLOGICAL SURVEY GEORGE OTIS SMITH, Director WATER-SUPPLY PAPER 401 SURFACE WATER SUPPLY OF THE UNITED STATES 1915 PART I. NORTH ATLANTIC SIOPE DRAINAGE BASINS NATHAN C. GROVES, Chief Hydraulic Engineer C. H. PIERCE, C. C. COVERT, and G. C. STEVENS. District Engineers Prepared in cooperation with the States of MAIXE, VERMONT, MASSACHUSETTS, and NEW YORK WASHINGTON GOVERNMENT FEINTING OFFICE 1917 DEPARTMENT OF THE INTERIOR FRANKLIN K. LANE, Secretary UNITED STATES GEOLOGICAL SURVEY GEORGE OTIS SMITH, Director Water-Supply Paper 401 SURFACE WATER SUPPLY OF THE UNITED STATES 1915 PART I. NORTH ATLANTIC SLOPE DRAINAGE BASINS NATHAN C. GROVER, Chief Hydraulic Engineer C. H. PIERCE, C. C. COVERT; and G. C. STEVENS, District Engineers Geological Prepared in cooperation with the States MAINE, VERMONT, MASSACHUSETTS^! N«\f Yd] WASHINGTON GOVERNMENT PRINTING OFFICE 1917 ADDITIONAL COPIES OF THIS PUBLICATION MAY BE PROCURED FROM THE SUPEBINTENDENT OF DOCUMENTS GOVERNMENT FEINTING OFFICE "WASHINGTON, D. C. AT 15 CENTS PER COPY V CONTENTS. Authorization and scope of work........................................... 7 Definition of terms....................................................... 8 Convenient equivalents.................................................... 9 Explanation of data...................................................... 11 Accuracy of field data and computed results................................ 12 Cooperation..............................................................
    [Show full text]
  • Friends of Merrymeeting Bay P.O
    Friends of Merrymeeting Bay P.O. Box 233 Richmond, ME 04357 www.fomb.org To: Susanne Meidel, Water Quality Standards Coordinator Maine Department of Environmental Protection SHS 17 Augusta, ME 04333 207-441-3612 [email protected] From: Jennifer Brockway, Executive Director Friends of Merrymeeting Bay 207-666-1118 [email protected] E-Filed Subject: Water Re-Classification Proposal River/Sections: Androscoggin from Worumbo Dam to Merrymeeting Bay Proposed Upgrade: C to B Basis for Proposal: Actual conditions exceed those of present classification Documentation: Supporting data from FOMB monitoring program approved by Maine DEP and USEPA Data Collection Periods: DO-1999 to present; Coliform Bacteria-2006 to present Sampling Intervals: Monthly: April-October Proposal Date: November 29, 2017 Dear Ms. Meidel: Please consider this our formal upgrade proposal for the lower section of the Androscoggin River between Merrymeeting Bay at the line from Pleasant Point in Topsham to North Bath extending upriver to Worumbo Dam in Lisbon Falls. As our data show, while classified as C, this section has long been on the cusp of and now is actually meeting, Class B standards. We therefore propose it be upgraded from C to B. FOMB has the most complete set of classification data for the reaches in this proposal. We began our monitoring program in 1999 and continue to this day with over twenty sampling sites on the Androscoggin, Kennebec and around Merrymeeting Bay. FOMB joined the VRMP in 2009 to further support and substantiate water classification upgrades. Because the actual water quality of the lower Androscoggin sections described here exceeds that of their current classification, our request for a reclassification from C to B is supported by the State antidegradation policy as quoted below: 38 M.R.S.A.
    [Show full text]
  • Penobscot River 2007 Data Report July 2008
    Penobscot River 2007 Data Report July 2008 Prepared by Donald Albert, P. E. Bureau of Land and Water Quality Division of Environmental Assessment DEPLW-0882 Table of Contents Introduction ...........................................................................................................................1 Technical Design of Study ....................................................................................................1 Hydrologic Data ....................................................................................................................4 Ambient Chemical Data ........................................................................................................4 -DO, Temperature and Salinity .............................................................................................5 -Ultimate BOD ......................................................................................................................8 -Phosphorus Series ................................................................................................................11 -Nitrogen Series.....................................................................................................................13 -Chlorophyll-a .......................................................................................................................15 -Secchi disk transparency......................................................................................................17 Effluent Chemical Data .........................................................................................................18
    [Show full text]
  • A Technical Characterization of Estuarine and Coastal New Hampshire New Hampshire Estuaries Project
    AR-293 University of New Hampshire University of New Hampshire Scholars' Repository PREP Publications Piscataqua Region Estuaries Partnership 2000 A Technical Characterization of Estuarine and Coastal New Hampshire New Hampshire Estuaries Project Stephen H. Jones University of New Hampshire Follow this and additional works at: http://scholars.unh.edu/prep Part of the Marine Biology Commons Recommended Citation New Hampshire Estuaries Project and Jones, Stephen H., "A Technical Characterization of Estuarine and Coastal New Hampshire" (2000). PREP Publications. Paper 294. http://scholars.unh.edu/prep/294 This Report is brought to you for free and open access by the Piscataqua Region Estuaries Partnership at University of New Hampshire Scholars' Repository. It has been accepted for inclusion in PREP Publications by an authorized administrator of University of New Hampshire Scholars' Repository. For more information, please contact [email protected]. A Technical Characterization of Estuarine and Coastal New Hampshire Published by the New Hampshire Estuaries Project Edited by Dr. Stephen H. Jones Jackson estuarine Laboratory, university of New Hampshire Durham, NH 2000 TABLE OF CONTENTS ACKNOWLEDGEMENTS TABLE OF CONTENTS ............................................................................................i LIST OF TABLES ....................................................................................................vi LIST OF FIGURES.................................................................................................viii
    [Show full text]
  • Barker's Mill Hydroelectric Project
    DRAFT ENVIRONMENTAL ASSESSMENT FOR HYDROPOWER LICENSE Barker’s Mill Hydroelectric Project FERC Project No. 2808-017 Maine Federal Energy Regulatory Commission Office of Energy Projects Division of Hydropower Licensing 888 First Street, NE Washington, DC 20426 September 2018 TABLE OF CONTENTS TABLE OF CONTENTS .................................................................................................... ii LIST OF FIGURES ............................................................................................................ iv LIST OF TABLES.............................................................................................................. iv ACRONYMS AND ABBREVIATIONS.......................................................................... vii 1.0 INTRODUCTION ................................................................................................ 1 1.1 APPLICATION .................................................................................................... 1 1.2 PURPOSE OF ACTION AND NEED FOR POWER ......................................... 1 1.2.1 Purpose of Action .......................................................................................... 1 1.2.2 Need for Power .............................................................................................. 3 1.3 STATUTORY AND REGULATORY REQUIREMENTS ................................. 3 1.3.1 Federal Power Act ......................................................................................... 4 1.3.2 Clean Water Act ...........................................................................................
    [Show full text]
  • Water Quality in Seboeis River
    Water Quality in Seboeis River February 2020 Contact: Emily Zimmermann, Biologist Phone: (207) 446-1003 MAINE DEPARTMENT OF ENVIRONMENTAL PROTECTION 17 State House Station | Augusta, Maine 04333-0017 www.maine.gov/dep Maine Department of Environmental Protection Water Quality in Wassataquoik Stream Introduction Despite the restoration efforts of numerous groups since the 1970s, the population size of Atlantic salmon (Salmo salar) has remained low (USASAC 2018). On the Penobscot River, access has been improved by removing two major dams and constructing a bypass around a third (PRRT 2018), but three main stem dams remain between Seboeis River, a major tributary to the East Branch Penobscot River, and the ocean. The Maine Department of Marine Resources (MDMR) stopped stocking juvenile salmon in Seboeis River in 2014 due to low parr production. This stream has spawning and rearing habitat of good quality, however the watershed is likely oligotrophic, as are many nearby waters. This study investigated the hypothesis that water quality in Seboeis River exceeds stress thresholds or contains levels of nutrients too low for salmon growth. Methods Study Location Seboeis River has a large, undeveloped watershed of 705 km2, with 15% conserved land, including Katahdin Woods and Waters National Monument, Seboeis River Gorge Preserve, and Maine Bureau of Parks and Land (MBPL). The river is Maine Statutory Class AA, and its tributaries are Class A. The area has a history of industrial logging. The bedrock geology in the study area is predominantly marine sandstone and slate with some volcanics in the center of the watershed, and a small amount of granite (MGS 2019).
    [Show full text]