Section 9.1- Basic Notions

Total Page:16

File Type:pdf, Size:1020Kb

Section 9.1- Basic Notions c Kendra Kilmer May 19, 2009 Section 9.1- Basic Notions The fundamental building blocks of geometry are points, lines, and planes. There is no formal definition of these terms but we can present an intuitive notion of each: Linear Notions: • Collinear points are points on the same line. (Any two points are collinear but not every three points have to be collinear.) • Point B is between points A and C on line l if B 6= A, B 6= C and B is on the part of the line connecting A and C. • A line segment, or segment, is a subset of a line that contains two points of the line and all points between those two points. • A ray is a subset of a line that contains the endpoint and all points on the line on one side of the point. 1 c Kendra Kilmer May 19, 2009 Planar Notions: • Points in the same plane are coplanar. • Noncoplanar points cannot be placed in single plane. • Lines in the same plane are coplanar lines. • Skew lines are lines that do not intersect, and there is no plane that contains them. • Intersecting lines are two coplanar lines with exactly one point in common. • Concurrent lines are lines that contain the same point. • Two distinct coplanar lines m and n that have no points in common are parallel lines. Example 1: Let’s think about the following questions: a) How many different lines can be drawn through two points? b) Can skew lines be parallel? 2 c Kendra Kilmer May 19, 2009 Properties of Points, Lines, and Planes: 1. There is exactly one line that contains any two distinct points. 2. If two points lie in a plane, then the line containing the points lies in the plane. 3. If two distinct planes intersect, then their intersection is a line. 4. There is exactly one plane that contains any three distinct noncollinear points. 5. A line and a point not on the line determine a plane. 6. Two parallel lines determine a plane. 7. Two intersecting lines determine a plane. Example 2: Euclid assumed the first four of the preceding properties as axioms (statements pre- sumed true). Let’s show that properties 5-7 follow logically from the first four properties. Example 3: Given 15 points, no 3 of which are collinear, how many different lines can be drawn through the 15 points? 3 c Kendra Kilmer May 19, 2009 Other Planar Notions: • Two distinct planes either intersect in a line or are parallel (have no points in common). • A line and a plane can be related in one of three ways: – If a line and a plane have no points in common, the line is parallel to the plane. – If two points of a line are in the plane, then the entire line containing the points is contained in the plane. – If a line intersects a plane but is not contained in the plane, it intersects the plane at only one point. • If a line is contained in a plane, it separates the plane into two half-planes. The plane is the union of three disjoint sets: the two half-planes and the line that separates them. Angles & Angle Measurement: • When two rays share an endpoint, an angle is formed. The rays of an angle are the sides of the angle, and the common endpoint is the vertex of the angle. • Adjacent angles share a common vertex and a common side and do not have overlapping interiors. • An angle is measured according to the amount of ”opening” between its sides. The degree is commonly used to measure angles. A complete rotation about a point has a measure of 360 degrees, written 360◦. 1 Thus, one degree is of a complete rotation. We can use a protractor to measure an angle. 360 • A degree is subdivided into 60 equal parts, minutes, and each minute is further divided into 60 equal parts, seconds. Example 4: Convert 18:35◦ to degrees, minutes, and seconds. Example 5: Convert 48◦1804500 to decimal degrees. Note: The degree is not the only unit used to measure angles. Other units of measurement include the radian and the grad. 4 c Kendra Kilmer May 19, 2009 Example 6: Use the figure below to find the measure of 6 ABC if m(6 1) = 52◦340 and m(6 2) = 46◦510. Types of Angles: • An acute angle measures less than 90◦. • A right angle measures exactly 90◦. • An obtuse angle measures greater than 90◦ and less than 180◦. • A straight angle measures exactly 180◦. Perpendicular: • When two lines intersect so that the angles formed are right angles, we say the lines are perpendicular lines and we write m ? n. • A line perpendicular to a plane is a line that is perpendicular to every line in the plane through its intersection with the plane. Example 7: Let’s think about the following questions: a) Is it possible for a line intersecting a plane to be perpendicular to exactly one line in the plane through its intersection with the plane? b) Is it possible for a line intersecting a plane to be perpendicular to two distinct lines in a plane going through its point of intersection with the plane, and yet not be perpendicular to the plane? c) Can a line be perpendicular to infinitely many lines? Theorem 9-1: A line perpendicular to two distinct lines in the plane through its intersection with the plane is perpendicular to the plane. Section 9.1 Homework Problems: 1, 2, 4, 5, 7, 8, 9, 10, 12, 19, 20, 26 5 c Kendra Kilmer May 19, 2009 Section 9.2 - Polygons Definitions: • A path that is drawn without picking up your pencil and without retracing any part of the path except single points is known as a curve. • A simple curve does not cross itself except the starting and stopping points may be the same. • A closed curve can be drawn starting and stopping at the same point. • Polygons are simple and closed and have sides that are line segments. • A point where two sides of a polygon meet is a vertex. • A curve is convex if it is simple, closed, and if a segment connecting any two points in the interior of the curve is wholly contained in the interior of the curve. (i.e. there are no indentations) • A concave curve is simple, closed, and not convex. • A polygonal region includes the polygon and its interior. Example 1: Classify each of the following figures: Polygons are classifed according to the number of sides or vertices they have: Number of Sides Name of Polygon 3 4 5 6 7 8 9 10 n 6 c Kendra Kilmer May 19, 2009 More About Polygons: • Any two sides of a polygon having a common vertex determine an interior angle. • An exterior angle of a convex polygon is determined by a side of the polygon and the extension of a contiguous side of the polygon. • Any line segment connecting nonconsecutive vertices of a polygon is a diagonal of the polygon. Congruent Segments and Angles: • Two segments are congruent if a tracing of one line segment can be fitted exactly on top of the other line segment. • Two angles are congruent if they have the same measure. • The symbol =∼ is used to represent congruent. • Polygons in which all the interior angles are congruent and all the sides are congruent are regular polygons. 7 c Kendra Kilmer May 19, 2009 Triangle Classifications: • A triangle containing one right angle is a right triangle. • A triangle in which all the angles are acute is an acute triangle. • A triangle containing one obtuse angle is an obtuse triangle. • A triangle with no congruent sides is a scalene triangle. • A triangle with at least two congruent sides is an isosceles triangle. • A triangle with three congruent sides is an equilateral triangle. Quadrilateral Classifications: • A trapezoid is a quadrilateral with at least one pair of parallel sides. (Note: Some elementary texts define a trapezoid as a quadrilateral with exactly one pair of parallel sides.) • A kite is a quadrilateral with two adjacent sides congruent and the other two sides also congruent. • An isosceles trapezoid is a trapezoid with exactly one pair of congruent sides. (Equivalently, an isosce- les trapezoid is a trapezoid with two congruent base angles.) • A parallelogram is a quadrilateral in which each pair of opposite sides is parallel. 8 c Kendra Kilmer May 19, 2009 • A rectangle is a parallelogram with a right angle. (Equivalently, a rectangle is a quadrilateral with four right angles.) • A rhombus is a parallelogram with two adjacent sides congruent. (Equivalently, a rhombus is a quadri- lateral with all sides congruent.) sides congruent.) • A square is a rectangle with two adjacent sides congruent. (Equivalently, a square is a quadrilateral with four right angles and four congruent sides.) Example 2: Determine whether each of the following statements is true or false. • An equilateral triangle is isosceles. • A square is a regular quadrilateral. • If one angle of a rhombus is a right angle, then all of the angles of the rhombus are right angles. • A square is a rhombus with a right angle. • All the angles of a rectangle are right angles. • If a kite has a right angle, then it must be a square. Section 9.2 Homework Problems: 1, 3-7, 12, 13, 19, 20 9 c Kendra Kilmer May 19, 2009 Section 9.3 - More About Angles Definitions: • Vertical Angles are pairs of angles opposite each other at the intersection of two lines.
Recommended publications
  • Geometry Honors Mid-Year Exam Terms and Definitions Blue Class 1
    Geometry Honors Mid-Year Exam Terms and Definitions Blue Class 1. Acute angle: Angle whose measure is greater than 0° and less than 90°. 2. Adjacent angles: Two angles that have a common side and a common vertex. 3. Alternate interior angles: A pair of angles in the interior of a figure formed by two lines and a transversal, lying on alternate sides of the transversal and having different vertices. 4. Altitude: Perpendicular segment from a vertex of a triangle to the opposite side or the line containing the opposite side. 5. Angle: A figure formed by two rays with a common endpoint. 6. Angle bisector: Ray that divides an angle into two congruent angles and bisects the angle. 7. Base Angles: Two angles not included in the legs of an isosceles triangle. 8. Bisect: To divide a segment or an angle into two congruent parts. 9. Coincide: To lie on top of the other. A line can coincide another line. 10. Collinear: Lying on the same line. 11. Complimentary: Two angle’s whose sum is 90°. 12. Concave Polygon: Polygon in which at least one interior angle measures more than 180° (at least one segment connecting two vertices is outside the polygon). 13. Conclusion: A result of summary of all the work that has been completed. The part of a conditional statement that occurs after the word “then”. 14. Congruent parts: Two or more parts that only have the same measure. In CPCTC, the parts of the congruent triangles are congruent. 15. Congruent triangles: Two triangles are congruent if and only if all of their corresponding parts are congruent.
    [Show full text]
  • Framing Cyclic Revolutionary Emergence of Opposing Symbols of Identity Eppur Si Muove: Biomimetic Embedding of N-Tuple Helices in Spherical Polyhedra - /
    Alternative view of segmented documents via Kairos 23 October 2017 | Draft Framing Cyclic Revolutionary Emergence of Opposing Symbols of Identity Eppur si muove: Biomimetic embedding of N-tuple helices in spherical polyhedra - / - Introduction Symbolic stars vs Strategic pillars; Polyhedra vs Helices; Logic vs Comprehension? Dynamic bonding patterns in n-tuple helices engendering n-fold rotating symbols Embedding the triple helix in a spherical octahedron Embedding the quadruple helix in a spherical cube Embedding the quintuple helix in a spherical dodecahedron and a Pentagramma Mirificum Embedding six-fold, eight-fold and ten-fold helices in appropriately encircled polyhedra Embedding twelve-fold, eleven-fold, nine-fold and seven-fold helices in appropriately encircled polyhedra Neglected recognition of logical patterns -- especially of opposition Dynamic relationship between polyhedra engendered by circles -- variously implying forms of unity Symbol rotation as dynamic essential to engaging with value-inversion References Introduction The contrast to the geocentric model of the solar system was framed by the Italian mathematician, physicist and philosopher Galileo Galilei (1564-1642). His much-cited phrase, " And yet it moves" (E pur si muove or Eppur si muove) was allegedly pronounced in 1633 when he was forced to recant his claims that the Earth moves around the immovable Sun rather than the converse -- known as the Galileo affair. Such a shift in perspective might usefully inspire the recognition that the stasis attributed so widely to logos and other much-valued cultural and heraldic symbols obscures the manner in which they imply a fundamental cognitive dynamic. Cultural symbols fundamental to the identity of a group might then be understood as variously moving and transforming in ways which currently elude comprehension.
    [Show full text]
  • Polygon Review and Puzzlers in the Above, Those Are Names to the Polygons: Fill in the Blank Parts. Names: Number of Sides
    Polygon review and puzzlers ÆReview to the classification of polygons: Is it a Polygon? Polygons are 2-dimensional shapes. They are made of straight lines, and the shape is "closed" (all the lines connect up). Polygon Not a Polygon Not a Polygon (straight sides) (has a curve) (open, not closed) Regular polygons have equal length sides and equal interior angles. Polygons are named according to their number of sides. Name of Degree of Degree of triangle total angles regular angles Triangle 180 60 In the above, those are names to the polygons: Quadrilateral 360 90 fill in the blank parts. Pentagon Hexagon Heptagon 900 129 Names: number of sides: Octagon Nonagon hendecagon, 11 dodecagon, _____________ Decagon 1440 144 tetradecagon, 13 hexadecagon, 15 Do you see a pattern in the calculation of the heptadecagon, _____________ total degree of angles of the polygon? octadecagon, _____________ --- (n -2) x 180° enneadecagon, _____________ icosagon 20 pentadecagon, _____________ These summation of angles rules, also apply to the irregular polygons, try it out yourself !!! A point where two or more straight lines meet. Corner. Example: a corner of a polygon (2D) or of a polyhedron (3D) as shown. The plural of vertex is "vertices” Test them out yourself, by drawing diagonals on the polygons. Here are some fun polygon riddles; could you come up with the answer? Geometry polygon riddles I: My first is in shape and also in space; My second is in line and also in place; My third is in point and also in line; My fourth in operation but not in sign; My fifth is in angle but not in degree; My sixth is in glide but not symmetry; Geometry polygon riddles II: I am a polygon all my angles have the same measure all my five sides have the same measure, what general shape am I? Geometry polygon riddles III: I am a polygon.
    [Show full text]
  • Projective Geometry: a Short Introduction
    Projective Geometry: A Short Introduction Lecture Notes Edmond Boyer Master MOSIG Introduction to Projective Geometry Contents 1 Introduction 2 1.1 Objective . .2 1.2 Historical Background . .3 1.3 Bibliography . .4 2 Projective Spaces 5 2.1 Definitions . .5 2.2 Properties . .8 2.3 The hyperplane at infinity . 12 3 The projective line 13 3.1 Introduction . 13 3.2 Projective transformation of P1 ................... 14 3.3 The cross-ratio . 14 4 The projective plane 17 4.1 Points and lines . 17 4.2 Line at infinity . 18 4.3 Homographies . 19 4.4 Conics . 20 4.5 Affine transformations . 22 4.6 Euclidean transformations . 22 4.7 Particular transformations . 24 4.8 Transformation hierarchy . 25 Grenoble Universities 1 Master MOSIG Introduction to Projective Geometry Chapter 1 Introduction 1.1 Objective The objective of this course is to give basic notions and intuitions on projective geometry. The interest of projective geometry arises in several visual comput- ing domains, in particular computer vision modelling and computer graphics. It provides a mathematical formalism to describe the geometry of cameras and the associated transformations, hence enabling the design of computational ap- proaches that manipulates 2D projections of 3D objects. In that respect, a fundamental aspect is the fact that objects at infinity can be represented and manipulated with projective geometry and this in contrast to the Euclidean geometry. This allows perspective deformations to be represented as projective transformations. Figure 1.1: Example of perspective deformation or 2D projective transforma- tion. Another argument is that Euclidean geometry is sometimes difficult to use in algorithms, with particular cases arising from non-generic situations (e.g.
    [Show full text]
  • Formulas Involving Polygons - Lesson 7-3
    you are here > Class Notes – Chapter 7 – Lesson 7-3 Formulas Involving Polygons - Lesson 7-3 Here’s today’s warmup…don’t forget to “phone home!” B Given: BD bisects ∠PBQ PD ⊥ PB QD ⊥ QB M Prove: BD is ⊥ bis. of PQ P Q D Statements Reasons Honors Geometry Notes Today, we started by learning how polygons are classified by their number of sides...you should already know a lot of these - just make sure to memorize the ones you don't know!! Sides Name 3 Triangle 4 Quadrilateral 5 Pentagon 6 Hexagon 7 Heptagon 8 Octagon 9 Nonagon 10 Decagon 11 Undecagon 12 Dodecagon 13 Tridecagon 14 Tetradecagon 15 Pentadecagon 16 Hexadecagon 17 Heptadecagon 18 Octadecagon 19 Enneadecagon 20 Icosagon n n-gon Baroody Page 2 of 6 Honors Geometry Notes Next, let’s look at the diagonals of polygons with different numbers of sides. By drawing as many diagonals as we could from one diagonal, you should be able to see a pattern...we can make n-2 triangles in a n-sided polygon. Given this information and the fact that the sum of the interior angles of a polygon is 180°, we can come up with a theorem that helps us to figure out the sum of the measures of the interior angles of any n-sided polygon! Baroody Page 3 of 6 Honors Geometry Notes Next, let’s look at exterior angles in a polygon. First, consider the exterior angles of a pentagon as shown below: Note that the sum of the exterior angles is 360°.
    [Show full text]
  • Definition Concurrent Lines Are Lines That Intersect in a Single Point. 1. Theorem 128: the Perpendicular Bisectors of the Sides
    14.3 Notes Thursday, April 23, 2009 12:49 PM Definition 1. Concurrent lines are lines that intersect in a single point. j k m Theorem 128: The perpendicular bisectors of the sides of a triangle are concurrent at a point that is equidistant from the vertices of the triangle. This point is called the circumcenter of the triangle. D E F Theorem 129: The bisectors of the angles of a triangle are concurrent at a point that is equidistant from the sides of the triangle. This point is called the incenter of the triangle. A B Notes Page 1 C A B C Theorem 130: The lines containing the altitudes of a triangle are concurrent. This point is called the orthocenter of the triangle. A B C Theorem 131: The medians of a triangle are concurrent at a point that is 2/3 of the way from any vertex of the triangle to the midpoint of the opposite side. This point is called the centroid of the of the triangle. Example 1: Construct the incenter of ABC A B C Notes Page 2 14.4 Notes Friday, April 24, 2009 1:10 PM Examples 1-3 on page 670 1. Construct an angle whose measure is equal to 2A - B. A B 2. Construct the tangent to circle P at point A. P A 3. Construct a tangent to circle O from point P. Notes Page 3 3. Construct a tangent to circle O from point P. O P Notes Page 4 14.5 notes Tuesday, April 28, 2009 8:26 AM Constructions 9, 10, 11 Geometric mean Notes Page 5 14.6 Notes Tuesday, April 28, 2009 9:54 AM Construct: ABC, given {a, ha, B} a Ha B A b c B C a Notes Page 6 14.1 Notes Tuesday, April 28, 2009 10:01 AM Definition: A locus is a set consisting of all points, and only the points, that satisfy specific conditions.
    [Show full text]
  • Folding the Regular Nonagon
    210 Folding the Regular Nonagon Robert Geretschlager, Bundesrealgymnasium, Graz, Austria Introduction In the March 1997 of Crux [1997: 81], I presented a theoretically precise method of folding a regular heptagon from a square of paper using origami methods in an article titled \Folding the Regular Heptagon". The method was derived from results established in \Euclidean Constructions and the Geometry of Origami" [2], where it is shown that all geometric problems that can be reduced algebraically to cubic equations can be solved by elementary methods of origami. Speci cally, the corners of the regular heptagon were thought of as the solutions of the equation 7 z 1=0 in the complex plane, and this equation was then found to lead to the cubic equation 3 2 + 2 1= 0; which was then discussed using methods of origami. Finally, a concrete method of folding the regular heptagon was presented, as derived from this discussion. In this article, I present a precise method of folding the regular nonagon from a square of paper, again as derived from results established in [2]. However, as we shall see, the sequence of foldings used is quite di erent from that used for the regular heptagon. As for the heptagon, the folding method is once again presented in standard origami notation, and the mathematical section cross-referenced to the appropriate diagrams. Angle Trisection For any regular n-gon, the angle under which each side appears as seen from 2 the mid-point is . Speci cally, for n =9, the sides of a regular nonagon n 2 are seen from its mid-point under the angle .
    [Show full text]
  • Geometry: Neutral MATH 3120, Spring 2016 Many Theorems of Geometry Are True Regardless of Which Parallel Postulate Is Used
    Geometry: Neutral MATH 3120, Spring 2016 Many theorems of geometry are true regardless of which parallel postulate is used. A neutral geom- etry is one in which no parallel postulate exists, and the theorems of a netural geometry are true for Euclidean and (most) non-Euclidean geomteries. Spherical geometry is a special case of Non-Euclidean geometries where the great circles on the sphere are lines. This leads to spherical trigonometry where triangles have angle measure sums greater than 180◦. While this is a non-Euclidean geometry, spherical geometry develops along a separate path where the axioms and theorems of neutral geometry do not typically apply. The axioms and theorems of netural geometry apply to Euclidean and hyperbolic geometries. The theorems below can be proven using the SMSG axioms 1 through 15. In the SMSG axiom list, Axiom 16 is the Euclidean parallel postulate. A neutral geometry assumes only the first 15 axioms of the SMSG set. Notes on notation: The SMSG axioms refer to the length or measure of line segments and the measure of angles. Thus, we will use the notation AB to describe a line segment and AB to denote its length −−! −! or measure. We refer to the angle formed by AB and AC as \BAC (with vertex A) and denote its measure as m\BAC. 1 Lines and Angles Definitions: Congruence • Segments and Angles. Two segments (or angles) are congruent if and only if their measures are equal. • Polygons. Two polygons are congruent if and only if there exists a one-to-one correspondence between their vertices such that all their corresponding sides (line sgements) and all their corre- sponding angles are congruent.
    [Show full text]
  • ( ) Methods for Construction of Odd Number Pointed
    Daniel DOBRE METHODS FOR CONSTRUCTION OF ODD NUMBER POINTED POLYGONS Abstract: The purpose of this paper is to present methods for constructing of polygons with an odd number of sides, although some of them may not be built only with compass and straightedge. Odd pointed polygons are difficult to construct accurately, though there are relatively simple ways of making a good approximation which are accurate within the normal working tolerances of design practitioners. The paper illustrates rather complicated constructions to produce unconstructible polygons with an odd number of sides, constructions that are particularly helpful for engineers, architects and designers. All methods presented in this paper provide practice in geometric representations. Key words: regular polygon, pentagon, heptagon, nonagon, hendecagon, pentadecagon, heptadecagon. 1. INTRODUCTION n – number of sides; Ln – length of a side; For a specialist inured to engineering graphics, plane an – apothem (radius of inscribed circle); and solid geometries exert a special fascination. Relying R – radius of circumscribed circle. on theorems and relations between linear and angular sizes, geometry develops students' spatial imagination so 2. THREE - POINT GEOMETRY necessary for understanding other graphic discipline, descriptive geometry, underlying representations in The construction for three point geometry is shown engineering graphics. in fig. 1. Given a circle with center O, draw the diameter Construction of regular polygons with odd number of AD. From the point D as center and, with a radius in sides, just by straightedge and compass, has preoccupied compass equal to the radius of circle, describe an arc that many mathematicians who have found ingenious intersects the circle at points B and C.
    [Show full text]
  • The Dual Theorem Concerning Aubert Line
    The Dual Theorem concerning Aubert Line Professor Ion Patrascu, National College "Buzeşti Brothers" Craiova - Romania Professor Florentin Smarandache, University of New Mexico, Gallup, USA In this article we introduce the concept of Bobillier transversal of a triangle with respect to a point in its plan; we prove the Aubert Theorem about the collinearity of the orthocenters in the triangles determined by the sides and the diagonals of a complete quadrilateral, and we obtain the Dual Theorem of this Theorem. Theorem 1 (E. Bobillier) Let 퐴퐵퐶 be a triangle and 푀 a point in the plane of the triangle so that the perpendiculars taken in 푀, and 푀퐴, 푀퐵, 푀퐶 respectively, intersect the sides 퐵퐶, 퐶퐴 and 퐴퐵 at 퐴푚, 퐵푚 and 퐶푚. Then the points 퐴푚, 퐵푚 and 퐶푚 are collinear. 퐴푚퐵 Proof We note that = 퐴푚퐶 aria (퐵푀퐴푚) (see Fig. 1). aria (퐶푀퐴푚) 1 Area (퐵푀퐴푚) = ∙ 퐵푀 ∙ 푀퐴푚 ∙ 2 sin(퐵푀퐴푚̂ ). 1 Area (퐶푀퐴푚) = ∙ 퐶푀 ∙ 푀퐴푚 ∙ 2 sin(퐶푀퐴푚̂ ). Since 1 3휋 푚(퐶푀퐴푚̂ ) = − 푚(퐴푀퐶̂ ), 2 it explains that sin(퐶푀퐴푚̂ ) = − cos(퐴푀퐶̂ ); 휋 sin(퐵푀퐴푚̂ ) = sin (퐴푀퐵̂ − ) = − cos(퐴푀퐵̂ ). 2 Therefore: 퐴푚퐵 푀퐵 ∙ cos(퐴푀퐵̂ ) = (1). 퐴푚퐶 푀퐶 ∙ cos(퐴푀퐶̂ ) In the same way, we find that: 퐵푚퐶 푀퐶 cos(퐵푀퐶̂ ) = ∙ (2); 퐵푚퐴 푀퐴 cos(퐴푀퐵̂ ) 퐶푚퐴 푀퐴 cos(퐴푀퐶̂ ) = ∙ (3). 퐶푚퐵 푀퐵 cos(퐵푀퐶̂ ) The relations (1), (2), (3), and the reciprocal Theorem of Menelaus lead to the collinearity of points 퐴푚, 퐵푚, 퐶푚. Note Bobillier's Theorem can be obtained – by converting the duality with respect to a circle – from the theorem relative to the concurrency of the heights of a triangle.
    [Show full text]
  • Advanced Euclidean Geometry
    Advanced Euclidean Geometry Paul Yiu Summer 2016 Department of Mathematics Florida Atlantic University July 18, 2016 Summer 2016 Contents 1 Some Basic Theorems 101 1.1 The Pythagorean Theorem . ............................ 101 1.2 Constructions of geometric mean . ........................ 104 1.3 The golden ratio . .......................... 106 1.3.1 The regular pentagon . ............................ 106 1.4 Basic construction principles ............................ 108 1.4.1 Perpendicular bisector locus . ....................... 108 1.4.2 Angle bisector locus . ............................ 109 1.4.3 Tangency of circles . ......................... 110 1.4.4 Construction of tangents of a circle . ............... 110 1.5 The intersecting chords theorem ........................... 112 1.6 Ptolemy’s theorem . ................................. 114 2 The laws of sines and cosines 115 2.1 The law of sines . ................................ 115 2.2 The orthocenter ................................... 116 2.3 The law of cosines .................................. 117 2.4 The centroid ..................................... 120 2.5 The angle bisector theorem . ............................ 121 2.5.1 The lengths of the bisectors . ........................ 121 2.6 The circle of Apollonius . ............................ 123 3 The tritangent circles 125 3.1 The incircle ..................................... 125 3.2 Euler’s formula . ................................ 128 3.3 Steiner’s porism ................................... 129 3.4 The excircles ....................................
    [Show full text]
  • Arxiv:2101.02592V1 [Math.HO] 6 Jan 2021 in His Seminal Paper [10]
    International Journal of Computer Discovered Mathematics (IJCDM) ISSN 2367-7775 ©IJCDM Volume 5, 2020, pp. 13{41 Received 6 August 2020. Published on-line 30 September 2020 web: http://www.journal-1.eu/ ©The Author(s) This article is published with open access1. Arrangement of Central Points on the Faces of a Tetrahedron Stanley Rabinowitz 545 Elm St Unit 1, Milford, New Hampshire 03055, USA e-mail: [email protected] web: http://www.StanleyRabinowitz.com/ Abstract. We systematically investigate properties of various triangle centers (such as orthocenter or incenter) located on the four faces of a tetrahedron. For each of six types of tetrahedra, we examine over 100 centers located on the four faces of the tetrahedron. Using a computer, we determine when any of 16 con- ditions occur (such as the four centers being coplanar). A typical result is: The lines from each vertex of a circumscriptible tetrahedron to the Gergonne points of the opposite face are concurrent. Keywords. triangle centers, tetrahedra, computer-discovered mathematics, Eu- clidean geometry. Mathematics Subject Classification (2020). 51M04, 51-08. 1. Introduction Over the centuries, many notable points have been found that are associated with an arbitrary triangle. Familiar examples include: the centroid, the circumcenter, the incenter, and the orthocenter. Of particular interest are those points that Clark Kimberling classifies as \triangle centers". He notes over 100 such points arXiv:2101.02592v1 [math.HO] 6 Jan 2021 in his seminal paper [10]. Given an arbitrary tetrahedron and a choice of triangle center (for example, the circumcenter), we may locate this triangle center in each face of the tetrahedron.
    [Show full text]