Milankovitch Cyclicity and Rock-Magnetic Signatures of Palaeoclimatic Change in the Early Cretaceous Biancone Formation of the Southern Alps, Italy

Total Page:16

File Type:pdf, Size:1020Kb

Milankovitch Cyclicity and Rock-Magnetic Signatures of Palaeoclimatic Change in the Early Cretaceous Biancone Formation of the Southern Alps, Italy Cretaceous Research (1999) 20, 189–214 Article No. cres.1999.0145, available online at http://www.idealibrary.com on Milankovitch cyclicity and rock-magnetic signatures of palaeoclimatic change in the Early Cretaceous Biancone Formation of the Southern Alps, Italy Helmut Mayer1 and Erwin Appel Institut fu¨r Geologie und Pala¨ontologie, Abteilung Geophysik, Eberhard-Karls-Universita¨t Tu¨bingen, Sigwartstr. 10, 72076 Tu¨bingen, Germany. 1Present address: Institute of Arctic and Alpine Research, University of Colorado, Boulder, CO 80309-0450, USA; email: [email protected]; also at: Geomathematik, Fachbereich VI Geographie/Geowissenschaften, Universita¨t Trier, 54286 Trier, Germany Revised manuscript accepted 21 October 1998 Detailed cyclostratigraphic analyses of the Valanginian to Hauterivian part of the Biancone Formation, a pelagic nannofossil limestone in the Southern Alps of Italy, were carried out. The Cismon section in the Belluno Trough near Feltre and the Pra da Stua section on the Trento Plateau near Avio were studied. Carbonate content, magnetic susceptibility and natural remanent magnetization were measured on densely spaced samples from Cismon. The first two properties vary in a cyclic fashion in this pelagic limestone section and are almost perfectly negatively correlated, while cyclicity in natural remanent magnetization is only vaguely indicated. Quantitative time-series analysis is critical in cyclic stratigraphy. The geostatistical method of cova functions (a generalization of the cross-variogram) which has proven to be the most versatile and robust time-series-analysis method is applied. Cova functions can be calculated from unevenly and non-correspondingly spaced time series without any preprocessing. This method also retains relatively more of the signal when noise and extreme outliers obscure the picture. The periodicities detected in the Cismon time series fall in the range of Milankovitch cycles. Cycle periods of 45 cm, 80 cm and 180 cm likely correspond to dominant precession, obliquity and eccentricity cycles. Owing to the inaccuracy of the Cretaceous time scale, periods cannot be matched exactly, but cycle ratios are extremely close to expected ratios so that Milankovitch climate cycles could be positively identified in this Early Cretaceous section. In the Pra da Stua section bedding thickness was measured and analyzed quantitatively. A cycle period of 55 cm is dominant in this data set, while periods of 115 cm and 170 cm are only vaguely indicated, although bedding in the sampled interval visually appears cyclic and even hierarchically structured. It can be expected that densely spaced measurements of sedimentary properties such as susceptibility and carbonate content will reveal the cyclicity much better. This identification of Milankovitch cyclicity in the pelagic Biancone Formation has important consequences for our understanding of the climate system in the past. These results demonstrate that orbital forcing was effective enough to create palaeoclimatic cycles even in the Cretaceous warm, equable, ice-free climate state. Magnetic susceptibility proved to be a reliable proxy for carbonate content reflecting palaeoproductivity cycles in this pelagic setting. 1999 Academic Press K W: Milankovitch cycles; rock magnetism; palaeoclimate; carbonate content; susceptibility; Biancone Formation; Valanginian; Hauterivian; Southern Alps. 1. Introduction the Mesozoic sequence of the Southern Alps offered The focus of this study is on sedimentary-parameter most favourable conditions. The Valanginian to variations through the sections studied, their analysis Hauterivian portion of the Cismon section was as stratigraphic time-series and their palaeoclimatic studied in detail. Rock-magnetic results from Cismon interpretation. The role of rock-magnetic parameters and Pra da Stua are presented. The cyclostratigraphy in this context is emphasized. The study area was of the Cismon section is investigated utilizing suscep- selected based on the following criteria: continuity of tibility and carbonate-content fluctuations. For the sedimentation, uniformity of facies, lack of tectonic Pra da Stua section bedding-thickness measurements and metamorphic overprint, low degree of diagenetic are analyzed. Quantitative time-series-analysis is alteration and quality of exposure. In all these respects applied to the evaluation of these geologic time series. 0195–6671/99/020189+26 $30.00/0 1999 Academic Press 190 H. Mayer and E. Appel fossil ooze was deposited at the basins in depths of several thousand metres (Bosellini & Winterer, 1975). The Trento Plateau also received a reduced thickness of this pelagic sediment. The resulting limestone is generally known as the Maiolica Formation or locally as the Biancone Formation. In the Belluno Trough, where the Cismon section is situated, the Biancone Formation extends stratigraphically from latest Tithonian/Berriasian to Aptian (Weissert, 1981). In general the Maiolica/Biancone is characterized by abundant slumps and similar synsedimentary defor- mation features (Weissert, 1981). Pelagic conditions Figure 1. Location map for Cismon and Pra da Stua prevailed through the Cretaceous into the Eocene sections in northern Italy. Palaeogeographic domains of when terrigenous flysch was deposited in response to the Southern Alps are shown: diagonal ruling— Lombardian Basin; horizontal ruling—Trento Plateau; the onset of Alpidic deformation. The tectonic defor- stippled pattern—Belluno Trough; vertical ruling— mation of the Southern Alps during the Alpidic orog- Friuli Shelf (boundaries after Gaetani, 1975, and eny produced gentle large-scale folds, thrust faults Weissert, 1981). and transcurrent faults (e.g., van Bemmelen, 1966; Doglioni & Bosellini, 1987). During the Neogene the Venetian Alps in particular, i.e., that part of the The palaeoclimatic significance of Milankovitch cycles Southern Alps where the Cismon section is located, and rock-magnetic parameters in the Cretaceous is have been deformed into a fold-and-thrust belt of discussed. This paper contains overview sections to coherent thrust blocks with little internal deformation provide some background information about the (cf., Doglioni, 1992). Overall, the Alpidic defor- various fields of research tied together here. mation of the Southern Alps was relatively mild compared to that of the Western and Eastern Alps. 2. Geological setting Stratigraphic framework Evolution of the Southern Alps The development of the stratigraphic sequence of the The sections studied are located in the Southern Southern Alps (Figure 2) since the Jurassic was as Alps of northern Italy (Figure 1), which represent a follows. On the Trento Plateau peritidal conditions tectonically inverted, former passive continental prevailed through the Liassic. During the Middle margin. Jurassic a thin layer of red nodular limestone (Rosso Extensional tectonism began in the Early Jurassic Ammonitico Inferiore) covered the platform reflecting with the rifting and opening of the Piemonte-Ligurian its drowning by suddenly increased subsidence. Tethys Ocean. On its southern end a block-faulted Pelagic conditions continued with the deposition of extended continental margin formed, whose palaeo- cherty aptychus limestones (Oxfordian Fonzaso relief is clearly reflected in Jurassic facies distributions Formation) and the Kimmeridgian Rosso Ammo- in the Southern Alps (Aubouin, 1963; Bernoulli & nitico Superiore (Bosellini et al., 1981). Starting with Jenkyns, 1974; Gaetani, 1975; Winterer & Bosellini, the Tithonian the white nannofossil-lime ooze of the 1981). From west to east, the alternating palaeogeo- Biancone Formation covered the area and accumu- graphic basins and swells are the Lombardian Basin, lated slowly through the Early Cretaceous and Trento Plateau, Belluno Trough and Friuli Shelf Cenomanian, when it was replaced by the Scaglia (Figure 1). Rossa, reddish pelagic limestones and marls extending Jurassic breccias and slump deposits as well as across the Cretaceous/Tertiary boundary (Premoli thickness contrasts along the boundaries between Silva & Luterbacher, 1966). Near the western margin these blocks are evidence for synsedimentary normal of the Trento Plateau the varicoloured marls and faulting (Bernoulli, 1964; Bosellini et al., 1981). Dur- marly limestones of the Scaglia Variegata are inter- ing the latest Jurassic and Early Cretaceous the entire calated between Biancone and Scaglia Rossa, similar realm deepened, and differential movements between to the situation in the Lombardian Basin (Cita, 1964). the blocks diminished so that a blanket of pelagic In the Eocene the Scaglia Rossa grades into the marls nannofossil-lime ooze draped over the pre-existing of the Scaglia Cinerea. Volcanic layers are common in relief which was gradually levelled out. This nanno- these Palaeogene beds. However, during the Eocene a Milankovitch cyclicity and rock-magnetic signatures of palaeoclimatic change 191 This study is restricted to the Lower Cretaceous Biancone Formation of the Trento Plateau and the Belluno Trough, which corresponds to the Maiolica of the Lombardian Basin to the west and to the Maiolica of the Umbrian-Marchean Basin in the Apennines. Sedimentologic and lithostratigraphic investigations of the South Alpine Maiolica/Biancone Formation were carried out by Weissert (1981), Barberis et al. (1992) and Bersezio (1993). Since the chronostratigraphy, biostratigraphy, magnetostratigraphy and geochronology of the Early Cretaceous stages covered are still active fields
Recommended publications
  • Correlation and Causes of Fifth Order Cycles Within the Upper Cretaceous Eagle Formation, Bighorn Basin of Wyoming
    Old Dominion University ODU Digital Commons OES Theses and Dissertations Ocean & Earth Sciences Spring 2005 Correlation and Causes of Fifth Order Cycles Within the Upper Cretaceous Eagle Formation, Bighorn Basin of Wyoming Kimberly Ann Johnson Old Dominion University Follow this and additional works at: https://digitalcommons.odu.edu/oeas_etds Part of the Geology Commons Recommended Citation Johnson, Kimberly A.. "Correlation and Causes of Fifth Order Cycles Within the Upper Cretaceous Eagle Formation, Bighorn Basin of Wyoming" (2005). Doctor of Philosophy (PhD), Dissertation, Ocean & Earth Sciences, Old Dominion University, DOI: 10.25777/3m7g-1s87 https://digitalcommons.odu.edu/oeas_etds/55 This Dissertation is brought to you for free and open access by the Ocean & Earth Sciences at ODU Digital Commons. It has been accepted for inclusion in OES Theses and Dissertations by an authorized administrator of ODU Digital Commons. For more information, please contact [email protected]. CORRELATION AND CAUSES OF FIFTH ORDER CYCLES WITHIN THE UPPER CRETACEOUS EAGLE FORMATION, BIGHORN BASIN OF WYOMING by Kimberly Ann Johnson B.A. August 1992, Old Dominion University M.S. May 1995, Old Dominion University A Dissertation Submitted to the Faculty of Old Dominion University in Partial Fulfillment of the Requirement for the Degree of DOCTOR OF PHILOSOPHY OCEAN, EARTH AND ATMOSPHERIC SCIENCES OLD DOMINION UNIVERSITY May 2005 ChesWGroichCtemb^ Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. ABSTRACT CORRELATION AND CAUSES OF FIFTH ORDER CYCLES WITHIN THE UPPER CRETACEOUS EAGLE FORMATION, BIGHORN BASIN OF WYOMING Kimberly Ann Johnson Old Dominion University, 2005 Director: Dr. Donald J.P. Swift Cyclic stratification was examined in the Upper Cretaceous (Santonian-Campanian) section (Eagle Formation) within the Bighorn Basin of Wyoming.
    [Show full text]
  • The Bakken Formation
    The Sedimentary Record The Bakken Formation – understanding the sequence stratigraphic record of low-gradient sedimentary systems, shale depositional environments, and sea-level changes in an icehouse world Sven O. Egenhoff and Neil S. Fishman of an intracratonic basin fill during sea-level fluctuations ABSTRACT using the Bakken as an example. In this context, The Bakken Formation is a major petroleum producer characterizing the sequence stratigraphy of the Bakken, in the continental US. However, its deposition in an as well as the depositional environment of all members of intracratonic, low-gradient setting has often been the formation, are of crucial importance. They allow us to mistakenly described as “layer-cake”. This contribution is designed to highlight the time-transgressive nature of its reconstruct the dynamics of this sedimentary system and main petroleum-producer, the middle Bakken member. the relationship between the two organic-rich siliciclastic Correlation of individual parasequences reveal the subtle shales that overlie and underlie the middle member—a nature of otherwise invisible low-angle stratigraphic carbonate-siliciclastic unit. Ultimately, this understanding geometries. Sequence stratigraphically-relevant surfaces enables prediction of the characteristics of all these units. occur throughout the unit and subdivide the entire Bakken Lastly, the sea-level changes recorded in the Bakken are into 5 third-order sequences; one of them is a hidden evaluated in the context of possible glacioeustasy related to sequence at the base of the petroleum-producing middle Bakken indicating both a lowstand and a subsequent an icehouse world. transgression. The organic-rich shales above and below the middle Bakken were deposited in an oxygen-deficient GEOLOGICAL SETTING environment and show several burrow/fecal string types and The Williston Basin, an intracratonic trough formed in indications of active currents during deposition.
    [Show full text]
  • (Middle Eocene), Eastern Sirte Basin, Libya
    Durham E-Theses Facies and sequence stratigraphy of the tamet formation (middle eocene), eastern sirte basin, Libya El Hassi, Aiyad Mohamed How to cite: El Hassi, Aiyad Mohamed (1995) Facies and sequence stratigraphy of the tamet formation (middle eocene), eastern sirte basin, Libya, Durham theses, Durham University. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/5280/ Use policy The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-prot purposes provided that: • a full bibliographic reference is made to the original source • a link is made to the metadata record in Durham E-Theses • the full-text is not changed in any way The full-text must not be sold in any format or medium without the formal permission of the copyright holders. Please consult the full Durham E-Theses policy for further details. Academic Support Oce, Durham University, University Oce, Old Elvet, Durham DH1 3HP e-mail: [email protected] Tel: +44 0191 334 6107 http://etheses.dur.ac.uk 2 FACIES AND SEQUENCE STRATIGRAPHY OF THE TAMET FORMATION (MIDDLE EOCENE), EASTERN SIRTE BASIN, LIBYA By Aiyad Mohamed El hassi A thesis submitted to University of Durham in the fulfiment of the requirement of Master of Science The copyright of this thesis rests with the author. No quotation from it should be published without his prior written consent and information derived from it should be acknowledged. Department of Geology, Earth Sciences, University of Durham 3 NOV 199S DECLARATION This to certify that the work submitted for the degree of master of science under title of "Facies and sequence stratigraphy of Tamet Formation (Middle Eocene) eastern Sirte Basin, Libya" is the result of original work.
    [Show full text]
  • Ocean Drilling Program Scientific Results Volume
    Larson, R. L., Lancelot, Y., et al., 1992 Proceedings of the Ocean Drilling Program, Scientific Results, Vol. 129 30. MILANKOVITCH CYCLES IN UPPER JURASSIC AND LOWER CRETACEOUS RADIOLARITES OF THE EQUATORIAL PACIFIC: SPECTRAL ANALYSIS AND SEDIMENTATION RATE CURVES1 Alain J. Molinie2 and James G. Ogg3 ABSTRACT Periodic changes in depositional environments due to Milankovitch astronomical climate cycles can cause cyclic patterns in sedimentation properties as recorded by logging data. Ocean Drilling Program Site 801 recovered Callovian (upper Middle Jurassic) through Valanginian (Lower Cretaceous) clayey radiolarites, originally deposited in a near-equatorial setting. Cycles of variable concentration of radiolarians and clay, and associated changes in degree of silicification were apparent in the geophysical logs, especially in the gamma-ray signal and the Formation MicroScanner. Three-dimensional spectral analysis was performed on the gamma-ray log signal using a 40-m sliding window. The dominant spectral peaks maintain the same relative ratios in frequency as the 413-k.y., 123-k.y., and 95-k.y. Milankovitch periods of eccentricity. The wavelengths of these eccentricity-modu- lated cycles were used to determine rates and discontinuities in sedimentation with depth. Two sharp discontinuities in sedimentation rate were inferred: (1) Callovian alternations of red radiolarite and claystone, with a sedimentation rate of approximately 14.5 m.y., is terminated by a Callovian/Oxfordian boundary hiatus, and the overlying upper Oxfordian through lowest Tithonian clay-rich radiolarites and the lower Tithonian banded chert have an average sedimentation rate of 7 m/m.y.; (2) a discontinuity of probable late Tithonian-early Berriasian age terminates the Tithonian banded chert; the overlying Berriasian through Valanginian radiolarite has a mean sedimentation rate of 11.5 m/m.y.
    [Show full text]
  • 225568953.Pdf
    Loma Linda University TheScholarsRepository@LLU: Digital Archive of Research, Scholarship & Creative Works Loma Linda University Electronic Theses, Dissertations & Projects 6-1989 Paleogeography and Paleoenvironments of the Lower Unit, Fossil Butte Member, Eocene Green River Formation, Southwestern Wyoming Roberto Enrique Biaggi Follow this and additional works at: https://scholarsrepository.llu.edu/etd Part of the Environmental Chemistry Commons, and the Geology Commons Recommended Citation Biaggi, Roberto Enrique, "Paleogeography and Paleoenvironments of the Lower Unit, Fossil Butte Member, Eocene Green River Formation, Southwestern Wyoming" (1989). Loma Linda University Electronic Theses, Dissertations & Projects. 536. https://scholarsrepository.llu.edu/etd/536 This Thesis is brought to you for free and open access by TheScholarsRepository@LLU: Digital Archive of Research, Scholarship & Creative Works. It has been accepted for inclusion in Loma Linda University Electronic Theses, Dissertations & Projects by an authorized administrator of TheScholarsRepository@LLU: Digital Archive of Research, Scholarship & Creative Works. For more information, please contact [email protected]. ABSTRACT Paleogeography and Paleoenvironments of the Lower Unit, Fossil Butte Member, Eocene Green River Formation, Southwestern Wyoming by Roberto E. Biaggi During Eocene time sediment accumulated in Fossil Lake, in what developed to be a small linear and structurally controlled basin. Fossil Lake was one of several lakes into which the Green River Formation was deposited in Wyoming, Utah and Colorado. Detailed stratigraphic analysis of the Lower Unit of the Fossil Butte Member revealed a well developed lacustrine sequence south of Fossil Butte, and indicates four major depositional facies: (1) open lacustrine, (2) marginal lacustrine, (3) carbonate mudflat, and (4) marginal fluvio-deltaic. The open lacustrine facies is characterized by kerogen rich to kerogen poor finely laminated micrites , that consist mainly of calcite and very little dolomite.
    [Show full text]
  • 37. Cyclic Sedimentation Along the Continental Margin of Northwest Africa
    37. CYCLIC SEDIMENTATION ALONG THE CONTINENTAL MARGIN OF NORTHWEST AFRICA Walter E. Dean,1 James V. Gardner,2 Lubomir F. Jansa,3 Pavel Cepek,4 and Eugen Seibold5 INTRODUCTION One of the most striking characteristics of the sediments cored along the west African continental margin on Leg 41 is their cyclicity. Three main types of cycles are recognized: (1) cycles representing fluctuations in supply of terrigenous components due to turbidity currents, (2) diagenetic cycles due to fluctuations in pH and Eh (redox) conditions in the sediments and possibly bottom waters, dissolution and reprecipitation of CaCθ3, and dissolution and reprecipitation of S1O2; and (3) pelagic cycles of CaCO3 and clay due to fluctuations in CaCU3 dissolution and(or) noncarbonate dilution. In the following discussions, we will use the term "period" to describe the number of years required, on the average, to deposit a cycle. Periods are calculated by measuring the number of cycles in a sequence measured over tens of meters falling between biostratigraphic age boundaries. Time was determined by the age difference of these biostratigraphic boundaries, thus a cycle period was established. We realize that measured thicknesses are compacted thicknesses and that some have undergone dissolution and(or) diagenetic alterations in addition to compaction. However, we feel that because of inherent errors in absolute age calibrations, judgments about the amount of volume reduction would be senseless at this time. Our calculations of periods should be considered in light of the above restrictions. DESCRIPTION OF TURBIDITE CYCLES 30° 25° 20° 15° 10° 5° 0 The most common cyclic sediments cored on Leg 41 are turbidites.
    [Show full text]
  • Science Articles to Further Science Book Reviews
    Vol. 6, No. 12 December 1996 INSIDE • Northeastern Section Meeting, p. 25 GSA TODAY • South-Central and Rocky Mountain Sections Meeting, p. 31 A Publication of the Geological Society of America • 1997 GeoVentures, p. 41 STRATA: Freeware for analyzing classic stratigraphic problems Peter B. Flemings, Department of Geosciences, Pennsylvania State University, University Park, PA 16802 John P. Grotzinger, Department of Earth and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139 ABSTRACT We use STRATA, a stratigraphic modeling package we have developed, to describe and illustrate several classic problems in both siliciclastic and carbonate stratigraphy that are still debated. Two simulations of clastic deposition show that, given constant subsidence rate, stratigraphic sequences can be generated by either eustatic sea-level change or variations in sediment supply, and that the result- ing stratigraphic architectures are extremely similar. Two examples of carbonate deposition illuminate the develop- ment of meter-scale shallowing cycles, and a mechanism for generating “cycle bundling” that results from the inter- action of sea-level change and the intrinsic dynamics of the carbonate system. Ultimately, stratigraphic models are most useful as a way of testing hypotheses of stratigraphic accu- mulation. We have found STRATA useful in research as well as geological education (it forms an integral component of stratigraphy classes at Penn State and MIT). We are releasing it as freeware over the Internet (http://hydro.geosc.psu.edu). INTRODUCTION Over the past two decades there has been a tremendous improvement in our ability to observe, describe, and interpret the stratigraphic record, made possible in large part by the advent of high-resolution seismic stratigraphic methods (e.g., Vail et al., 1977; Haq et al., 1987; Posamentier and Vail, 1988; Van Wagoner et al., 1990; Van Wagoner, 1995b; Christie-Blick, 1991; Christie- Blick and Driscoll, 1995).
    [Show full text]
  • Cool-Water Carbonate Ramps: a Review
    Downloaded from http://sp.lyellcollection.org/ by guest on September 25, 2021 Cool-water carbonate ramps: a review MARTYN PEDLEY 1 & GABRIELE CARANNANTE 2 1Department of Geography, University of Hull, Hull HU6 7R~, UK (e-mail: [email protected], uk) 2Instituto di Scienze della Terra, Universitf degli Studi di Napoli, 'Federico 11', Largo San Marcellino n. 10, 80138 Napoli, ltaly (e-mail: [email protected] Abstract: This review of marine, cool-water carbonate ramps considers both their defining features and the key publications relating to them. Cool-water carbonate environments are dominated by open, skeletal debris-covered sea bottoms which support biological assemblages devoid of hermatypic coral reefs, calcified green algae and non-skeletal grains. The growing body of modem literature deals mainly with Neogene to Recent examples, particularly from the Australian, New Zealand and Mediterranean regions. Nevertheless, many ancient examples have been recognized and, without doubt, many more - currently described as 'tropical carbonates' - will also be found to be cool-water examples. It is now becoming clear that a distinction must research, it must be remembered that Recent be made between those deposits associated with analogues of cool-water carbonates had also been macrotidal regimes (i.e. world ocean sites) and described from the Mediterranean Sea in the those associated with land-locked water bodies pioneering works of Walther (1885, 1910) and such as the Mediterranean Sea. The principal over half a century later by Froidevaux (1976), difference between the two is not so much the Barbera et al. (1978), Carannante et al. (1981, diversity of biota but, more importantly, the mini- 1988), Carannante & Simone (1988) and Bosence mal fair-weather reworking processes which char- (1985).
    [Show full text]
  • Sedimentary Geology Whither Stratigraphy?
    Sedimentary Geology ELSEVIER Sedimentary Geology 100 (1995) 5-20 Whither stratigraphy? Andrew D. Miall Department of Geology, University of Toronto, Toronto M5S 3BI, Canada Received 1 February 1995; revised version accepted 12 May 1995 Abstract There have been three revolutions in sedimentary geology. The first two began in the 1960s, consisting of the development of process-response sedimentary models and the application of plate-tectonic concepts to large-scale aspects of basin analysis. The third revolution, that of sequence stratigraphy, began in the late 1970s and helped to draw together the main results of the first two: the knowledge of autogenic processes learned through facies analysis, and the understanding of tectonism implicit in the unravelling of regional plate kinematics. Developments in the use of seismic-reflection data and the evaluation of a hypothesis of global eustasy provided considerable stimulation for stratigraphic research. Current developments in the field of sequence stratigraphy are focusing on three areas. (1) Elaboration of the sequence-architecture models for various configurations of depositional environment and sea-level history. (2) Exploration of various mechanisms for sequence generation, especially tectonism and orbital forcing. (3) Attempts to improve the level of precision in stratigraphic correlation and to refine the geological time scale, as a means to test the model of global eustasy. The growth in the power of computers and our knowledge of physical and chemical processes has led to the evolution of an entirely new way of evaluating earth history, termed quantitative dynamic stratigraphy. Mathematical modelling and numerical simulation of complex earth processes are now possible, and require the collection and integration of a wide array of quantitative and qualitative data sets.
    [Show full text]
  • Paleocene Cyclic Sedimentation in the Western North Atlantic, ODP Site 1051, Blake Nose
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Earth and Atmospheric Sciences, Department Papers in the Earth and Atmospheric Sciences of 2004 Paleocene Cyclic Sedimentation in the Western North Atlantic, ODP Site 1051, Blake Nose Mary Anne Holmes University of Nebraska-Lincoln, [email protected] David K. Watkins University of Nebraska-Lincoln, [email protected] Richard D. Norris Scripps Institution of Oceanography, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/geosciencefacpub Part of the Earth Sciences Commons Holmes, Mary Anne; Watkins, David K.; and Norris, Richard D., "Paleocene Cyclic Sedimentation in the Western North Atlantic, ODP Site 1051, Blake Nose" (2004). Papers in the Earth and Atmospheric Sciences. 72. https://digitalcommons.unl.edu/geosciencefacpub/72 This Article is brought to you for free and open access by the Earth and Atmospheric Sciences, Department of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Papers in the Earth and Atmospheric Sciences by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Published in Marine Geology 209 (2004) 31–43. Copyright 2004, Elsevier. ISSN: 0025-3227. DOI: 10.1016/j.margeo.2004.06.005. Used by permission. http://www.elsevier.com/locate/margeo Paleocene Cyclic Sedimentation in the Western North Atlantic, ODP Site 1051, Blake Nose Mary Anne Holmesa, David K. Watkinsa, Richard D. Norrisb a Geosciences Department, University of Nebraska-Lincoln, Lincoln, NE, USA ([email protected]; [email protected]) b Scripps Institution of Oceanography, UCSD, La Jolla, CA, USA ([email protected]) Abstract Upper Paleocene (zone CP8b) cyclic sediment from Ocean Drilling Program (ODP) Site 1051 on Blake Nose, western North Atlantic, alternates from white carbonate-rich to green carbonate-poor in response to precessional forcing.
    [Show full text]
  • 32. Paleoceanographic Implications of Stable
    32. PALEOCEANOGRAPHIC IMPLICATIONS OF STABLE-ISOTOPE DATA FROM UPPER MIOCENE-LOWER PLIOCENE SEDIMENTS FROM THE SOUTHEAST ATLANTIC (DEEP SEA DRILLING PROJECT SITE 519)1 J. A. McKenzie,2 H. Weissert,2 R. Z. Poore,3 R. C. Wright,4 S. F. Percival, Jr.,5 H. Oberhànsli,2 and M. Casey2 ABSTRACT A stable-isotope stratigraphy was established for planktonic and benthic foraminifers from upper Miocene-lower Pliocene pelagic sediments from the Mid-Atlantic Ridge. A correlation of stable-isotope and biostratigraphic data with magnetostratigraphic age revealed the following: (1) the late Miocene carbon-isotope shift in the South Atlantic bottom waters was minute compared with the shift reported for other deep-sea locations (Haq et al., 1980), (2) a significant cooling or continental ice-volume increase occurred between 5.7 and 5.2 Ma, and (3) a period of warming or ice-volume decrease followed, with the rate of warming increasing beginning at 4.5 Ma and reaching a climax at 4.3 Ma. The timing of these paleoceanographic events is correlated with the onset and termination of the Messinian salinity crisis in the Mediterranean Sea. INTRODUCTION Keigwin, 1979). Blanc (1981) has proposed that the clos- ure of the Mediterranean outlet resulted in the formation The primary objective of DSDP Leg 73 was to study of deep waters in the South Atlantic, which then flowed the Cenozoic paleoceanography of the South Atlantic, northward to replace the diminished NADW. with emphasis on the time intervals when major oceano- The purpose of this study was to investigate the ographic events occurred. This paper presents a study of above-mentioned paleoceanographic events as recorded the stable-isotope stratigraphy of the late Miocene and in pelagic sediments deposited on the eastern flank of early Pliocene and attempts to correlate magnetostrati- the Mid-Atlantic Ridge.
    [Show full text]
  • Economic Geology
    I ECONOMIC GEOLOGY AND THE BULLETIN OF THE SOCIETY OF ECONOMIC GEOLO.GISTS VOL. 81 MARCH-APRIL, 1986 No.2 Hydrologic Constraints on the Genesis of the Upper Mississippi Valley Mineral District from Illinois Basin Brines CRAIG M. BETHKE Hydrogeology Program, Department 0/ Geology, 245 Natural History Building, University 0/ Illinois. Urbana. Illi"ms 61801 Abstract Mississippi Valley-type deposits of the Upper Mississippi Valley mineral district probably formed during a period of regional ground-water flow across the Illinois basin initiated by uplift. of the Pascola arch in post-Early Permian and pre-Late Cretaceous time. Numerical modeling of this inferred paleohydrologic regime shows that district, temperatures attained by this process depend on flow rates through the basin, heat flow along flow paths, and presence of structures to cause convergence and upwelling of fluids. Predicted flow rates and timing of mineralization agree with previous estimates. Modeling results also offer explanations of banding in district mineraliza~on and district silicification patterns. Modeling of ground-water flow due to sediment compaction during basin subsidence, however, shows that this process was not responsible for mineralization. Fluids displaced from the deep basin by compaction­ driven flow moved too slowly to avoid conductive cooling to the surface before reaching the district. Episodic dewatering events are unlikely to have occurred, because the basin did not develop significant overpressures during subsidence. Results of the compaction-driven flow modeling probably also apply. to the Michigan and Forest City basins. Study results suggest that exploration strategies for Mississippi Valley-type deposits should account for tectonic histories of basin margins distant from targets.
    [Show full text]