Quantum Chromodynamics and Other Field Theories on the Light Cone

Total Page:16

File Type:pdf, Size:1020Kb

Quantum Chromodynamics and Other Field Theories on the Light Cone Physics Reports 301 (1998) 299Ð486 Quantum chromodynamics and other field theories on the light cone Stanley J. Brodsky!, Hans-Christian Pauli", Stephen S. Pinsky# ! Stanford Linear Accelerator Center, Stanford University, Stanford, CA 94309, USA " Max-Planck-Institut fu( r Kernphysik, D-69029 Heidelberg, Germany # Ohio State University, Columbus, OH 43210, USA Received October 1997; editor: R. Petronzio Contents 1. Introduction 302 4.2. Quantum chromodynamics in 1#1 2. Hamiltonian dynamics 307 dimensions (KS) 362 2.1. Abelian gauge theory: quantum 4.3. The Hamiltonian operator in 3#1 electrodynamics 308 dimensions (BL) 366 2.2. Non-abelian gauge theory: 4.4. The Hamiltonian matrix and its Quantum chromodynamics 311 regularization 376 2.3. Parametrization of spaceÐtime 313 4.5. Further evaluation of the Hamiltonian 2.4. Forms of Hamiltonian dynamics 315 matrix elements 381 2.5. Parametrizations of the front form 317 4.6. Retrieving the continuum formulation 381 2.6. The Poincare« symmetries in the front 4.7. E¤ective interactions in 3#1 dimensions 385 form 319 4.8. Quantum electrodynamics in 3#1 2.7. The equations of motion and the dimensions 389 energyÐmomentum tensor 322 4.9. The Coulomb interaction in the front form 393 2.8. The interactions as operators acting in 5. The impact on hadronic physics 395 Fock space 327 5.1. Light-cone methods in QCD 395 3. Bound states on the light cone 329 5.2. Moments of nucleons and nuclei in the 3.1. The hadronic eigenvalue problem 330 light-cone formalism 402 3.2. The use of light-cone wavefunctions 334 5.3. Applications to nuclear systems 407 3.3. Perturbation theory in the front form 336 5.4. Exclusive nuclear processes 409 3.4. Example 1: The qqN -scattering amplitude 338 5.5. Conclusions 411 3.5. Example 2: Perturbative mass 6. Exclusive processes and light-cone renormalization in QED (KS) 341 wavefunctions 412 3.6. Example 3: The anomalous magnetic 6.1. Is PQCD factorization applicable to moment 345 exclusive processes? 414 3.7. (1#1)-dimensional: Schwinger model 6.2. Light-cone quantization and heavy (LB) 349 particle decays 415 3.8. (3#1)-dimensional: Yukawa model 352 6.3. Exclusive weak decays of heavy hadrons 416 4. Discretized light-cone quantization 358 6.4. Can light-cone wavefunctions be 4.1. Why discretized momenta? 360 measured? 418 0370-1573/98/$19.00 Copyright ( 1998 Elsevier Science B.V. All rights reserved PII S0370-1573(97)00089-6 QUANTUM CHROMODYNAMICS AND OTHER FIELD THEORIES ON THE LIGHT CONE Stanley J. BRODSKY!, Hans-Christian PAULI", Stephen S. PINSKY# ! Stanford Linear Accelerator Center, Stanford University, Stanford, CA 94309, USA " Max-Planck-Institut fu( r Kernphysik, D-69029 Heidelberg, Germany # Ohio State University, Columbus, OH 43210, USA AMSTERDAM Ð LAUSANNE Ð NEW YORK Ð OXFORD Ð SHANNON Ð TOKYO S.J. Brodsky et al. / Physics Reports 301 (1998) 299Ð486 301 7. The light-cone vacuum 419 9.2. Flavor symmetries 450 7.1. Constrained zero modes 419 9.3. Quantum chromodynamics 453 7.2. Physical picture and classification of zero 9.4. Physical multiplets 454 modes 429 10. The prospects and challenges 456 7.3. Dynamical zero modes 434 Appendix A. General conventions 460 8. Non-perturbative regularization and Appendix B. The LepageÐBrodsky convention renormalization 436 (LB) 462 8.1. TammÐDanco¤ Integral equations 437 Appendix C. The KogutÐSoper convention (KS) 463 8.2. Wilson renormalization and confinement 442 Appendix D. Comparing BD- with LB-spinors 465 9. Chiral symmetry breaking 446 Appendix E. The DiracÐBergmann method 466 9.1. Current algebra 447 References 476 Abstract In recent years light-cone quantization of quantum field theory has emerged as a promising method for solving problems in the strong coupling regime. The approach has a number of unique features that make it particularly appealing, most notably, the ground state of the free theory is also a ground state of the full theory. We discuss the light-cone quantization of gauge theories from two perspectives: as a calculational tool for representing hadrons as QCD bound states of relativistic quarks and gluons, and also as a novel method for simulating quantum field theory on a computer. The light-cone Fock state expansion of wavefunctions provides a precise definition of the parton model and a general calculus for hadronic matrix elements. We present several new applications of light-cone Fock methods, including calculations of exclusive weak decays of heavy hadrons, and intrinsic heavy-quark contributions to structure functions. A general non-perturbative method for numerically solving quantum field theories, ªdiscretized light-cone quantizationº, is outlined and applied to several gauge theories. This method is invariant under the large class of light-cone Lorentz transformations, and it can be formulated such that ultraviolet regularization is independent of the momentum space discretization. Both the bound-state spectrum and the corresponding relativistic light-cone wavefunc- tions can be obtained by matrix diagonalization and related techniques. We also discuss the construction of the light-cone Fock basis, the structure of the light-cone vacuum, and outline the renormalization techniques required for solving gauge theories within the Hamiltonian formalism on the light cone. ( 1998 Elsevier Science B.V. All rights reserved. PACS: 11.10.Ef; 11.15.Tk; 12.38.Lg; 12.40.Yx 302 S.J. Brodsky et al. / Physics Reports 301 (1998) 299Ð486 1. Introduction One of the outstanding central problems in particle physics is the determination of the structure of hadrons such as the proton and neutron in terms of their fundamental quark and gluon degrees of freedom. Over the past 20 years, two fundamentally di¤erent pictures of hadronic matter have developed. One, the constituent quark model (CQM) [469], or the quark parton model [144,145], is closely related to experimental observation. The other, quantum chromodynamics (QCD) is based on a covariant non-abelian quantum field theory. The front form of QCD [172] appears to be the only hope of reconciling these two. This elegant approach to quantum field theory is a Hamiltonian gauge-fixed formulation that avoids many of the most di¦cult problems in the equal-time formulation of the theory. The idea of deriving a front form constituent quark model from QCD actually dates from the early 1970s, and there is a rich literature on the subject [74,119,135,30,6,120,304,305,332,350,87,88,235Ð237]. The main thrust of this review will be to discuss the complexities that are unique to this formulation of QCD, and other quantum field theories, in varying degrees of detail. The goal is to present a self-consistent framework rather than trying to cover the subject exhaustively. We will attempt to present su¦cient background material to allow the reader to see some of the advantages and complexities of light-front field theory. We will, however, not undertake to review all of the successes or applications of this approach. Along the way we clarify some obscure or little-known aspects, and o¤er some recent results. The light-cone wavefunctions encode the hadronic properties in terms of their quark and gluon degrees of freedom, and thus all hadronic properties can be derived from them. In the CQM, hadrons are relativistic bound states of a few confined quark and gluon quanta. The momentum distributions of quarks making up the nucleons in the CQM are well-determined experimentally from deep inelastic lepton scattering measurements, but there has been relatively little progress in computing the basic wavefunctions of hadrons from first principles. The bound-state structure of hadrons plays a critical role in virtually every area of particle physics phenomenology. For example, in the case of the nucleon form factors and open charm photoproduction the cross sections depend not only on the nature of the quark currents, but also on the coupling of the quarks to the initial and final hadronic states. Exclusive decay processes will be studied intensively at B-meson factories. They depend not only on the underlying weak transitions between the quark flavors, but also the wavefunctions which describe how B-mesons and light hadrons are assembled in terms of their quark and gluon constituents. Unlike the leading twist structure functions measured in deep inelastic scattering, such exclusive channels are sensitive to the structure of the hadrons at the amplitude level and to the coherence between the contributions of the various quark currents and multi-parton amplitudes. In electro-weak theory, the central unknown required for reliable calculations of weak decay amplitudes are the hadronic matrix elements. The coe¦cient functions in the operator product expansion needed to compute many types of experimental quantities are essentially unknown and can only be estimated at this point. The calculation of form factors and exclusive scattering processes, in general, depend in detail on the basic amplitude structure of the scattering hadrons in a general Lorentz frame. Even the calculation of the magnetic moment of a proton requires wavefunctions in a boosted frame. One thus needs a practical computational method for QCD which not only determines its spectrum, but which can provide also the non-perturbative hadronic matrix elements needed for general calculations in hadron physics. S.J. Brodsky et al. / Physics Reports 301 (1998) 299Ð486 303 An intuitive approach for solving relativistic bound-state problems would be to solve the gauge-fixed Hamiltonian eigenvalue problem. The natural gauge for light-cone Hamiltonian theories is the light-cone gauge A`"0. In this physical gauge the gluons have only two physical transverse degrees of freedom. One imagines that there is an expansion in multi-particle occupation number Fock states. The solution of this problem is clearly a formidable task, and if successful, would allow one to calculate the structure of hadrons in terms of their fundamental degrees of freedom.
Recommended publications
  • Real-Time Dynamics of Chern-Simons Fluctuations Near a Critical Point
    PHYSICAL REVIEW D 103, L071502 (2021) Letter Real-time dynamics of Chern-Simons fluctuations near a critical point † ‡ Kazuki Ikeda ,1,* Dmitri E. Kharzeev ,2,3,4, and Yuta Kikuchi 3, 1Research Institute for Advanced Materials and Devices, Kyocera Corporation, Soraku, Kyoto 619-0237, Japan 2Center for Nuclear Theory, Department of Physics and Astronomy, Stony Brook University, Stony Brook, New York 11794-3800, USA 3Department of Physics, Brookhaven National Laboratory, Upton, New York 11973-5000 4RIKEN-BNL Research Center, Brookhaven National Laboratory, Upton, New York 11973-5000 (Received 16 December 2020; accepted 22 March 2021; published 21 April 2021) The real-time topological susceptibility is studied in ð1 þ 1Þ-dimensional massive Schwinger model with a θ-term. We evaluate the real-time correlation function of electric field that represents the topological Chern-Pontryagin number density in (1 þ 1) dimensions. Near the parity-breaking critical point located at θ ¼ π and fermion mass m to coupling g ratio of m=g ≈ 0.33, we observe a sharp maximum in the topological susceptibility. We interpret this maximum in terms of the growth of critical fluctuations near the critical point, and draw analogies between the massive Schwinger model, QCD near the critical point, and ferroelectrics near the Curie point. DOI: 10.1103/PhysRevD.103.L071502 I. INTRODUCTION Coleman [59] that the line of the first order phase transition terminates at some critical value mÃ, where the phase The Schwinger model [1] is quantum electrodynamics in transition is second order. The position of this critical point ð1 þ 1Þ space-time dimensions.
    [Show full text]
  • QCD and Light-Front Dynamics
    SLAC-PUB-14275 QCD and Light-Front Dynamics Stanley J. Brodsky∗ SLAC National Accelerator Laboratory Stanford University, Stanford, CA 94309, USA, and CP3-Origins, Southern Denmark University, Odense, Denmark E-mail: [email protected] Guy F. de Téramond Universidad de Costa Rica, San José, Costa Rica E-mail: [email protected] AdS/QCD, the correspondence between theories in a dilaton-modified five-dimensional anti-de Sitter space and confining field theories in physical space-time, provides a remarkable semiclassi- cal model for hadron physics. Light-front holography allows hadronic amplitudes in the AdS fifth dimension to be mapped to frame-independent light-front wavefunctions of hadrons in physical space-time. The result is a single-variable light-front Schrödinger equation which determines the eigenspectrum and the light-front wavefunctions of hadrons for general spin and orbital angular momentum. The coordinate z in AdS space is uniquely identified with a Lorentz-invariant coor- dinate z which measures the separation of the constituents within a hadron at equal light-front time and determines the off-shell dynamics of the bound state wavefunctions as a function of the invariant mass of the constituents. The hadron eigenstates generally have components with dif- ferent orbital angular momentum; e.g., the proton eigenstate in AdS/QCD with massless quarks has L = 0 and L = 1 light-front Fock components with equal probability. Higher Fock states with extra quark-anti quark pairs also arise. The soft-wall model also predicts the form of the non- perturbative effective coupling and its b-function. The AdS/QCD model can be systematically improved by using its complete orthonormal solutions to diagonalize the full QCD light-front Hamiltonian or by applying the Lippmann-Schwinger method to systematically include QCD interaction terms.
    [Show full text]
  • Screening in Two-Dimensional Qcd
    IC/96/51 hep-th /9604063 INTERNATIONAL CENTRE FOR THEORETICAL PHYSICS lllllfilllllllllllll XA9743416 SCREENING IN TWO-DIMENSIONAL QCD E. Abdalla R. Mohayaee and A. Zadra MIRAMARE-TRIESTE IC/96/51 hep-th/9604063 United Nations Educational Scientific and Cultural Organization and International Atomic Energy Agency INTERNATIONAL CENTRE FOR THEORETICAL PHYSICS SCREENING IN TWO-DIMENSIONAL QCD E. Abdalla 1 , R. Mohayaee2 and A. Zadra 3 International Centre for Theoretical Physics, Trieste, Italy. ABSTRACT We discuss the issue of screening and confinement of external colour charges in bosonised two-dimensional quantum chromodynamics. Our computation relies on the static solu ­ tions of the semi-classical equations of motion. The significance of the different repre­ sentations of the matter field is explicitly studied. We arrive at the conclusion that the screening phase prevails, even in the presence of a small mass term for the fermions. To confirm this result further, we outline the construction of operators corresponding to screened quarks. MIRAMARE - TRIESTE April 1996 iPermanent address: Institute de Ffsica-USP, C.P. 20516, Sao Paulo, Brazil. E-mail address: [email protected] 2E-mail address: [email protected]; ^Permanent address: Institute de Fisica, Universidade de Sao Paulo, Caixa Postal 66 318, Cidade Universitaria, Sao Paulo, Brazil. E-mail address: [email protected] 1 Introduction Theissue of confinement of fundamental constituents of matter is a long-standing prob ­ lem of theoretical physics whose solution has evaded full comprehension up to now. How ­ ever, significant progress has been made towards making a clear distinction between the apparently related phenomena of screening and confinement.
    [Show full text]
  • Numerical Investigations of the Schwinger Model and Selected Quantum Spin Models
    Adam Mickiewicz University Faculty of Physics Poznań, Poland Master’s Thesis Numerical investigations of the Schwinger model and selected quantum spin models Marcin Szyniszewski Supervisors: prof. UAM dr hab. Piotr Tomczak dr Krzysztof Cichy Quantum Physics Division, Faculty of Physics, UAM Poznań 2012 Abstract Numerical investigations of the XY model, the Heisenberg model and the 퐽 − 퐽′ Heisenberg model are conducted, using the exact diagonalisation, the numerical renormalisation and the density matrix renormalisation group approach. The low-lying energy levels are obtained and finite size scaling is performed to estimate the bulk limit value. The results are found to be consistent with the exact values. The DMRG results are found to be most promising. The Schwinger model is also studied using the exact diagonalisation and the strong coupling expansion. The massless, the massive model and the model with a background electric field are explored. Ground state energy, scalar and vector particle masses and order parameters are examined. The achieved values areobserved to be consistent with previous results and theoretical predictions. Path to the future studies is outlined. 2 Table of contents Introduction ...................................................................................................................5 1 Theoretical background ................................................................................................7 1.1 Basics of statistical physics and quantum mechanics ...............................................
    [Show full text]
  • Light-Front Quantization of Gauge Theories
    SLAC–PUB–9689 JLAB-THY-03-31 March 2003 Light-Front Quantization of Gauge Theories∗ Stanley J. Brodsky Stanford Linear Accelerator Center Stanford University, Stanford, California 94309 and Thomas Jefferson National Accelerator Laboratory, Newport News, Virginia 23606 [email protected] Abstract Light-front wavefunctions provide a frame-independent representation of hadrons in terms of their physical quark and gluon degrees of freedom. The light-front Hamil- tonian formalism provides new nonperturbative methods for obtaining the QCD spec- trum and eigensolutions, including resolvant methods, variational techniques, and discretized light-front quantization. A new method for quantizing gauge theories in light-cone gauge using Dirac brackets to implement constraints is presented. In the case of the electroweak theory, this method of light-front quantization leads to a unitary and renormalizable theory of massive gauge particles, automatically incorpo- rating the Lorentz and ’t Hooft conditions as well as the Goldstone boson equivalence theorem. Spontaneous symmetry breaking is represented by the appearance of zero modes of the Higgs field leaving the light-front vacuum equal to the perturbative arXiv:hep-th/0304106v1 10 Apr 2003 vacuum. I also discuss an “event amplitude generator” for automatically computing renormalized amplitudes in perturbation theory. The importance of final-state inter- actions for the interpretation of diffraction, shadowing, and single-spin asymmetries in inclusive reactions such as deep inelastic lepton-hadron scattering is emphasized. Invited talk, presented at the 2002 International Workshop On Strong Coupling Gauge Theories and Effective Field Theories (SCGT 02) Nagoya, Japan 10–13 December 2002 ∗This work is supported by the Department of Energy under contract number DE–AC03– 76SF00515.
    [Show full text]
  • An Introduction to Light-Front Dynamics for Pedestrians
    An Intro duction to Light-Front Dynamics for Pedestrians Avaroth Harindranath Saha Institute of Nuclear Physics, Sector I, Blo ck AF, Bidhan Nagar, Calcutta 700064, India Abstract. In these lectures we hop e to provide an elementary intro duction to selected topics in light-front dynamics. Starting from the study of free eld theories of scalar b oson, fermion, and massless vector b oson, the canonical eld commutators and propa- gators in the instant and front forms are compared and contrasted. Poincare algebra is describ ed next where the explicit expressions for the Poincare generators of free scalar theory in terms of the eld op erators and Fock space op erators are also given. Next, to illustrate the idea of Fock space description of b ound states and to analyze some of the simple relativistic features of b ound systems without getting into the wilderness of light-front renormalizatio n, Quantum Electro dynamics in one space - one time di- mensions is discussed along with the consideration of anomaly in this mo del. Lastly, light-frontpower counting is discussed. One of the consequences of light-frontpower counting in the simple setting of one space - one time dimensions is illustrated using massive Thirring mo del. Next, motivation for light-frontpower counting is discussed and p ower assignments for dynamical variables in three plus one dimensions are given. Simple examples of tree level Hamiltonians constructed bypower counting are pro- vided and nally the idea of reducing the numb er of free parameters in the theory by app ealing to symmetries is illustrated using a tree level example in Yukawa theory.
    [Show full text]
  • Quantum Field Theory
    Quantum Field Theory. Enrique Alvarez1 March 6, 2017 [email protected] ii Contents 1 Functional integral. 1 1.1 Perturbation theory through gaussian integrals. 6 1.2 Berezin integral . 12 1.3 Summary of functional integration. 14 2 Schwinger’s action principle and the equations of motion. 17 2.1 The S-matrix in QFT. 20 2.2 Feynman Rules. 20 2.3 One-Particle-Irreducible Green functions . 28 3 Gauge theories. 31 3.0.1 Renormalization. 31 3.0.2 Dimensional regularization. 33 3.1 Abelian U(1) gauge theories . 37 3.1.1 Electron self-energy. 39 3.1.2 Vacuum polarization. 42 3.1.3 Renormalized vertex. 45 3.1.4 Mass dependent and mass independent renormalization. 46 3.2 Nonabelian gauge theories . 48 3.2.1 Yang-Mills action . 50 3.2.2 Ghosts. 50 3.3 One loop structure of gauge theories. 55 3.3.1 Renormalized lagrangian . 55 4 The renormalization group. 61 3 5 Two loops in φ6. 69 5.1 One loop . 69 5.2 Two loops. 70 6 Spontaneously broken symmetries. 75 6.1 Global (rigid) symmetries . 75 6.2 Spontaneously broken gauge symmetries. 77 iii iv CONTENTS 7 BRST 83 7.1 The adjoint representation . 83 7.2 Symmetries of the gauge fixed action . 84 7.3 The physical subspace. 85 7.4 BRST for QED. 88 7.5 Positiveness . 90 8 Ward identities 95 8.1 The equations of motion. 95 8.2 Ward . 95 8.3 Charge conservation . 96 8.4 QED . 97 8.5 Non-abelian Ward (Slavnov-Taylor) identities.
    [Show full text]
  • Anomaly: a New Mechanism to Generate Massless Bosons
    S S symmetry Review Axial UA(1) Anomaly: A New Mechanism to Generate Massless Bosons Vicente Azcoiti Departamento de Física Teórica, Facultad de Ciencias, and Centro de Astropartículas y Física de Altas Energías (CAPA), Universidad de Zaragoza, Pedro Cerbuna 9, 50009 Zaragoza, Spain; [email protected] Abstract: Prior to the establishment of QCD as the correct theory describing hadronic physics, it was realized that the essential ingredients of the hadronic world at low energies are chiral symmetry and its spontaneous breaking. Spontaneous symmetry breaking is a non-perturbative phenomenon, and, thanks to massive QCD simulations on the lattice, we have at present a good understanding of the vacuum realization of the non-abelian chiral symmetry as a function of the physical temperature. As far as the UA(1) anomaly is concerned, and especially in the high temperature phase, the current situation is however far from satisfactory. The first part of this article is devoted to reviewing the present status of lattice calculations, in the high temperature phase of QCD, of quantities directly related to the UA(1) axial anomaly. In the second part, some recently suggested interesting physical implications of the UA(1) anomaly in systems where the non-abelian axial symmetry is fulfilled in the vacuum are analyzed. More precisely it is argued that, if the UA(1) symmetry remains effectively broken, the topological properties of the theory can be the basis of a mechanism, other than Goldstone’s theorem, to generate a rich spectrum of massless bosons at the chiral limit. Keywords: chiral transition; lattice QCD; U(1) anomaly; topology; massless bosons Citation: Azcoiti, V.
    [Show full text]
  • Accelerating Lattice Quantum Field Theory Calculations Via Interpolator Optimization Using Noisy Intermediate-Scale Quantum Computing
    Accelerating lattice quantum field theory calculations via interpolator optimization using noisy intermediate-scale quantum computing The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation Avkhadiev, A., P.E. Shanahan, and R.D. Young, "Accelerating lattice quantum field theory calculations via interpolator optimization using noisy intermediate-scale quantum computing." Physical Review Letters 124 (Aug. 2020): no. 080501 doi 10.1103/ PhysRevLett.124.080501 ©2020 Author(s) As Published 10.1103/PhysRevLett.124.080501 Publisher American Physical Society Version Final published version Citable link https://hdl.handle.net/1721.1/125042 Terms of Use Creative Commons Attribution 3.0 unported license Detailed Terms http://creativecommons.org/licenses/by/3.0 PHYSICAL REVIEW LETTERS 124, 080501 (2020) Accelerating Lattice Quantum Field Theory Calculations via Interpolator Optimization Using Noisy Intermediate-Scale Quantum Computing A. Avkhadiev,1,2 P. E. Shanahan ,1,2 and R. D. Young 3 1Center for Theoretical Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA 2Perimeter Institute for Theoretical Physics, Waterloo, Ontario N2L 2Y5, Canada 3CSSM, Department of Physics, University of Adelaide, Adelaide, South Australia 5005, Australia (Received 22 August 2019; revised manuscript received 25 November 2019; accepted 31 January 2020; published 26 February 2020) The only known way to study quantum field theories in nonperturbative regimes is using numerical calculations regulated on discrete space-time lattices. Such computations, however, are often faced with exponential signal-to-noise challenges that render key physics studies untenable even with next generation classical computing. Here, a method is presented by which the output of small-scale quantum computations on noisy intermediate-scale quantum era hardware can be used to accelerate larger-scale classical field theory calculations through the construction of optimized interpolating operators.
    [Show full text]
  • Light-Front Holographic Quantum Chromodynamics
    SLAC-PUB-15735 Light-Front Holographic Quantum Chromodynamics Stanley J. Brodskya, Guy F. de T´eramondb, and Hans G¨unter Doschc aSLAC National Accelerator Laboratory, Stanford University, Stanford, CA 94309, USA b Universidad de Costa Rica, San Jos´e,Costa Rica cInstitut f¨urTheoretische Physik, Philosophenweg 16, D-6900 Heidelberg, Germany Abstract Light-Front Hamiltonian theory, derived from the quantization of the QCD Lagrangian at fixed light- front time τ = x0 + x3, provides a rigorous frame-independent framework for solving nonperturbative QCD. The eigenvalues of the light-front QCD Hamiltonian HLF predict the hadronic mass spectrum, and the corresponding eigensolutions provide the light-front wavefunctions which describe hadron structure. In the case of mesons, the valence Fock-state wavefunctions of HLF for zero quark mass satisfy a single- 2 2 variable relativistic equation of motion in the invariant variable ζ = b?x(1 − x), which is conjugate 2 2 to the invariant mass squared Mqq¯. The effective confining potential U(ζ ) in this frame-independent \light-front Schr¨odingerequation" systematically incorporates the effects of higher quark and gluon Fock states. Remarkably, the potential has a unique form of a harmonic oscillator potential if one requires that the chiral QCD action remains conformally invariant. The result is a nonperturbative relativistic light-front quantum mechanical wave equation which incorporates color confinement and other essential spectroscopic and dynamical features of hadron physics. Anti-de Sitter space in five dimensions plays a special role in elementary particle physics since it provides an exact geometrical representation of the conformal group. Remarkably, gravity in AdS5 space is holographically dual to frame-independent light-front Hamiltonian theory.
    [Show full text]
  • Redalyc.Gauge Theories on the Light-Front
    Brazilian Journal of Physics ISSN: 0103-9733 [email protected] Sociedade Brasileira de Física Brasil Brodsky, Stanley J. Gauge Theories on the Light-Front Brazilian Journal of Physics, vol. 34, núm. 1A, march, 2004, pp. 157-165 Sociedade Brasileira de Física Sâo Paulo, Brasil Available in: http://www.redalyc.org/articulo.oa?id=46400102 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Brazilian Journal of Physics, vol. 34, no. 1A, March, 2004 157 Gauge Theories on the Light-Front Stanley J. Brodsky Stanford Linear Accelerator Center, Stanford University, Stanford, California 94309, USA Received on 10 February, 2003. The light-front quantization of gauge theories in light-cone gauge provides a frame-independent wavefunction representation of relativistic bound states, simple forms for current matrix elements, explicit unitary, and a trivial vacuum. The light-front Hamiltonian form of QCD provides an alternative to lattice gauge theory for the computation of nonperturbative quantities such as the hadronic spectrum and the corresponding eigenfunctions. In the case of the electroweak theory, spontaneous symmetry breaking is represented by the appearance of zero modes of the Higgs field. Light-front quantization then leads to an elegant ghost-free theory of massive gauge particles, automatically incorporating the Lorentz and ’t Hooft conditions, as well as the Goldstone boson equivalence theorem. + ¡ 2 1 Introduction The operator HLC = P P ¡P?; the “light-cone Hamilto- nian”, is frame-independent.
    [Show full text]
  • Schwinger Model À La Very Special Relativity ∗ Jorge Alfaro, Alex Soto
    Physics Letters B 797 (2019) 134923 Contents lists available at ScienceDirect Physics Letters B www.elsevier.com/locate/physletb Schwinger model à la Very Special Relativity ∗ Jorge Alfaro, Alex Soto Instituto de Física, Pontificia Universidad de Católica de Chile, Av. Vicuña Mackenna 4860, Santiago, Chile a r t i c l e i n f o a b s t r a c t Article history: In this work, we show that Lorentz invariant theories in 1 + 1dimensions admit new terms inspired by Received 14 July 2019 Very Special Relativity (VSR) theories. We have studied the Schwinger model in VSR. We show the axial Received in revised form 29 August 2019 current is classically conserved in the presence of a mass term coming from the VSR invariant terms but Accepted 4 September 2019 without standard Lorentz invariant mass. Furthermore, it is shown that both the vector current as well as Available online 9 September 2019 the axial current are modified with respect to the free case when the fermion is coupled to an external Editor: M. Cveticˇ electromagnetic field due to the nonlocal operator present in the theory. The axial anomaly is computed, and we found the same standard topological invariant with a modification in the coefficient. © 2019 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 3 (http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP . 1. Introduction Lorentz subgroup SIM(2) [14]. This theory, studied in four di- mensions and called Very Special Relativity (VSR), does not have Quantum Electrodynamics in 1 + 1dimensions (QED2) has invariant tensors, and it has the same important features of Spe- been studied, and it has an exact solution discovered by Schwinger cial Relativity, like time dilation, velocity addition, and maximum [1] when the fermion remains massless.
    [Show full text]