THE ENDING LAMINATION THEOREM 0. Preface This Paper Is

Total Page:16

File Type:pdf, Size:1020Kb

THE ENDING LAMINATION THEOREM 0. Preface This Paper Is THE ENDING LAMINATION THEOREM BRIAN H. BOWDITCH Abstract. We give a proof of the Ending Lamination Theorem, due (in the indecomposable case) to Brock, Canary and Minsky. 0. Preface This paper is based on a combination of two earlier manuscripts both originally produced in 2005. Many of the ideas for the first preprint were worked out while visiting the Max Planck Institute in Bonn. The remainder and most of the write- up of this was carried out when I was visiting the Tokyo Institute of Technology at the invitation of Sadayoshi Kojima. Most of the second preprint was written while visiting the Centre Bernoulli, E.P.F. Lausanne, as part of the programme organised by Christophe Bavard, Peter Buser and Ruth Kellerhals. I thank all three institutions for their generous hospitality. I also thank Dave Gabai for his many helpful comments on the former preprint; in particular, for the argument that appears at the end of Section 2.3, and his permission to include it here. The final drafts of these preprints were prepared at the University of Southampton. The preprints were substantially reworked and combined, and new material added at the University of Warwick. I thank Al Marden for his comments on the first few sections of the current manuscript. I also thank Makoto Sakuma and Eriko Hironaka for their interest and comments. Contents 0. Preface 1 1. General Background 3 1.1. Introduction 3 1.2. An informal summary of the Ending Lamination Theorem 5 1.3. Basic notions 8 1.4. Background to 3-manifolds 11 1.5. End invariants 16 1.6. Ingredients of the proof 23 Date: First draft: September 2011. Revised: 11th April 2020. 1 2 BRIAN H. BOWDITCH 1.7. Outline of the proof of the Ending Lamination Theorem 28 2. The indecomposable case of the Ending Lamination Theorem 32 2.1. Surface groups 32 2.2. The curve graph 35 2.3. Topology of products 39 2.4. Annulus systems 47 2.5. The combinatorial structure of the model 57 2.6. Margulis tubes 63 2.7. Systems of convex sets 68 2.8. The model space 75 2.9. Bounded geometry 82 2.10. Lower bounds 87 2.11. Families of proper subsurfaces 99 2.12. Controlling the map on thick parts 104 2.13. The doubly degenerate case 110 2.14. The proof of the main theorem in the indecomposable case 115 3. The general case of the Ending Lamination Theorem 124 3.1. Compressible ends 125 3.2. Pleating surfaces 127 3.3. Negatively curved spaces 130 3.4. Isolating simply degenerate ends 134 3.5. Quasiprojections and a-priori bounds 138 3.6. Short geodesics in degenerate ends 143 3.7. The model space of a degenerate end 145 3.8. Proof of the Ending Lamination Theorem in the general case 149 4. Promotion to a bilipschitz map 151 4.1. Subsurfaces in triangulated 3-manifolds 152 4.2. A topological surgery construction 157 4.3. Subfibres in product spaces 159 4.4. Constructing a bilipschitz map 164 4.5. The bilipschitz theorem 172 5. Appendix 177 5.1. The uniform injectivity theorem 177 References 183 THE ENDING LAMINATION THEOREM 3 1. General Background 1.1. Introduction. In this paper, we give an account of the Ending Lamination Theorem. This was proven in the \indecomposable" case by Minsky, Brock and Canary [Mi4, BrocCM], who also announced a proof in the general case. It gives a reasonably complete understanding of the geometry of complete hyperbolic 3-manifolds with finitely generated fundamental group. An informal statement is given as Theorem 1.2.1 here, and a more formal statement as Theorem 1.5.4. The Ending Lamination Conjecture originates in the seminal work of Thurston in the late 1970s [Th1]. As well as a plethora of new results, this threw up many new questions (see Section 6 of [Th2]). Undoubtedly the most important of these was the Geometrisation Conjecture which asserts that any compact 3-manifold can canonically be cut into \geometric" pieces | each admitting a metric locally modelled on one of eight geometries (Question 1 of [Th2]). It is hyperbolic ge- ometry that provides the richest source of these examples, so that it might be said, in a certain sense, that \most" 3-manifolds are hyperbolic. Three other key conjectures related to non-compact hyperbolic 3-manifolds, namely the Tame- ness Conjecture, the Ending Lamination Conjecture and the Density Conjecture (respectively, Questions 5, 11 and 6 of [Th2]). Major progress towards these con- jectures as subsequently made by many authors. Then, in the space of three years, between 2002 and 2004, proofs of the first three conjectures were produced: re- spectively by Perelman [Pe], by Agol and Calegari and Gabai [Ag, CalG], and by Minsky, Brock and Canary [Mi4, BrocCM]. This paved the way to a proof of the Density Conjecture, finally completed in [Oh, NS]. As well as its intrinsic interest, the Ending Lamination Theorem, and the technology involved in its proof, has many application beyond 3-manifolds. For example, it has consequences for the geometry of the mapping class groups and Teichm¨ullerspace. In 2 dimensions, it is well known that a closed surface of genus at least 2 admits a rich \Teichm¨ullerspace" of hyperbolic structures: in other words metrics locally modelled on the hyperbolic plane. In contrast, in higher dimensions, a closed manifold admits at most one hyperbolic structure. This is the Mostow Rigidity Theorem [Most]. If we allow non-compact manifolds, then in general, we might expect to get many such structures. In dimensions greater than 3, there are lots of interesting examples; though there is no well developed general theory, and it would seem that hyperbolic structures do not arise in such a natural way. The focus has therefore been on the 3-dimensional situation. To outline this, let M be a complete hyperbolic 3-manifold. We can write 3 3 ∼ M = H =Γ, where H is hyperbolic 3-space, and Γ = π1(M) acts isometrically 4 BRIAN H. BOWDITCH and freely properly discontinuously on H3. In general, one could construct lots of exotic examples, so it is natural to restrict to the case where Γ is finitely generated. In this case the Tameness Theorem tells us that M is homeomorphic to the interior of a compact manifold with (possibly empty) boundary. This is equivalent to saying that each end, e, of M has a neighbourhood homeomorphic to Σ × [0; 1), where Σ = Σ(e) is a closed surface. In general the situation may be complicated by the existence of cusps, where a given curve in M can be made arbitrarily short by homotoping it out one of the ends. To simplify the discussion, we will assume in this introdcution that M has no cusps. In this case, each Σ(e) has genus at least 2. A consequence of (the proof of) the Tameness Theorem is that we can associate to e an \end invariant", a(e). In fact, there are two cases. Maybe e is \geometrically finite" and a(e) is an element of the Teichm¨ullerspace of Σ(e). Or else, e is \degenerate" and a(e) is an \ending lamination". The latter can be loosely thought of as an ideal point of the Teichm¨ullerspace (though that is not entirely accurate). In the case where there are no cusps, the Ending Lamination Theorem tells us that M is determined up to isometry by its topology and its family of end invariants. There is a reasonably good understanding of the structure of end invariants, and so this gives a fairly satisfactory answer to the question of what such 3-manifolds look like. (Though of course, other questions remain open.) In particular, if M is closed, then there are no end invariants. Therefore, the Ending Lamination Theorem implies the Mostow Rigidity Theorem. An important case is where M is homeomorphic to Σ × R. (In this case, Tameness is due to Bonahon [Bon].) One can very loosely think of the geometry of M determining a coarse path in the Teichm¨ullerspace of Σ, parameterised by the R-coordinate. If both ends are degenerate, then this path is bi-infinite, and we can think of it as limiting on the respective ending laminations. Again, this is only very approximately true (though it can be made more precise in certain cases, see [Mi1] for example). In this way, a connection can be made with the geometry of Teichm¨ullerspace. Indeed, understanding this particular case, is in some sense, the key to understanding the Ending Lamination Theorem in general. The proof of the Ending Lamination Theorem here, as in [Mi4, BrocCM], works by constructing a model space. This is a riemannian manifold, P , homeomorphic to M, whose construction depends only on the data given by the (degenerate) end invariants. One then constructs a bilipschitz map from P to M. If M 0 is a hyperbolic 3-manifold homeomorphic to M and has the same end invariants, we therefore get a bilipschitz map from M to M 0, via P . Some standard results from the theory of quasiconformal maps allows us to promote this to an isometry. The construction of P is of intrinsic interest, since it makes much use of the geometry of curve complexes, and so one obtains new information about these spaces: both along the way and in retrospect. The fact that the map from P to M is lipschitz, though highly non-trivial, is significantly simpler than showing that it has a lipschitz inverse. In fact, for THE ENDING LAMINATION THEOREM 5 the proof of the Ending Lamination Theorem, we only need a weaker statement, namely that the map lifts to a quasi-isometry of universal covers.
Recommended publications
  • Geometric Methods in Heegaard Theory
    GEOMETRIC METHODS IN HEEGAARD THEORY TOBIAS HOLCK COLDING, DAVID GABAI, AND DANIEL KETOVER Abstract. We survey some recent geometric methods for studying Heegaard splittings of 3-manifolds 0. Introduction A Heegaard splitting of a closed orientable 3-manifold M is a decomposition of M into two handlebodies H0 and H1 which intersect exactly along their boundaries. This way of thinking about 3-manifolds (though in a slightly different form) was discovered by Poul Heegaard in his forward looking 1898 Ph. D. thesis [Hee1]. He wanted to classify 3-manifolds via their diagrams. In his words1: Vi vende tilbage til Diagrammet. Den Opgave, der burde løses, var at reducere det til en Normalform; det er ikke lykkedes mig at finde en saadan, men jeg skal dog fremsætte nogle Bemærkninger angaaende Opgavens Løsning. \We will return to the diagram. The problem that ought to be solved was to reduce it to the normal form; I have not succeeded in finding such a way but I shall express some remarks about the problem's solution." For more details and a historical overview see [Go], and [Zie]. See also the French translation [Hee2], the English translation [Mun] and the partial English translation [Prz]. See also the encyclopedia article of Dehn and Heegaard [DH]. In his 1932 ICM address in Zurich [Ax], J. W. Alexander asked to determine in how many essentially different ways a canonical region can be traced in a manifold or in modern language how many different isotopy classes are there for splittings of a given genus. He viewed this as a step towards Heegaard's program.
    [Show full text]
  • Homotopy Type of the Complex of Free Factors of a Free Group
    Research Collection Other Journal Item Homotopy type of the complex of free factors of a free group Author(s): Gupta, Radhika; Brück, Benjamin Publication Date: 2020-12 Permanent Link: https://doi.org/10.3929/ethz-b-000463712 Originally published in: Proceedings of the London Mathematical Society 121(6), http://doi.org/10.1112/plms.12381 Rights / License: Creative Commons Attribution 4.0 International This page was generated automatically upon download from the ETH Zurich Research Collection. For more information please consult the Terms of use. ETH Library Proc. London Math. Soc. (3) 121 (2020) 1737–1765 doi:10.1112/plms.12381 Homotopy type of the complex of free factors of a free group Benjamin Br¨uck and Radhika Gupta Abstract We show that the complex of free factors of a free group of rank n 2 is homotopy equivalent to a wedge of spheres of dimension n − 2. We also prove that for n 2, the complement of (unreduced) Outer space in the free splitting complex is homotopy equivalent to the complex of free factor systems and moreover is (n − 2)-connected. In addition, we show that for every non-trivial free factor system of a free group, the corresponding relative free splitting complex is contractible. 1. Introduction Let F be the free group of finite rank n. A free factor of F is a subgroup A such that F = A ∗ B for some subgroup B of F. Let [.] denote the conjugacy class of a subgroup of F. Define Fn to be the partially ordered set (poset) of conjugacy classes of proper, non-trivial free factors of F where [A] [B] if for suitable representatives, one has A ⊆ B.
    [Show full text]
  • On the Topology of Ending Lamination Space
    1 ON THE TOPOLOGY OF ENDING LAMINATION SPACE DAVID GABAI Abstract. We show that if S is a finite type orientable surface of genus g and p punctures where 3g + p ≥ 5, then EL(S) is (n − 1)-connected and (n − 1)- locally connected, where dim(PML(S)) = 2n + 1 = 6g + 2p − 7. Furthermore, if g = 0, then EL(S) is homeomorphic to the p−4 dimensional Nobeling space. 0. Introduction This paper is about the topology of the space EL(S) of ending laminations on a finite type hyperbolic surface, i.e. a complete hyperbolic surface S of genus-g with p punctures. An ending lamination is a geodesic lamination L in S that is minimal and filling, i.e. every leaf of L is dense in L and any simple closed geodesic in S nontrivally intersects L transversely. Since Thurston's seminal work on surface automorphisms in the mid 1970's, laminations in surfaces have played central roles in low dimensional topology, hy- perbolic geometry, geometric group theory and the theory of mapping class groups. From many points of view, the ending laminations are the most interesting lam- inations. For example, the stable and unstable laminations of a pseudo Anosov mapping class are ending laminations [Th1] and associated to a degenerate end of a complete hyperbolic 3-manifold with finitely generated fundamental group is an ending lamination [Th4], [Bon]. Also, every ending lamination arises in this manner [BCM]. The Hausdorff metric on closed sets induces a metric topology on EL(S). Here, two elements L1, L2 in EL(S) are close if each point in L1 is close to a point of L2 and vice versa.
    [Show full text]
  • On Hyperbolicity of Free Splitting and Free Factor Complexes
    ON HYPERBOLICITY OF FREE SPLITTING AND FREE FACTOR COMPLEXES ILYA KAPOVICH AND KASRA RAFI Abstract. We show how to derive hyperbolicity of the free factor complex of FN from the Handel-Mosher proof of hyperbolicity of the free splitting complex of FN , thus obtaining an alternative proof of a theorem of Bestvina-Feighn. We also show that the natural map from the free splitting complex to free factor complex sends geodesics to quasi-geodesics. 1. Introduction The notion of a curve complex, introduced by Harvey [9] in late 1970s, plays a key role in the study of hyperbolic surfaces, mapping class group and the Teichm¨ullerspace. If S is a compact connected oriented surface, the curve complex C(S) of S is a simplicial complex whose vertices are isotopy classes of essential non-peripheral simple closed curves. A collection [α0];:::; [αn] of (n + 1) distinct vertices of C(S) spans an n{simplex in C(S) if there exist representatives α0; : : : ; αn of these isotopy classes such that for all i 6= j the curves αi and αj are disjoint. (The definition of C(S) is a little different for several surfaces of small genus). The complex C(S) is finite-dimensional but not locally finite, and it comes equipped with a natural action of the mapping class group Mod(S) by simplicial automorphisms. It turns out that the geometry of C(S) is closely related to the geometry of the Teichm¨ullerspace T (S) and also of the mapping class group itself. The curve complex is a basic tool in modern Teichmuller theory, and has also found numerous applications in the study of 3-manifolds and of Kleinian groups.
    [Show full text]
  • 3-Manifold Groups
    3-Manifold Groups Matthias Aschenbrenner Stefan Friedl Henry Wilton University of California, Los Angeles, California, USA E-mail address: [email protected] Fakultat¨ fur¨ Mathematik, Universitat¨ Regensburg, Germany E-mail address: [email protected] Department of Pure Mathematics and Mathematical Statistics, Cam- bridge University, United Kingdom E-mail address: [email protected] Abstract. We summarize properties of 3-manifold groups, with a particular focus on the consequences of the recent results of Ian Agol, Jeremy Kahn, Vladimir Markovic and Dani Wise. Contents Introduction 1 Chapter 1. Decomposition Theorems 7 1.1. Topological and smooth 3-manifolds 7 1.2. The Prime Decomposition Theorem 8 1.3. The Loop Theorem and the Sphere Theorem 9 1.4. Preliminary observations about 3-manifold groups 10 1.5. Seifert fibered manifolds 11 1.6. The JSJ-Decomposition Theorem 14 1.7. The Geometrization Theorem 16 1.8. Geometric 3-manifolds 20 1.9. The Geometric Decomposition Theorem 21 1.10. The Geometrization Theorem for fibered 3-manifolds 24 1.11. 3-manifolds with (virtually) solvable fundamental group 26 Chapter 2. The Classification of 3-Manifolds by their Fundamental Groups 29 2.1. Closed 3-manifolds and fundamental groups 29 2.2. Peripheral structures and 3-manifolds with boundary 31 2.3. Submanifolds and subgroups 32 2.4. Properties of 3-manifolds and their fundamental groups 32 2.5. Centralizers 35 Chapter 3. 3-manifold groups after Geometrization 41 3.1. Definitions and conventions 42 3.2. Justifications 45 3.3. Additional results and implications 59 Chapter 4. The Work of Agol, Kahn{Markovic, and Wise 63 4.1.
    [Show full text]
  • January 2013 Prizes and Awards
    January 2013 Prizes and Awards 4:25 P.M., Thursday, January 10, 2013 PROGRAM SUMMARY OF AWARDS OPENING REMARKS FOR AMS Eric Friedlander, President LEVI L. CONANT PRIZE: JOHN BAEZ, JOHN HUERTA American Mathematical Society E. H. MOORE RESEARCH ARTICLE PRIZE: MICHAEL LARSEN, RICHARD PINK DEBORAH AND FRANKLIN TEPPER HAIMO AWARDS FOR DISTINGUISHED COLLEGE OR UNIVERSITY DAVID P. ROBBINS PRIZE: ALEXANDER RAZBOROV TEACHING OF MATHEMATICS RUTH LYTTLE SATTER PRIZE IN MATHEMATICS: MARYAM MIRZAKHANI Mathematical Association of America LEROY P. STEELE PRIZE FOR LIFETIME ACHIEVEMENT: YAKOV SINAI EULER BOOK PRIZE LEROY P. STEELE PRIZE FOR MATHEMATICAL EXPOSITION: JOHN GUCKENHEIMER, PHILIP HOLMES Mathematical Association of America LEROY P. STEELE PRIZE FOR SEMINAL CONTRIBUTION TO RESEARCH: SAHARON SHELAH LEVI L. CONANT PRIZE OSWALD VEBLEN PRIZE IN GEOMETRY: IAN AGOL, DANIEL WISE American Mathematical Society DAVID P. ROBBINS PRIZE FOR AMS-SIAM American Mathematical Society NORBERT WIENER PRIZE IN APPLIED MATHEMATICS: ANDREW J. MAJDA OSWALD VEBLEN PRIZE IN GEOMETRY FOR AMS-MAA-SIAM American Mathematical Society FRANK AND BRENNIE MORGAN PRIZE FOR OUTSTANDING RESEARCH IN MATHEMATICS BY ALICE T. SCHAFER PRIZE FOR EXCELLENCE IN MATHEMATICS BY AN UNDERGRADUATE WOMAN AN UNDERGRADUATE STUDENT: FAN WEI Association for Women in Mathematics FOR AWM LOUISE HAY AWARD FOR CONTRIBUTIONS TO MATHEMATICS EDUCATION LOUISE HAY AWARD FOR CONTRIBUTIONS TO MATHEMATICS EDUCATION: AMY COHEN Association for Women in Mathematics M. GWENETH HUMPHREYS AWARD FOR MENTORSHIP OF UNDERGRADUATE
    [Show full text]
  • Actions of Mapping Class Groups Athanase Papadopoulos
    Actions of mapping class groups Athanase Papadopoulos To cite this version: Athanase Papadopoulos. Actions of mapping class groups. L. Ji, A. Papadopoulos and S.-T. Yau. Handbook of Group Actions, Vol. I, 31, Higher Education Press; International Press, p. 189-248., 2014, Advanced Lectures in Mathematics, 978-7-04-041363-2. hal-01027411 HAL Id: hal-01027411 https://hal.archives-ouvertes.fr/hal-01027411 Submitted on 21 Jul 2014 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. ACTIONS OF MAPPING CLASS GROUPS ATHANASE PAPADOPOULOS Abstract. This paper has three parts. The first part is a general introduction to rigidity and to rigid actions of mapping class group actions on various spaces. In the second part, we describe in detail four rigidity results that concern actions of mapping class groups on spaces of foliations and of laminations, namely, Thurston’s sphere of projective foliations equipped with its projective piecewise-linear structure, the space of unmeasured foliations equipped with the quotient topology, the reduced Bers boundary, and the space of geodesic laminations equipped with the Thurston topology. In the third part, we present some perspectives and open problems on other actions of mapping class groups.
    [Show full text]
  • 1. the Ending Lamination Conjecture 1 2
    THE CLASSIFICATION OF KLEINIAN SURFACE GROUPS, II: THE ENDING LAMINATION CONJECTURE JEFFREY F. BROCK, RICHARD D. CANARY, AND YAIR N. MINSKY Abstract. Thurston's Ending Lamination Conjecture states that a hy- perbolic 3-manifold with finitely generated fundamental group is uniquely determined by its topological type and its end invariants. In this paper we prove this conjecture for Kleinian surface groups. The main ingredi- ent is the establishment of a uniformly bilipschitz model for a Kleinian surface group. The first half of the proof appeared in [47], and a sub- sequent paper [15] will establish the Ending Lamination Conjecture in general. Contents 1. The ending lamination conjecture 1 2. Background and statements 8 3. Knotting and partial order of subsurfaces 25 4. Cut systems and partial orders 49 5. Regions and addresses 66 6. Uniform embeddings of Lipschitz surfaces 76 7. Insulating regions 91 8. Proof of the bilipschitz model theorem 99 9. Proofs of the main theorems 118 10. Corollaries 119 References 123 1. The ending lamination conjecture In the late 1970's Thurston formulated a conjectural classification scheme for all hyperbolic 3-manifolds with finitely generated fundamental group. The picture proposed by Thurston generalized what had hitherto been un- derstood, through the work of Ahlfors [3], Bers [10], Kra [34], Marden [37], Maskit [38], Mostow [51], Prasad [55], Thurston [67] and others, about geo- metrically finite hyperbolic 3-manifolds. Thurston's scheme proposes end invariants which encode the asymptotic geometry of the ends of the manifold, and which generalize the Riemann Date: December 7, 2004. Partially supported by NSF grants DMS-0354288, DMS-0203698 and DMS-0203976.
    [Show full text]
  • Marden's Tameness Conjecture
    MARDEN'S TAMENESS CONJECTURE: HISTORY AND APPLICATIONS RICHARD D. CANARY Abstract. Marden's Tameness Conjecture predicts that every hyperbolic 3-manifold with finitely generated fundamental group is homeomorphic to the interior of a compact 3-manifold. It was recently established by Agol and Calegari-Gabai. We will survey the history of work on this conjecture and discuss its many appli- cations. 1. Introduction In a seminal paper, published in the Annals of Mathematics in 1974, Al Marden [65] conjectured that every hyperbolic 3-manifold with finitely generated fundamental group is homeomorphic to the interior of a compact 3-manifold. This conjecture evolved into one of the central conjectures in the theory of hyperbolic 3-manifolds. For example, Mar- den's Tameness Conjecture implies Ahlfors' Measure Conjecture (which we will discuss later). It is a crucial piece in the recently completed classification of hyperbolic 3-manifolds with finitely generated funda- mental group. It also has important applications to geometry and dy- namics of hyperbolic 3-manifolds and gives important group-theoretic information about fundamental groups of hyperbolic 3-manifolds. There is a long history of partial results in the direction of Marden's Tameness Conjecture and it was recently completely established by Agol [1] and Calegari-Gabai [27]. In this brief expository paper, we will survey the history of these results and discuss some of the most important applications. Outline of paper: In section 2, we recall basic definitions from the theory of hyperbolic 3-manifolds. In section 3, we construct a 3- manifold with finitely generated fundamental group which is not home- omorphic to the interior of a compact 3-manifold.
    [Show full text]
  • Marden's Tameness Conjecture: History and Applications
    MARDEN’S TAMENESS CONJECTURE: HISTORY AND APPLICATIONS RICHARD D. CANARY Abstract. Marden’s Tameness Conjecture predicts that every hyperbolic 3-manifold with finitely generated fundamental group is homeomorphic to the interior of a compact 3-manifold. It was recently established by Agol and Calegari-Gabai. We will survey the history of work on this conjecture and discuss its many appli- cations. 1. Introduction In a seminal paper, published in the Annals of Mathematics in 1974, Al Marden [65] conjectured that every hyperbolic 3-manifold with finitely generated fundamental group is homeomorphic to the interior of a compact 3-manifold. This conjecture evolved into one of the central conjectures in the theory of hyperbolic 3-manifolds. For example, Mar- den’s Tameness Conjecture implies Ahlfors’ Measure Conjecture (which we will discuss later). It is a crucial piece in the recently completed classification of hyperbolic 3-manifolds with finitely generated funda- mental group. It also has important applications to geometry and dy- namics of hyperbolic 3-manifolds and gives important group-theoretic information about fundamental groups of hyperbolic 3-manifolds. There is a long history of partial results in the direction of Marden’s Tameness Conjecture and it was recently completely established by arXiv:1008.0118v1 [math.GT] 31 Jul 2010 Agol [1] and Calegari-Gabai [27]. In this brief expository paper, we will survey the history of these results and discuss some of the most important applications. Outline of paper: In section 2, we recall basic definitions from the theory of hyperbolic 3-manifolds. In section 3, we construct a 3- manifold with finitely generated fundamental group which is not home- omorphic to the interior of a compact 3-manifold.
    [Show full text]
  • The Universal Cannon–Thurston Map and the Boundary of the Curve Complex
    Comment. Math. Helv. 86 (2011), 769–816 Commentarii Mathematici Helvetici DOI 10.4171/CMH/240 The universal Cannon–Thurston map and the boundary of the curve complex Christopher J. Leininger, Mahan Mj and Saul Schleimer Abstract. In genus two and higher, the fundamental group of a closed surface acts naturally on the curve complex of the surface with one puncture. Combining ideas from previous work of Kent–Leininger–Schleimer and Mitra, we construct a universal Cannon–Thurston map from a subset of the circle at infinity for the closed surface group onto the boundary of the curve complex of the once-punctured surface. Using the techniques we have developed, we also show that the boundary of this curve complex is locally path-connected. Mathematics Subject Classification (2010). 20F67 Primary; Secondary 22E40, 57M50. Keywords. Mapping class group, curve complex, ending lamination, Cannon–Thurston map. Contents 1 Introduction .......................................770 1.1 Statement of results ................................770 1.2 Notation and conventions .............................772 2 Point position ......................................778 2.1 A bundle over H ..................................779 2.2 An explicit construction of ˆ ...........................780 2.3 A further description of C.S; z/ ..........................783 2.4 Extending to measured laminations ........................784 2.5 ˆ and ‰ ......................................791 3 Universal Cannon–Thurston maps ...........................793 3.1 Quasiconvex sets .................................793
    [Show full text]
  • Combinatorics of Tight Geodesics and Stable Lengths
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 367, Number 10, October 2015, Pages 7323–7342 http://dx.doi.org/10.1090/tran/6301 Article electronically published on April 3, 2015 COMBINATORICS OF TIGHT GEODESICS AND STABLE LENGTHS RICHARDC.H.WEBB Abstract. We give an algorithm to compute the stable lengths of pseudo- Anosovs on the curve graph, answering a question of Bowditch. We also give a procedure to compute all invariant tight geodesic axes of pseudo-Anosovs. Along the way we show that there are constants 1 <a1 <a2 such that the minimal upper bound on ‘slices’ of tight geodesics is bounded below and ξ(S) ξ(S) above by a1 and a2 ,whereξ(S) is the complexity of the surface. As a consequence, we give the first computable bounds on the asymptotic dimension of curve graphs and mapping class groups. Our techniques involve a generalization of Masur–Minsky’s tight geodesics and a new class of paths on which their tightening procedure works. 1. Introduction The curve complex was introduced by Harvey [23]. Its coarse geometric proper- ties were first studied extensively by Masur–Minsky [27,28] and it is a widely useful tool in the study of hyperbolic 3–manifolds, mapping class groups and Teichm¨uller theory. Essential to hierarchies in the curve complex [27] and the Ending Lamination Theorem [10,29] (see also [6]) is the notion of a tight geodesic. This has remedied the non-local compactness of the curve complex, as Masur–Minsky proved that between any pair of curves there is at least one but only finitely many tight geodesics.
    [Show full text]