Antiproton and Electron Measurements and Dark Matter Indirect Searches
Total Page:16
File Type:pdf, Size:1020Kb
Antiproton and Electron Measurements and Dark Matter Indirect Searches Piergiorgio Picozza INFN and University of Rome Tor Vergata 8th International Workshop On Identification Of Dark Matter 26-30 Jul 2010, Montpellier, France AstrophysicsAstrophysics andand CosmologyCosmology compellingcompelling IssuesIssues ApparentApparent absenceabsence ofof cosmologicalcosmological AntimatterAntimatter NatureNature ofof thethe DarkDark MatterMatter thatthat pervadespervades thethe UniverseUniverse e rs e v i n U e h t f o n i g ri o e h t r o f h rc AMS a e SearchSearch forfor thethe existenceexistence ofof AntimatterAntimatter inin thethe UniverseUniverseS Accelerators PAMELAPAMELA AMSAMS inin SpaceSpace Search for the existence of anti Universe antimatter and at the very hot beginning matter The Big Bang origin of the Universe requires to be equally abundant THE UNIVERSE ENERGY BUDGET Robert L. Golden Balloon data : Positron fraction before 1990 mχ=20GeV Tilka 89 dinamic halo leaky box ANTIMATTER Annihilation of Exotic Particles Collision of High Energy Cosmic Rays with the Interstellar Gas Cosmic Rays Leaking Out of Antimatter Galaxies e - Evaporation of + p Primordial Black e p e+ Holes e+ p p e+ He e - Antimatter Lumps In the Milky Way e+ e+ Pulsar’s magnetospheres AntimatterAntimatter DirectDirect researchresearch ObservationObservation ofof cosmiccosmic radiationradiation holdhold outout thethe possibilitypossibility ofof directlydirectly observingobserving aa particleparticle ofof antimatterantimatter whichwhich hashas escapedescaped asas aa cosmiccosmic rayray fromfrom aa distantdistant antigalaxyantigalaxy,, traversedtraversed intergalacticintergalactic spacespace filledfilled byby turbulentturbulent magneticmagnetic fieldfield,, enteredentered thethe MilkyMilky WayWay againstagainst thethe galacticgalactic windwind andand foundfound itsits wayway toto thethe EarthEarth.. Streitmatter, R. E., 24th ICRC , Rome, Italy, 1995 Nuovo Cimento, 19, 835 (1996) HighHigh energyenergy particleparticle oror antinucleiantinuclei Dark Matter Candidates •Kaluza-Klein DM in UED •Kaluza-Klein DM in RS •Axion •Axino •Gravitino •Photino GM(r) v(r) = •SM Neutrino r •Sterile Neutrino •Sneutrino •Light DM •Little Higgs DM •Wimpzillas •Q-balls •Mirror Matter •Champs (charged DM) •D-matter •Cryptons •Self-interacting •Superweakly interacting •Braneworld DM •Heavy neutrino •NEUTRALINO L. Roszkowski •Messenger States in GMSB •Branons •Chaplygin Gas •Split SUSY •PrimordialILIAS 6thBlack AnnualHoles Meeting , February 16th - 19st, 2009 Dresden Aldo Morselli, INFN Roma Tor Vergata 9 Another possible scenario: KK Dark Matter Lightest Kaluza-Klein Particle (LKP): B(1) Bosonic Dark Matter: fermionic final states no longer helicity suppressed. e+e- final states directly produced. As in the neutralino case there are 1-loop processes that produces monoenergetic γγin the final state. DMDM annihilationsannihilations DM particles are stable. They can annihilate in pairs. Primary annihilation channels Decay Final states σa= <σv> PositronsPositrons detectiondetection Where do positrons come from? Mostly locally within 1 Kpc, due to the energy losses by Synchrotron Radiation and Inverse Compton scattering Typical lifetime Antiprotons within 10 Kpc DecayDecay ChannelsChannels e- AntimatterAntimatter SearchSearch Wizard Collaboration 9 MASS – 1,2 (89,91) 9 BESS (93, 95, 97, 98, 2000) 9 TrampSI (93) 9 Heat (94, 95, 2000) 9 CAPRICE (94, 97, 98) 9 IMAX (96) 9 BESS LDF (2004, 2007) 9 AMS-01 (1998) Charge-dependent solar modulation CosmicCosmic RayRay AntimatterAntimatter Asaoka Y. Et al. 2002 Pre-PAMELA-Fermi status Antiprotons Positrons Moskalenko & Strong 1998 Positron excess? Solar polarity reversal 1999/2000 ¯ + CR + ISM → p-bar + … kinematic threshold: 5.6 GeV for the reaction CR + ISM →π± + x →μ± + x → e± + pp → pppp x CR + ISM →π0 + x →γγ→e± WhatWhat diddid wewe needneed?? MeasurementsMeasurements atat higherhigher energiesenergies BetterBetter knowledgeknowledge ofof backgroundbackground HighHigh statisticsstatistics ContinuousContinuous monitoringmonitoring ofof solarsolar modulationmodulation LongLong DurationDuration FlightsFlights DarkDark MatterMatter SpaceSpace MissionsMissions PAMELA ATIC BESS 15-06-2006 12-2007 2002 - 2007 AMS-02 2010 GLAST/Fermi 11-6-2008 PAMELAPAMELA Payload for Antimatter Matter Exploration and Light Nuclei Astrophysics PAMELAPAMELA LaunchLaunch 15/06/15/06/0606 16 Gigabytes trasmitted daily to Ground NTsOMZ Moscow OrbitOrbit CharacteristicsCharacteristics 350 km SAA 70ο 610 km • Low-earth elliptical orbit • 350 – 610 km • Quasi-polar (70o inclination) • SAA crossed AntiprotonsAntiprotons AntiprotonAntiproton fluxflux •PAMELA AntiprotonAntiproton toto protonproton ratioratio •PAMELA SAA Trapped pbar •PAMELA GCR • PAMELA PositronsPositrons PositronPositron toto allall electronelectron ratioratio Nature 458, 697, 2009 PAMELA Secondary production Moskalenko & Strong 98 Preliminary FractionFraction PositronPositron Positron Fraction Pulsar Component Yüksel et al. 08 KKDM (mass 300 GeV) Hooper & Profumo 07 Pulsar Component Atoyan et al. 95 Pulsar Component Zhang & Cheng 01 Secondary production Moskalenko & Strong 98 A Challenging Puzzle for Dark Matter Interpretation DataData fittingfitting Which DM spectra can fit the data? DM with and dominant annihilation channel (possible candidate: Wino) positrons antiprotons s! e o! Y N DM with and dominant annihilation channel positrons Data fitting Yes! Yes! antiprotons Yes! ElectronsElectrons Preliminary SpectrumSpectrumPreliminary -- )) PAMELAPAMELA ElectronElectron (e(e Preliminary SpectrumSpectrum -- )) PAMELAPAMELA ElectronElectron (e(e Preliminary SpectrumSpectrum -- )) 0.02 PAMELAPAMELA ElectronElectron (e(e AllAll electronselectrons ee++ ++ ee-- Courtesy Luca Baldini All three ATIC flights are consistent Preliminary Preliminary ATIC 1 ATIC 1+21+2+4 ATIC 2 ATIC 4 “Source on/source off” significance of bump for ATIC1+2 is about 3.8 sigma J Chang et al. Nature 456, 362 (2008) ATIC-4 with 10 BGO layers has improved e , p separation. (~4x lower background) “Bump” is seen in all three flights. Significance for ATIC1+2+4 is 5.1 sigma Example:Example: DMDM I. Cholis et al. arXiv:0811.3641v1 I. Cholis et al. arXiv:0811.3641v1 See Neal Weiner’s talk FermiFermi ((ee++++ ee--)) ElectronsElectrons measuredmeasured withwith H.E.S.SH.E.S.S.. FermiFermi ((ee++++ ee--)) andand PAMELAPAMELA ratioratio BergstromBergstrom etet al.al. astroastro--phph 0905.0333v10905.0333v1 FermiFermi ((ee++++ ee--)) astro-ph 0912.3887 FermiFermi ((ee++++ ee--)) astro-ph 0912.3887 γ0=-2.7 PAMELAPAMELA allall electronselectrons Preliminary GammaGamma ConstraintsConstraints γ from DM annihilation ± γ from Inverse Compton on e in halo -upscatter of CMB, infrared and starlight photons on energetic e± (Constraints on cosmological dark matter annihilation from the Fermi-LAT isotropic diffuse gamma-ray measurement) astro-ph. 1002.4415v1 (Constraints on Dark Matter Annihilation in Clusters of Galaxies with the Fermi Large Area Telescope) astro-ph.1002.2239v1 ± radio-waves from synchrotron radiation of e AstrophysicalAstrophysical ExplanationExplanation PulsarsPulsars S. Profumo Astro-ph 0812-4457 - Mechanism: the spinning B of the pulsar strips e that accelerated at the polar cap or at the outer gap emit γ that make production of e± that are trapped in the cloud, further accelerated and later released at τ ~ 105 years. 5 Young (T ~10 years) and nearby (< 1kpc) If not: too much diffusion, low energy, too low flux. Geminga: 157 parsecs from Earth and 370,000 years old B0656+14: 290 parsecs from Earth and 110,000 years old Many others after Fermi/GLAST Diffuse mature pulsars Example:Example: pulsarspulsars H. Yüksak et al., arXiv:0810.2784v2 Contributions of e- & e+ from Geminga assuming different distance, diffuse mature &nearby young pulsars age and energetic of the pulsar Hooper, Blasi, and Serpico arXiv:0810.1527 Pulsars: Most significant contribution to high-energy CRE: Nearby (d < 1 kpc) and Mature (104 < T/yr < 106) Pulsars D. Grasso et al. Example of fit to both Fermi and Pamela data with known (ATNF catalogue) nearby, mature pulsars and with a single, nominal choice for the e+/e- injection parameters AnisotropyAnisotropy Fermi is performing a detailed study of dipole anisotropy and it is setting an upper limit. HowHow reliablereliable isis thethe backgroundbackground calculation?calculation? Secondary production Moskalenko & Strong 98 CosmicCosmic RaysRays PropagationPropagation inin thethe GalaxyGalaxy Antiproton to proton ratio ProtonProton andand HeliumHelium fluxesfluxes ProtonProton toto HeliumHelium ratioratio ATICATIC CREAMCREAM astro-ph/0808.1718 δ = 0.33 top 0.6 med. 0.7 bot. TRACER 2006 Boron – Carbon Flux Ratio Preliminary Analysis - 70% Aperture - Conservative cuts HEAO-3 CRN TRACER 2006 Energy bin (10-300 GeV/amu) from analysis of DEDX detector only. -1 10 - Boron 8,000 events - Carbon55,000 events Boron / Carbon Flux Ratio Increased statistics over CRN Expect several energy bins Preliminary after energy deconvolution -2 analysis 10 2 3 Analysis of events with 1 10 10 10 Kinetic Energy (GeV/amu) transition radiation signal underway (ie > 400 GeV/amu) B/CB/C Preliminary PAMELAPAMELA preliminarypreliminary resultsresults Li/C Be/C PositronPositron FractionFraction Solar Modulation of galactic cosmic rays • Study of charge sign dependent effects Pamela AMS-01 Asaoka Y. et al. 2002, Phys. Rev. Lett. 88, 051101), Caprice / Mass /TS93 Bieber, J.W., et al. Physi-cal BESS Review Letters, 84, 674, 1999.