Ecosytem Services: the Value of Native New Zealand Plants
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Arachnid Ecology in New Zealand, Exploring
1 Arachnid ecology in New Zealand, exploring 2 unknown and poorly understood factors. 3 James Crofts-Bennett. 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 “A thesis submitted in fulfilment of the degree of Master of Science [1] in Botany [2] at the 21 University of Otago, Dunedin, New Zealand” 22 2020 23 1 24 Index 25 26 Abstract………………………………………………………………………………………5. 27 Chapter 1. Introduction……………………………………………………………………...7. 28 1.1 The importance of spiders………………………………………………………...7. 29 1.2 The influence of habitat structural complexity on spider distribution and 30 abundance…………………………………………………………………………......8. 31 1.3 Invasive rodents in the context of New Zealand Araneae………………………...9. 32 1.4 Thesis structure and aims………………………………………………………..14. 33 Chapter 2. The effect of habitat structural complexity on spider abundance and diversity..15. 34 2.1 Introduction ……………………………………………………………………..15. 35 Figure 2.1: Seasonal deciduous vegetation cover…………………………...16. 36 Figure 2.2: Seasonal deciduous vegetation cover with mistletoe parasites…16. 37 2.2 Methods…………………………………………………………………………17. 38 Figure 2.3: Examples of foliage samples……………………………………18. 39 Table 2.1: Sampling locations, dates and host data…………………………19. 40 2.2.1 Statistical Analyses……………………………………………………………20. 41 2.3 Results…………………………………………………………………………...20. 42 Figure 2.4: Total invertebrates sampled in summer, plotted………………..22. 43 Figure 2.5: Total invertebrates sampled in winter, plotted………………….23. 44 Table 2.2: Paired t-tests of host plant invertebrate populations……………..25. 45 2.4 Discussion……………………………………………………………………….26. 46 Chapter 3. A novel non-kill Araneae trap: test with regards to vegetation type versus 47 location 48 effects………………………………………………………………………………………..28. 49 3.1 Introduction……………………………………………………………………...28. -
Nzbotsoc No 11 March 1988
NEW ZEALAND BOTANICAL SOCIETY NEWSLETTER NUMBER 11 MARCH 1988 The 1988 subscription for four issues of the Newsletter (March, June, Sep• tember, December) is $10.00. A reduced subscription of $5.00 is available to full-time students. A bright green invoice for 1988 subs was enclosed in the last issue (December 1987) sent to existing subscribers. Half the invoices are still outstanding! If there is a bright green reminder notice inside this issue please pay promptly. Back issues of the Newsletter are available at $2.50 each - Number 1 (August 1985 to Number 10 (December 1987). New subscriptions are always welcome, and should be sent to the Editor (address below). The balance sheet for the year 1 January - 31 December 1987 presented here follows on from the previous statement of financial position which appeared in Newsletter Number 7 (March 1987). INCOME EXPENDITURE B/Fwd 01 i 1987 674.37 Printing No. 7 492.80 Subs 2560.00 Postage No. 7 85.40 Student subs 40.00 Printing No. 8 520.30 Donations + Back Issue Sales 407.09 Postage No. 8 82.80 Interest 69.91 Printing No. 9 633.47 Interest 13.20 Postage No. 9 55.20 Interest 24.58 Printing No. 10 916.30 Interest 136.57 Postage no. 10 83.10 NZJBot subs 861.30 NZJBot subs 861.30 $4787 .02 $3730.67 Excess Income over Expenditure Carried forward to 1988: $1056.35 Invitation to contribute Contributions from all sources are most welcome. A list of possible column headings can be found on p.2 of Number 1 of the Newsletter. -
Key Native Ecosystem Plan for Raroa-Pukerua Coast 2018-2021
Key Native Ecosystem Plan for Raroa-Pukerua Coast 2018-2021 Contents 1. Key Native Ecosystem plans 1 2. Raroa - Pukerua Coast Key Native Ecosystem site 2 3. Parties involved 2 4. Ecological values 3 5. Key threats to ecological values at the site 6 6. Objectives 8 7. Operational activities 8 8. Operational delivery schedule 10 9. Funding summary 11 Appendix 1: Site maps 12 Appendix 2: Threatened species list 17 Appendix 3: Regionally threatened plant species list 19 Appendix 4: Ecological Weeds 20 References 25 Raroa - Pukerua Coast 1. Key Native Ecosystem plans The Wellington region’s native biodiversity has declined since people arrived and the ecosystems that support it face ongoing threats and pressures. Regional councils have responsibility for maintaining indigenous biodiversity, as well as protecting significant vegetation and habitats of threatened species, under the Resource Management Act 1991 (RMA). Greater Wellington Regional Council’s (Greater Wellington) Biodiversity Strategy1 sets a framework that guides how Greater Wellington protects and manages biodiversity in the Wellington region to work towards the vision below. Greater Wellington’s vision for biodiversity Healthy ecosystems thrive in the Wellington region and provide habitat for native biodiversity The Strategy provides a common focus across the council’s departments and guides activities relating to biodiversity. The vision is underpinned by four operating principles and three strategic goals. Goal One drives the delivery of the Key Native Ecosystem (KNE) Programme. Goal One Areas of high biodiversity value are protected or restored The KNE Programme is a non-regulatory voluntary programme that seeks to protect some of the best examples of original (pre-human) ecosystem types in the Wellington region by managing, reducing, or removing threats to their ecological values. -
Muehlenbeckia Astonii Petrie), a Nationally Threatened Plant
Re-establishment of the shrubby tororaro (Muehlenbeckia astonii Petrie), a nationally threatened plant SCIENCE & RESEARCH INTERNAL REPORT 188 David A Norton Published by Department of Conservation PO Box 10-420 Wellington, New Zealand Science & Research Internal Reports are written by DOC staff or contract scientists on matters which are on-going within the Department They include reports on conferences, workshops, and study tours, and also work in progress Internal Reports are not normally subject to peer review This report was prepared for publication by DOC Science Publishing, Science & Research Unit; editing and layout by Ian Mackenzie Publication was approved by the Manager, Science & Research Unit, Science Technology and Information Services, Department of Conservation, Wellington This report was prepared by David A Norton, Conservation Research Group, School of Forestry, University of Canterbury, Private Bag 4800, Christchurch, New Zealand © June 2001, Department of Conservation ISSN 01142798 ISBN 0478220324 Cataloguing-in-Publication data Norton, David A (David Andrew), 1958- Re-establishment of the shrubby tororaro (Muehlenbeckia astonii Petrie), a nationally threatened plant / David A Norton Wellington, NZ : Dept of Conservation, 2001 1 v ; 30 cm (Science & Research internal report, 0114-2798 ; 188) Includes bibliographical references ISBN 0478220324 1 Muehlenbeckia astonii 2 Rare plantsNew Zealand I Title Series: Science and Research internal report ; 188 CONTENTS Abstract 5 1 Introduction 6 2 Study species and area 7 3 Methods -
LIZARD GARDENS ‒ a Planting Guide
LIZARD GARDENS – A Planting Guide New Zealand’s skinks and geckos have experienced chronic decline in the face of introduced pests, namely rats, pet cats, mice, hedgehogs and mustelids (stoats, ferrets and weasels). These days most peoples’ experience of lizards is via the one their cat brought in. This will continue to be the norm, unless we do something about it! The three main things you can do to help skinks and geckos in your backyard are to provide food, shelter and undertake pest control. Food: berries and nectar from fruiting and flowering native plants, insects and moisture i.e. lots of mulch. Shelter: rock piles, rotting logs, driftwood, stacks of timber, retaining walls, don’t throw out your prunings, dump them in a pile out of the way, skinks will thank you for it. Pest control: get trapping! Trapping rats and mice is a start but hedgehogs are actually a real problem for lizards in urban settings. Consider getting a DOC200 to trap those spiny pests. You can bury them under your native plants to provide an excellent source of fertiliser. Bait is effective for rodents in particular, and means you don’t have to deal with dead bodies. Also, keep your cat inside at night and consider not replacing it when it dies. To help you get started, this planting guide has been developed by gardeners and conservationists from the Kāpiti Coast. We live in a harsh coastal sand environment battered by salt spray, high wind and regular droughts. The following plant list has been developed with that in mind. -
Crown Pastoral-Tenure Review-Beaumont-Conservation
Crown Pastoral Land Tenure Review Lease name : BEAUMONT STATION Lease number : PO 362 Conservation Resources Report - Part 2 As part of the process of Tenure Review, advice on significant inherent values within the pastoral lease is provided by Department of Conservation officials in the form of a Conservation Resources Report. This report is the result of outdoor survey and inspection. It is a key piece of information for the development of a preliminary consultation document. Note: Plans which form part of the Conservation Resources Report are published separately. These documents are all released under the Official information Act 1982. December 10 RELEASED UNDER THE OFFICIAL INFORMATION ACT APPENDIX 5: Plant Species List – Beaumont Pastoral Lease Scientific name Plant type Family Abundance Localities Threat ranking Common at site name Abrotanella caespitosa DICOTYLEDONOUS HERBS Asteraceae Local Wetlands Not threatened Abrotanella inconspicua DICOTYLEDONOUS HERBS Asteraceae Local Ridgetops Not threatened Abrotanella patearoa DICOTYLEDONOUS HERBS Asteraceae Local Tops Naturally Uncommon Acaena anserinifolia DICOTYLEDONOUS HERBS Rosaceae Occasional Throughout Not threatened bidibid Acaena caesiiglauca DICOTYLEDONOUS HERBS Rosaceae Occasional Tussockland Not threatened bidibid Acaena inermis DICOTYLEDONOUS HERBS Rosaceae Rare Gravels Not threatened bidibid Acaena novae-zelandiae DICOTYLEDONOUS HERBS Rosaceae Rare Lower altitudes Not threatened bidibid Acaena tesca DICOTYLEDONOUS HERBS Rosaceae Rare Rock outcrops Naturally Uncommon bidibid -
Some Notes on the Linaceae
SOME NOTES ON THE LINACEAE. THE CROSS POLLINATION OF FLAX. BY J. VARGAS EYRE ASD G. SMITH, B.Sc. (F~'om the Research ])epartmet~t, Sottth-Easteru Agricultural College, Wye.) WHILST test~ag a large number of species of Linaceae for cyanophoric glucosides during ~he past three yeaxz, it was observed that those species carrying white, blue or red flowers were more or less richly cyanophoric whereas the yellow flowered species, which for the most part exhibit an entirely different habit, fidled to yield hydrogen cyanide and seemed to be devoid of cyanogenetic enzyme. During 1913 obser- vations were made on a larger number of both blue and yellow flowered species and the previous observations have been confirmed. (Studies on Enzyme Action, xviii, Royal Soc. Proc., B, vol. LXXXV, 1912.) That the absence of cyanophoric glucoside and its enzyme is in any way correlated with the presence of the yellow pighaent cannot be stated, but the fact that both glucoside and enzyme are absent fl'om yellow flowered varieties led to the attempt being made to produce a yellow flowered flax containing glucoside or enzyme, or bothl, so as to throw light upon the question of the inheritance of Chemical Charac- teristics, and fi'om this point of view the work has been extended. The present circumstances, however, are likely to cause a break in this work, and it is therefore considered desilable at this stage to place on record the observations which have been made. 1 The most complete information relating to hybrid flaxes appears to be contained ill Graebner's Synopsis der Mitteleuropiiischen Flora but, with the exception of the uucel'. -
The Island Rule and Its Application to Multiple Plant Traits
The island rule and its application to multiple plant traits Annemieke Lona Hedi Hendriks A thesis submitted to the Victoria University of Wellington in partial fulfilment of the requirements for the degree of Master of Science in Ecology and Biodiversity Victoria University of Wellington, New Zealand 2019 ii “The larger the island of knowledge, the longer the shoreline of wonder” Ralph W. Sockman. iii iv General Abstract Aim The Island Rule refers to a continuum of body size changes where large mainland species evolve to become smaller and small species evolve to become larger on islands. Previous work focuses almost solely on animals, with virtually no previous tests of its predictions on plants. I tested for (1) reduced floral size diversity on islands, a logical corollary of the island rule and (2) evidence of the Island Rule in plant stature, leaf size and petiole length. Location Small islands surrounding New Zealand; Antipodes, Auckland, Bounty, Campbell, Chatham, Kermadec, Lord Howe, Macquarie, Norfolk, Snares, Stewart and the Three Kings. Methods I compared the morphology of 65 island endemics and their closest ‘mainland’ relative. Species pairs were identified. Differences between archipelagos located at various latitudes were also assessed. Results Floral sizes were reduced on islands relative to the ‘mainland’, consistent with predictions of the Island Rule. Plant stature, leaf size and petiole length conformed to the Island Rule, with smaller plants increasing in size, and larger plants decreasing in size. Main conclusions Results indicate that the conceptual umbrella of the Island Rule can be expanded to plants, accelerating understanding of how plant traits evolve on isolated islands. -
Flax (Linum Usitatissimum L.) As a Model System
University of Alberta Environmental biosafety of genetically engineered crops: Flax (Linum usitatissimum L.) as a model system by Amitkumar Jayendrasinh Jhala A thesis submitted to the Faculty of Graduate Studies and Research in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Plant Science Department of Agricultural, Food and Nutritional Science ©Amitkumar Jayendrasinh Jhala Spring 2010 Edmonton, Alberta Permission is hereby granted to the University of Alberta Libraries to reproduce single copies of this thesis and to lend or sell such copies for private, scholarly or scientific research purposes only. Where the thesis is converted to, or otherwise made available in digital form, the University of Alberta will advise potential users of the thesis of these terms. The author reserves all other publication and other rights in association with the copyright in the thesis and, except as herein before provided, neither the thesis nor any substantial portion thereof may be printed or otherwise reproduced in any material form whatsoever without the author's prior written permission. Examining Committee Dr. Linda Hall, Agricultural, Food and Nutritional Science Dr. Randall Weselake, Agricultural, Food and Nutritional Science Dr. Lloyd Dosdall, Agricultural, Food and Nutritional Science Dr. Jocelyn Hall, Biological Sciences Dr. Robert Blackshaw, Agriculture and Agri-Food Canada, Lethbridge Dedicated to my Madam for her continuous love, support and encourangement Abstract Flax (Linum usitatissimum L.) is considered as a model plant species for multipurpose uses with whole plant utilization for several purposes including industril, food, animal feed, fiber, nutraceutical, pharmaceutical, and bioproduct markets. Therefore, flax is in the process of genetic engineering to meet the market requirements. -
BANKS & SOLANDER BOTANICAL COLLECTIONS TAI RAWHITI Ewen
BANKS & SOLANDER BOTANICAL COLLECTIONS TAI RAWHITI Ewen Cameron, Botanist, Auckland War Memorial Museum In 1769 Garden In Florilegium 1. TAONEROA (POVERTY BAY) FERNS 39: Pteridium esculentum (G.Forst.) Cockayne PTERIS ESCULENTA Ts 220; MS 1533 Pteris esculenta G.Forst. (1786) Fig.pict. (BF 568) Maori - e anuhe [aruhe] "the root is edible after being roasted over a fire and finally bruised with a mallet, serving the natives in place of bread. We have heard the roasted root called he taura by the New Zealanders." Hab. - extremely abundant on the hills - 1,2,3,4,5,6,7 AK 114337, 189113; WELT P9484 ANGIOSPERMS a. (a) Dicotyledons Aizoaceae 50: Tetragonia tetragonioides (Pallas) Kuntze Florilegium TETRAGONIA CORNUTA Ts 115; MS 687 Tetragonia cornuta Gaertn. (1791) Fig.pict. (BF 532) Hab. - in sand and along the seashore - 1,2,3,4,6,7 AK 100180-100181, 184590; WELT 63687 Apiaceae 53: Apium prostratum Labill. ex Vent. var. prostratum APIUM DECUMBENS α SAPIDUM Ts 71; MS 379 Fig.pict. (BF 460) Maori - tutagavai, he tutaiga [tutae-koau] Hab. - by the seashore, abundant throughout - 1-8 AK 189279; WELT 63736 57: Hydrocotyle heteromeria A.Rich. HYDROCOTYLE GLABRATA Ts 64; MS 338 Fig.pict. Maori - he totara, tara Hab. - damp shady places - 1,2,3,4,7 AK 104432; WELT 63735 60: Scandia rosifolia (Hook.) Dawson Florilegium LIGUSTICUM AROMATICUM Ts 70; MS 360 Ligusticum aromaticum Hook.f. (1864) Fig.pict. (BF 461) Maori - koerik [koheriki] Hab. - on forest margins and in meadows - 1,2,3,4,6 AK 189114; WELT 63739 Asteraceae 70: Brachyglottis repanda J.R.Forst. -
Motuora Native Species Restoration Plan
Motuora Native Species Restoration Plan JUNE 2007 Motuora Native Species Restoration Plan By Robin Gardner-Gee, Sharen Graham, Richard Griffiths, Melinda Habgood, Shelley Heiss Dunlop and Helen Lindsay MOTUORA RESTORATION SOCIETY (INC) PO Box 100-132, NSMC, Auckland. Foreward Deciding to write a Restoration Plan for Motuora was a huge undertaking for a voluntary group, especially since most of those whose help we needed already had busy lives. The project required surveys on the island to establish what plants and animals were already there, followed by much discussion and the writing of the various sections. These sections then had to be edited to make a unified whole. This document could not have been written without the enthusiasm, knowledge, and commitment of a group of keen environmentalists who put in long hours to produce the Restoration Plan. The Motuora Restoration Society thanks the many people and organizations who have provided information, advice and comment on this document. Particular thanks to: Robin Gardner-Gee for her invertebrate knowledge Sharen Graham for her bird knowledge Richard Griffiths for pulling the document together to present an overview of the whole island ecology Melinda Habgood for her reptile knowledge Shelley Heiss-Dunlop for her plant knowledge Helen Lindsay for her input into the plant section and for co-ordinating the project especially in the beginning Te Ngahere Native Forest Management for supporting this project Department of Conservation staff for support and encouragement. The Motuora Restoration Society thanks you all for your generosity in sharing your learning and experience. Ray Lowe Chairman Motuora Restoration Society i ii Executive Summary Motuora is an 80 hectare island in the Hauraki Gulf to the south of Kawau Island. -
Co-Extinction of Mutualistic Species – an Analysis of Ornithophilous Angiosperms in New Zealand
DEPARTMENT OF BIOLOGICAL AND ENVIRONMENTAL SCIENCES CO-EXTINCTION OF MUTUALISTIC SPECIES An analysis of ornithophilous angiosperms in New Zealand Sandra Palmqvist Degree project for Master of Science (120 hec) with a major in Environmental Science ES2500 Examination Course in Environmental Science, 30 hec Second cycle Semester/year: Spring 2021 Supervisor: Søren Faurby - Department of Biological & Environmental Sciences Examiner: Johan Uddling - Department of Biological & Environmental Sciences “Tui. Adult feeding on flax nectar, showing pollen rubbing onto forehead. Dunedin, December 2008. Image © Craig McKenzie by Craig McKenzie.” http://nzbirdsonline.org.nz/sites/all/files/1200543Tui2.jpg Table of Contents Abstract: Co-extinction of mutualistic species – An analysis of ornithophilous angiosperms in New Zealand ..................................................................................................... 1 Populärvetenskaplig sammanfattning: Samutrotning av mutualistiska arter – En analys av fågelpollinerade angiospermer i New Zealand ................................................................... 3 1. Introduction ............................................................................................................................... 5 2. Material and methods ............................................................................................................... 7 2.1 List of plant species, flower colours and conservation status ....................................... 7 2.1.1 Flower Colours .............................................................................................................