Chapter 6 Street, Inlets, and Storm Drains

Total Page:16

File Type:pdf, Size:1020Kb

Chapter 6 Street, Inlets, and Storm Drains Chapter 6 Street, Inlets, and Storm Drains Chapter 6 Street, Inlets, and Storm Drains Table of Contents 6-1 Introduction ...................................................................................................................................... 1 6-1-1 Urban Conveyance System Components ........................................................................................... 1 6-1-2 Minor and Major Storms .................................................................................................................... 1 6-2 Street Drainage ................................................................................................................................. 2 6-2-1 Allowable Spread and Depth .............................................................................................................. 2 6-2-2 Inlet Location and Spacing ................................................................................................................. 3 6-2-3 Cross-Street Flow Conditions............................................................................................................. 3 6-2-4 Hydraulic Evaluation .......................................................................................................................... 3 6-3 Inlets ................................................................................................................................................ 10 6-3-1 Inlet Function and Selection ............................................................................................................. 10 6-3-2 Types of Inlets .................................................................................................................................. 11 6-3-3 General Design Guidelines ............................................................................................................... 11 6-3-4 Nuisance Flows ................................................................................................................................ 12 6-3-5 Hydraulic Evaluation of Inlets .......................................................................................................... 12 6-4 Storm Drain Systems ..................................................................................................................... 15 6-4-1 Introduction ...................................................................................................................................... 15 6-4-2 Design Storms .................................................................................................................................. 16 6-4-3 Pipe Material, Size and Service Life ................................................................................................ 16 6-4-4 Other Storm Drain Design Considerations ....................................................................................... 17 6-4-5 Vertical Alignment ........................................................................................................................... 18 6-4-6 Horizontal Alignment ....................................................................................................................... 18 6-4-7 Easements ......................................................................................................................................... 18 6-4-8 Manholes .......................................................................................................................................... 19 6-4-9 Hydraulic Design .............................................................................................................................. 20 6-4-10 Hydraulic Calculations ..................................................................................................................... 21 6-5 Examples ......................................................................................................................................... 22 Tables Table 6-1. Allowable Street Encroachment and Depth of Flow .................................................................. 2 Table 6-2. Inlet selection considerations ................................................................................................... 11 Figures Figure-6-1. Gutter Section with Uniform Cross Slope ................................................................................ 4 Figure 6-2. Typical Gutter Section—Composite Cross Slope ..................................................................... 6 Figure 6-3. Calculation of Composite Street Section Capacity: Major Storm ............................................ 8 Figure 6-4. Reduction Factor for Gutter Flow (Guo 2000b) ....................................................................... 9 Figure 6-5. Typical V-Shaped Swale Section ............................................................................................ 10 October 2018 City of Durango 6-i Storm Drainage Design Criteria Manual Chapter 6 Street, Inlets, and Storm Drains 6-1 Introduction The purpose of this chapter is to provide design guidance for stormwater collection and conveyance utilizing streets and storm drains. Procedures and equations are presented for the hydraulic design of street drainage, locating inlets and determining capture capacity, and sizing storm drains. This chapter also includes discussion on placing inlets to minimize the potential for icing. 6-1-1 Urban Conveyance System Components Urban stormwater collection and conveyance systems are comprised of three primary components: 1. Street gutters and roadside swales, 2. Storm drain inlets, and 3. Storm drain pipes (with appurtenances such as manholes, junctions, etc.). Street gutters and roadside swales collect runoff from the street (and adjacent areas) and convey the runoff to a storm drain inlet while maintaining the street’s level of service. Inlets collect stormwater from streets and other land surfaces, transition the flow into storm drains, and provide maintenance access to the storm drain system. Storm drains convey stormwater in excess of street or swale capacity along the right-of-way and discharge into a stormwater management facility or directly into a receiving water body. All of these components must be designed properly to achieve the objectives of the stormwater collection and conveyance system. 6-1-2 Minor and Major Storms Rainfall events vary greatly in magnitude and frequency of occurrence. Major storms produce large flow rates but rarely occur. Minor storms produce smaller flow rates but occur more frequently. For economic reasons, stormwater collection and conveyance systems are not normally designed to pass the peak discharge during major storm events without some street flooding. Stormwater collection and conveyance systems are designed to pass the peak discharge of the minor storm event (and smaller events) with minimal disruption to street traffic. To accomplish this, the spread and depth of water on the street is limited to 6 inches during the minor storm event. Inlets must be strategically placed to pick up excess gutter or swale flow once the limiting allowable spread or depth of water is reached. The inlets collect and convey stormwater into storm drains, which are typically sized to pass the peak flow rate (minus the allowable street flow rate) from the minor storm without any surcharge. For the City of Durango, storm sewer inlets are to be sized and spaced to meet the 10-year minor storm event and the 100-yr major storm event allowable street encroachment and depth of flow requirements as shown in Table 6-1. In addition, storm sewer inlets should be sized to accept all flow generate by the 2-yr event with no bypass. October 2018 City of Durango 6-1 Storm Drainage Design Criteria Manual Street, Inlets, and Storm Drains Chapter 6 During the major storm event (100-yr storm), runoff exceeds the minor storm allowable spread and depth in the street and the capacity of storm drains and storm drains may surcharge. Street flooding occurs, and traffic is disrupted as the street functions as an open channel. The designer must evaluate and design for the major event with regard to maintaining public safety and minimizing flood damages. Guidance on major and minor storm design specifications can be found in the “City of Durango Development Standards for Public Improvements and Construction Specifications,” otherwise referred to as the Construction Specifications Manual hereafter. 6-2 Street Drainage 6-2-1 Allowable Spread and Depth Streets are typically given classifications such as local, collector, arterial. Street design standards for the City of Durango can be found in the Construction Specifications Manual. Other street cross-sections shall be reviewed and approved by the City Engineer. Allowable spread and depth for each street classification are presented in Table 6-1. In general, storm drain or surface drainage swales and culverts shall be installed when the carrying capacity of the street is exceeded. Table 6-1. Allowable Street Encroachment and Depth of Flow Minor Storm (10-year) Major Storm (100-year) Allowable Street Allowable Cross- Classification Allowable Encroachment Allowable Encroachment Cross-Street Street Flow Flow No curb overtopping; where no curbing exists, Depth of water in gutter 6 inch encroachment shall not shall not exceed the Local depth in be over property lines. adjacent ground line, crosspan. Flow may spread to unless buildings are flood 12 inch depth crown of street. proofed, or the depth of above gutter
Recommended publications
  • Groundwater Recharge from a Changing Landscape
    ST. ANTHONY FALLS LABORATORY Engineering, Environmental and Geophysical Fluid Dynamics Project Report No. 490 Groundwater Recharge from a Changing Landscape by Timothy Erickson and Heinz G. Stefan Prepared for Minnesota Pollution Control Agency St. Paul, Minnesota May, 2007 Minneapolis, Minnesota The University of Minnesota is committed to the policy that all persons shall have equal access to its programs, facilities, and employment without regard to race, religion, color, sex, national origin, handicap, age or veteran status. 2 Abstract Urban development of rural and natural areas is an important issue and concern for many water resource management organizations and wildlife organizations. Change in groundwater recharge is one of the many effects of urbanization. Groundwater supplies to streams are necessary to sustain cold water organisms such as trout. An investigation of the changes of groundwater recharge associated with urbanization of rural and natural areas was conducted. The Vermillion River watershed, which is both a world class trout stream and on the fringes of the metro area of Minneapolis and St. Paul, Minnesota, was used for a case study. Substantial changes in groundwater recharge could destroy the cold water habitat of trout. In this report we give first an overview of different methods available to estimate recharge. We then present in some detail two models to quantify the changes in recharge that can be expected in a developing area. We finally apply these two models to a tributary watershed of the Vermillion River. In this report we discuss several techniques that can be used to estimate groundwater recharge: (1) the recession-curve-displacement method and (2) the base-flow-separation method that both use only streamflow records (Rutledge 1993, Lee and Chen 2003); (3) a recharge map developed by the USGS for the state of Minnesota (Lorenz and Delin 2007); (4) a minimal recharge map developed by the Minnesota Geological Survey using statistical methods (Ruhl et al.
    [Show full text]
  • Miami-Dade County Drainage and Canals Flood Complaint Form
    MIAMI-DADE COUNTY DRAINAGE AND CANALS FLOOD COMPLAINT FORM Service Request # _____________ Complaint Date Time AM PM Resident/Complainant Name Address Telephone Nearest Street Intersection of Flooding or Location of Flooding Is this the first time you report this? Yes No If No, date PLEASE SELECT ONLY ONE (1) COMPLAINT TYPE AND ANSWER RELATED QUESTIONS FOR BETTER SERVICE Type of Complaint 302 Clogged Storm Drain Is the water on top of drain now? Yes No How long does it take for the water to drain? What is the exact location of the drain? Is the area a new development? Yes No Was there a recent drainage project in the area? Yes No 303 Standing Water (No Drain) How deep is the water? How hard did it rain? Light Moderate Heavy Is your property flooded? Yes No Is your property in a new development? Yes No Where is the nearest drain? Flooding/Standing Water (Localized) Is the water flooding the inside of your residence? Yes No Is the water in your driveway / swale? Yes No Is the water across the roadway? Yes No Is it affecting traffic? Yes No How long does the water remain after rainfall? Page 1 of 2 MIAMI-DADE COUNTY DRAINAGE AND CANALS FLOOD COMPLAINT FORM Canal Complaints Solid waste (floating debris, bottles, cans, etc.) present Aquatic vegetation overgrown Needs mowing / treating vegetation on canal bank Bank instability due to Erosion / Collapses are present Culvert cleaning needed Damaged culvert / Headwall Encroachment of Easement / Right of Way Cutting / trimming of trees on a canal Right of Way needed Damaged Guardrails / Fence Canal Signs damaged / down Other Other Nature of Complaint For more information, call (305) 372-6688 Page 2 of 2 .
    [Show full text]
  • Acid Sulfate Soil Materials
    Site contamination —acid sulfate soil materials Issued November 2007 EPA 638/07: This guideline has been prepared to provide information to those involved in activities that may disturb acid sulfate soil materials (including soil, sediment and rock), the identification of these materials and measures for environmental management. What are acid sulfate soil materials? Acid sulfate soil materials is the term applied to soils, sediment or rock in the environment that contain elevated concentrations of metal sulfides (principally pyriteFeS2 or monosulfides in the form of iron sulfideFeS), which generate acidic conditions when exposed to oxygen. Identified impacts from this acidity cause minerals in soils to dissolve and liberate soluble and colloidal aluminium and iron, which may potentially impact on human health and the environment, and may also result in damage to infrastructure constructed on acid sulfate soil materials. Drainage of peaty acid sulfate soil material also results in the substantial production of the greenhouse gases carbon dioxide (CO2) and nitrous oxide (N2O). The oxidation of metal sulfides is a function of natural weathering processes. This process is slow however, and, generally, weathering alone does not pose an environmental concern. The rate of acid generation is increased greatly through human activities which expose large amounts of soil to air (eg via excavation processes). This is most commonly associated with (but not necessarily confined to) mining activities. Soil horizons that contain sulfides are called ‘sulfidic materials’ (Isbell 1996; Soil Survey Staff 2003) and can be environmentally damaging if exposed to air by disturbance. Exposure results in the oxidation of pyrite. This process transforms sulfidic material to sulfuric material when, on oxidation, the material develops a pH 4 or less (Isbell 1996; Soil Survey Staff 2003).
    [Show full text]
  • Drainage Water Management R
    doi:10.2489/jswc.67.6.167A RESEARCH INTRODUCTION Drainage water management R. Wayne Skaggs, Norman R. Fausey, and Robert O. Evans his article introduces a series of the most productive in the world. Drainage needed. Drainage water management, or papers that report results of field ditches or subsurface drains (tile or plastic controlled drainage, emerged as an effec- T studies to determine the effec- drain tubing) are used to remove excess tive practice for reducing losses of N in tiveness of drainage water management water and lower water tables, improve traf- drainage waters in the 1970s and 1980s. (DWM) on conserving drainage water ficability so that field operations can be The practice is inherently based on the and reducing losses of nitrogen (N) to sur- done in a timely manner, prevent water fact that the same drainage intensity is face waters. The series is focused on the logging, and increase yields. Drainage is not required all the time. It is possible to performance of the DWM (also called also needed to manage soil salinity in irri- dramatically reduce drainage rates during controlled drainage [CD]) practice in the gated arid and semiarid croplands. some parts of the year, such as the winter US Midwest, where N leached from mil- Drainage has been used to enhance crop months, without negatively affecting crop lions of acres of cropland contributes to production since the time of the Roman production. Drainage water management surface water quality problems on both Empire, and probably earlier (Luthin may also be used after the crop is planted local and national scales.
    [Show full text]
  • The Groundwater Recharge Function of Small Wetlands in the Semi-Arid Northern Prairies
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Great Plains Research: A Journal of Natural and Social Sciences Great Plains Studies, Center for Spring 1998 The Groundwater Recharge Function of Small Wetlands in the Semi-Arid Northern Prairies Garth van der Kamp National Hydrology Research Institute, Environment Canada Masaki Hayashi University of Calgary, Canada Follow this and additional works at: https://digitalcommons.unl.edu/greatplainsresearch Part of the Other International and Area Studies Commons van der Kamp, Garth and Hayashi, Masaki, "The Groundwater Recharge Function of Small Wetlands in the Semi-Arid Northern Prairies" (1998). Great Plains Research: A Journal of Natural and Social Sciences. 366. https://digitalcommons.unl.edu/greatplainsresearch/366 This Article is brought to you for free and open access by the Great Plains Studies, Center for at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Great Plains Research: A Journal of Natural and Social Sciences by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Great Plains Research 8 (Spring 1998):39-56 © Copyright by the Center for Great Plains Studies THE GROUNDWATER RECHARGE FUNCTION OF SMALL WETLANDS IN THE SEMI-ARID NORTHERN PRAIRIES Garth van der Kamp National Hydrology Research Institute, Environment Canada 11 Innovation Boulevard, Saskatoon, SK Canada S7N 3H5 and Masaki Hayashi Department ofGeology and Geophysics, University of Calgary 2500 University Drive, Calgary, AB Canada T2N IN4 Abstract. Small wetlands in the semi-arid northern prairie region are focal pointsfor groundwater recharge. Hence the groundwater recharge function of the wetlands is an important consideration in development of wetland conservation policies.
    [Show full text]
  • Storm Drain Marking
    Storm Drain Marking Part of the City of Ashland Curb to Creek Campaign A STEP -BY-STEP GUIDE FOR NEIGHBORHOOD VOLUNTEER LEADERS Ashland Parks & Recreation North Mountain Park Nature Center 620 North Mountain Avenue Ashland, OR 97520 Phone: (541) 488-6606 Fax: (541) 488-6607 Email: [email protected] 1 Table of Contents What is Storm Drain Marking …………………………………………….……. Page 3 The First Steps for Neighborhood Leaders ……………………................. Page 3 Neighborhood Registration Form .......................………………............. Page 4 Getting Ready to Mark …...................…………………………….……....... Page 5 List of Materials in Marking Kits ……………………………….…………….Page 6 How to Mark the Storm Drain ..…......…....………………………………Pages 6-9 Safety First Locate and Prepare Stomp the Pad Record Activity Telling Neighbors about Curb to Creek …………………………….…….. Page 10 The Final Steps ..………...........................................………………….…Page 11 Project Report Form …………………………….………………………......... Page 12 Adult Volunteer Consent Form……………….………………………......... Page 13 Youth Volunteer Consent Form..…………….………………………......... Page 14 2 WHAT IS STORM DRAIN MARKING ? Storm drain marking is an educational program designed to inform citizens about the hazards of dumping pollutants into storm drains. The placards remind people that storm drains flow untreated, directly into local streams and creeks. Ashland’s storm drains are NOT connected to the sewage treatment plant. By placing storm drain markers, you can take an active roll in preventing pollution in your neighborhood. Volunteers may also distribute door hangers, informing citizens about the proper disposal of chemicals that could harm wildlife and pollute waterways. Storm drain marking helps build community and mobilize grass roots environmental protection. Marking also helps educate your neighbors about the importance of watershed protection. If you are interested, you can become a neighborhood leader for your own Storm Drain Stomp event.
    [Show full text]
  • 17 Major Drainage Basins
    HUC 8 HYDROLOGIC UNIT NAME CLINTON 04120101 Chautauqua-Conneaut FRANKLIN 04150409 CHAMPLAIN MASSENA FORT COVINGTON MOOERS ST LAWRENCE CLINTON 04120102 Cattaraugus BOMBAY WESTVILLE CONSTABLE CHATEAUGAY NYS Counties & BURKE LOUISVILLE 04120103 Buffalo-Eighteenmile BRASHER 04150308 CHAZY ALTONA ELLENBURG BANGOR WADDINGTON NORFOLK MOIRA 04120104 Niagara ESSEX MALONE DEC Regions JEFFERSON 6 04150307 BEEKMANTOWN MADRID 05010001 Upper Allegheny LAWRENCE BELLMONT STOCKHOLM DANNEMORA BRANDON DICKINSON PLATTSBURGH LEWIS OGDENSBURG CITY LISBON 05010002 Conewango 5 PLATTSBURGH CITY HAMILTON POTSDAM SCHUYLER FALLS SARANAC 05010004 French WARREN OSWEGATCHIE DUANE OSWEGO 04150306 PERU 04130001 Oak Orchard-Twelvemile CANTON PARISHVILLE ORLEANS WASHINGTON NIAGARA DE PEYSTER ONEIDA MORRISTOWN HOPKINTON WAVERLY PIERREPONT FRANKLIN 04140101 Irondequoit-Ninemile AUSABLE MONROE WAYNE BLACK BROOK FULTON SARATOGA DEKALB HERKIMER BRIGHTON GENESEE SANTA CLARA CHESTERFIELD 04140102 Salmon-Sandy ONONDAGA NYS Major 04150406 MACOMB 04150304 HAMMOND ONTARIO MADISON MONTGOMERY RUSSELL 04150102 Chaumont-Perch ERIE SENECA CAYUGA SCHENECTADY HERMON WILLSBORO ST ARMAND WILMINGTON JAY WYOMING GOUVERNEUR RENSSELAER ALEXANDRIA CLARE LIVINGSTON YATES 04130002 Upper Genesee OTSEGO ROSSIE COLTON CORTLAND ALBANY ORLEANS 04150301 04150404 SCHOHARIE ALEXANDRIA LEWIS 7 EDWARDS 04150408 CHENANGO FOWLER ESSEX 04130003 Lower Genesee 8 TOMPKINS CLAYTON SCHUYLER 9 4 THERESA 04150302 TUPPER LAKE HARRIETSTOWN NORTH ELBA CHAUTAUQUA CATTARAUGUS PIERCEFIELD 02050104 Tioga ALLEGANY STEUBEN
    [Show full text]
  • Pine Knot Mine Drainage Tunnel –
    QUANTITY AND QUALITY OF STREAM WATER DRAINING MINED AREAS OF THE UPPER SCHUYLKILL RIVER BASIN, SCHUYLKILL COUNTY, PENNSYLVANIA, USA, 2005-20071 Charles A. Cravotta III,2 and John M. Nantz Abstract: Hydrologic effects of abandoned anthracite mines were documented by continuous streamflow gaging coupled with synoptic streamflow and water- quality monitoring in headwater reaches and at the mouths of major tributaries in the upper Schuylkill River Basin, Pa., during 2005-2007. Hydrograph separation of the daily average streamflow for 10 streamflow-gaging stations was used to evaluate the annual streamflow characteristics for October 2005 through September 2006. Maps showing stream locations and areas underlain by underground mines were used to explain the differences in total annual runoff, base flow, and streamflow yields (streamflow/drainage area) for the gaged watersheds. For example, one stream that had the lowest yield (59.2 cm/yr) could have lost water to an underground mine that extended beneath the topographic watershed divide, whereas the neighboring stream that had the highest yield (97.3 cm/yr) gained that water as abandoned mine drainage (AMD). Although the stream-water chemistry and fish abundance were poor downstream of this site and others where AMD was a major source of streamflow, the neighboring stream that had diminished streamflow met relevant in-stream water-quality criteria and supported a diverse fish community. If streamflow losses could be reduced, natural streamflow and water quality could be maintained in the watersheds with lower than normal yields. Likewise, stream restoration could lead to decreases in discharges of AMD from underground mines, with potential for decreased metal loading and corresponding improvements in downstream conditions.
    [Show full text]
  • Allen County Storm Drain Marking Guide022510
    The Allen County Surveyor’s Office has established a storm drain marking program to involve and educate the community of the harms of dumping pollutants down the storm drains. The following guidelines are provided to assist individuals, groups or organizations in planning, implementing, and preparing a successful storm drain marking event and to provide information on what citizens can do to prevent or reduce pollution that enters our waterways through storm drains. What is a Storm Drain? A storm drain is a network of underground pipes designed to control flooding by transporting stormwater from urban areas to a waterbody. The storm drain marking program involves marking storm drain inlets. The following are typical examples of storm inlets. What is Storm Drain Marking? Storm drain marking is labeling a storm drain inlet with a pre-printed marker, tile, sticker, or stencil that reads “ Dump No Waste - Drains to River ”, "Drains to Stream ”, or a similar written message that specifies the waterbody to which the storm drain inlet drains. Allen County has chosen a vinyl marker that comes in circular or rectangular form that is applied to the inlet with an adhesive or tie straps depending on the type of inlet being marked. Why Should We Mark Storm Drains? • Storm drain marking informs others about the street-to-river connection. Allen County 1 Storm Drain Marking Guide Surveyor’s Office • Many people may not realize that water flowing into storm drains or any material that is dumped or washes into the storm drains is not treated before it empties into a river, stream, or pond.
    [Show full text]
  • Umbrella Empr: Flood Control and Drainage
    I. COVERSHEET FOR ENVIRONMENTAL MITIGATION PLAN & REPORT (UMBRELLA EMPR: FLOOD CONTROL AND DRAINAGE) USAID MISSION SO # and Title: __________________________________ Title of IP Activity: __________________________________________________ IP Name: __ __________________________________________________ Funding Period: FY______ - FY______ Resource Levels (US$): ______________________ Report Prepared by: Name:__________________________ Date: ____________ Date of Previous EMPR: _________________ (if any) Status of Fulfilling Mitigation Measures and Monitoring: _____ Initial EMPR describing mitigation plan is attached (Yes or No). _____ Annual EMPR describing status of mitigation measures is established and attached (Yes or No). _____ Certain mitigation conditions could not be satisfied and remedial action has been provided within the EMPR (Yes or No). USAID Mission Clearance of EMPR: Contracting Officer’s Technical Representative:__________ Date: ______________ Mission Environmental Officer: _______________________ Date: ______________ ( ) Regional Environmental Advisor: _______________________ Date: ______________ ( ) List of CHF Haiti projects covered in this UEMPR (Flood Control and Drainage) 1 2 1. Background, Rationale and Outputs/Results Expected: According to Richard Haggerty’s country study on Haiti from 1989, in 1925, 60% of Haiti’s original forests covered the country. Since then, the population has cut down all but an estimated 2% of its original forest cover. The fact that many of Haiti’s hillsides have been deforested has caused several flooding problems for cities and other communities located in critical watershed and flood-plain areas during recent hurricane seasons. The 2008 hurricane season was particularly devastating for Haiti, where over 800 people were killed by four consecutive tropical storms or hurricanes (Fay, Gustav, Hanna, and Ike) which also destroyed infrastructure and caused severe crop losses. In 2004, tropical storm Jeanne killed an estimated 3,000 people, most in Gonaives.
    [Show full text]
  • Saltmod Estimation of Root-Zone Salinity Varadarajan and Purandara
    79 Original scientific paper Received: October 04, 2017 Accepted: December 14, 2017 DOI: 10.2478/rmzmag-2018-0008 SaltMod estimation of root-zone salinity Varadarajan and Purandara Application of SaltMod to estimate root-zone salinity in a command area Uporaba modela SaltMod za oceno slanosti koreninske cone na namakalnih površinah Varadarajan, N.*, Purandara, B.K. National Institute of Hydrology, Visvesvarayanagar, Belgaum 590019, Karnataka, India * [email protected] Abstract Povzetek Waterlogging and salinity are the common features - associated with many of the irrigation commands of - Poplavljanje in slanost tal sta običajna pojava v mno surface water projects. This study aims to estimate the vljanju slanosti v koreninski coni na levem in desnem gih namakalnih projektih. V študiji poročamo o ugota root zone salinity of the left and right bank canal com- mands of Ghataprabha irrigation command, Karnataka, - obrežju kanala namakalnega območja Ghataprabhaza India. The hydro-salinity model SaltMod was applied delom SaltMod so uporabili na izbranih kmetijskih v Karnataki, v Indiji. Postopek določanja slanosti z mo to selected agriculture plots at Gokak, Mudhol, Bili- parcelah v okrajih Gokak, Mudhol, Biligi in Bagalkot gi and Bagalkot taluks for the prediction of root-zone - salinity and leaching efficiency. The model simulated vodnjavanja tal. V raziskavi so modelirali slanost v tal- za oceno slanosti koreninske cone in učinkovitosti od the soil-profile salinity for 20 years with and without nem profilu v razdobju 20 let ob prisotnosti podpovr- subsurface drainage. The salinity level shows a decline šinskega odvodnjavanja in brez njega. Slanost upada with an increase of leaching efficiency. The leaching efficiency of 0.2 shows the best match with the actu- vzporedno z naraščanjem učinkovitosti odvodnjavanja.
    [Show full text]
  • Storm Water Drainage System Design Manual
    STORM WATER DRAINAGE SYSTEM DESIGN MANUAL HASSAYAMPA RIVER 2005 TOWN OF BUCKEYE PUBLIC WORKS 423 Az Eastern Ave. Buckeye, AZ 85326 August 2007 623.349.6800 TOWN OF BUCKEYE ENGINEERING DESIGN STANDARDS Town of Buckeye Engineering Division Public Works Department Table of Contents Section 1 - General Information................................................................................. - 4 - 1.1 General.................................................................................................- 4 - 1.2 Definitions .............................................................................................- 4 - 1.3 Storm Drainage & Grading Standards and Policies.......................- 6 - 1.4 Standard Specifications and Details ..............................................- 11 - 1.5 Preliminary Plats and Site Plans.......................................................- 12 - 1.6 Final Grading and Drainage Improvement Plans ........................- 13 - 1.7 Preliminary Drainage Report ...........................................................- 16 - 1.8 Final Drainage Report.......................................................................- 18 - 1.9 As-Built Grading and Drainage Plan..............................................- 22 - Section 2 - Street Drainage....................................................................................... - 23 - 2.1 General...............................................................................................- 23 - 2.2 Street Drainage Capacity Design Criteria.....................................-
    [Show full text]