<<

and Measurements and Dark Indirect Searches

Piergiorgio Picozza INFN and University of Rome Tor Vergata

8th International Workshop On Identification Of

26-30 Jul 2010, Montpellier, France AstrophysicsAstrophysics andand CosmologyCosmology compellingcompelling IssuesIssues

„ ApparentApparent absenceabsence ofof cosmologicalcosmological AntimatterAntimatter

„ NatureNature ofof thethe DarkDark MatterMatter thatthat pervadespervades thethe UniverseUniverse SearchSearch forfor thethe existenceexistence ofof AntimatterAntimatter inin thethe UniverseUniverse

PAMELA AMS AMS in Space

S ea e rc rs h ve fo ni r t U he he e f t xi o st in en g ce ori o e f Accelerators th an r ti fo Un h iv arc er e se S

The Big Bang origin of the Universe requires matter and to be equally abundant at the very hot beginning THE UNIVERSE ENERGY BUDGET Robert L. Golden Balloon data : fraction before 1990

mχ=20GeV Tilka 89

dinamic halo

leaky box ANTIMATTER Annihilation of Exotic Collision of High Energy Cosmic Rays with the Interstellar Gas

Cosmic Rays Leaking Out of Antimatter Galaxies e - Evaporation of + p Primordial Black e p e+ Holes e+ p p e+

He e - Antimatter Lumps In the Milky Way e+

e+

Pulsar’s magnetospheres AntimatterAntimatter DirectDirect researchresearch

ObservationObservation ofof cosmiccosmic radiationradiation holdhold outout thethe possibilitypossibility ofof directlydirectly observingobserving aa particleparticle ofof antimatterantimatter whichwhich hashas escapedescaped asas aa cosmiccosmic rayray fromfrom aa distantdistant antigalaxyantigalaxy,, traversedtraversed intergalacticintergalactic spacespace filledfilled byby turbulentturbulent magneticmagnetic fieldfield,, enteredentered thethe MilkyMilky WayWay againstagainst thethe galacticgalactic windwind andand foundfound itsits wayway toto thethe EarthEarth..

Streitmatter, R. E., 24th ICRC , Rome, Italy, 1995 Nuovo Cimento, 19, 835 (1996)

HighHigh energyenergy particleparticle oror antinucleiantinuclei Dark Matter Candidates

•Kaluza-Klein DM in UED •Kaluza-Klein DM in RS • •Axino • GM(r) v(r) = •SM r • •Sneutrino •Light DM •Little Higgs DM •Wimpzillas •Q-balls • •Champs (charged DM) •D-matter •Cryptons •Self-interacting •Superweakly interacting •Braneworld DM •Heavy neutrino • L. Roszkowski •Messenger States in GMSB •Branons •Chaplygin Gas •Split SUSY •PrimordialILIAS 6thBlack AnnualHoles Meeting , February 16th - 19st, 2009 Dresden Aldo Morselli, INFN Roma Tor Vergata 9

Another possible scenario: KK Dark Matter Lightest Kaluza-Klein (LKP): B(1) Bosonic Dark Matter: fermionic final states no longer helicity suppressed. e+e- final states directly produced.

As in the neutralino case there are 1-loop processes that produces monoenergetic γγin the final state. DMDM annihilationsannihilations DM particles are stable. They can annihilate in pairs.

Primary annihilation channels Decay Final states

σa= <σv> PositronsPositrons detectiondetection Where do come from? Mostly locally within 1 Kpc, due to the energy losses by Synchrotron Radiation and Inverse Compton scattering

Typical lifetime

Antiprotons within 10 Kpc DecayDecay ChannelsChannels e- AntimatterAntimatter SearchSearch

Wizard Collaboration

9 MASS – 1,2 (89,91) 9 BESS (93, 95, 97, 98, 2000) 9 TrampSI (93) 9 Heat (94, 95, 2000)

9 CAPRICE (94, 97, 98) 9 IMAX (96) 9 BESS LDF (2004, 2007)

9 AMS-01 (1998) Charge-dependent solar modulation CosmicCosmic RayRay AntimatterAntimatter Asaoka Y. Et al. 2002 Pre-PAMELA-Fermi status

Antiprotons Positrons Moskalenko & Strong 1998 Positron excess? Solar polarity reversal 1999/2000

¯

+

CR + ISM → p-bar + … kinematic threshold: 5.6 GeV for the reaction CR + ISM →π± + x →μ± + x → e± + pp → pppp x CR + ISM →π0 + x →γγ→e± WhatWhat diddid wewe needneed??

„ MeasurementsMeasurements atat higherhigher energiesenergies

„ BetterBetter knowledgeknowledge ofof backgroundbackground

„ HighHigh statisticsstatistics

„ ContinuousContinuous monitoringmonitoring ofof solarsolar modulationmodulation

LongLong DurationDuration FlightsFlights DarkDark MatterMatter SpaceSpace MissionsMissions PAMELA ATIC BESS 15-06-2006 12-2007 2002 - 2007

AMS-02 2010 GLAST/Fermi 11-6-2008 PAMELAPAMELA Payload for Antimatter Matter Exploration and Light Nuclei Astrophysics

PAMELAPAMELA

LaunchLaunch 15/06/15/06/0606

16 Gigabytes trasmitted daily to Ground NTsOMZ Moscow OrbitOrbit CharacteristicsCharacteristics

350 km SAA

70ο

610 km • Low-earth elliptical orbit • 350 – 610 km • Quasi-polar (70o inclination) • SAA crossed AntiprotonsAntiprotons AntiprotonAntiproton fluxflux

•PAMELA AntiprotonAntiproton toto protonproton ratioratio

•PAMELA SAA

Trapped pbar

•PAMELA

GCR

• PAMELA PositronsPositrons PositronPositron toto allall electronelectron ratioratio Nature 458, 697, 2009

PAMELA

Secondary production Moskalenko & Strong 98 PositronPositron FractionFraction

Pre lim in ary Positron Fraction

Pulsar Component Yüksel et al. 08

KKDM (mass 300 GeV) Hooper & Profumo 07

Pulsar Component Atoyan et al. 95

Pulsar Component Zhang & Cheng 01

Secondary production Moskalenko & Strong 98 A Challenging Puzzle for Dark Matter Interpretation DataData fittingfitting Which DM spectra can fit the data? DM with and dominant annihilation channel (possible candidate: Wino) positrons antiprotons

s! e o! Y N DataData fittingfitting

DM with and dominant annihilation channel antiprotons positrons

! s s! e e Y Y

s! e Y

ElectronsElectrons ry ary ina n imi lm reli Pre P Spectrum Spectrum ) ) - - PAMELA Electron (e PAMELA Electron (e ry a in m li re P Spectrum Spectrum ) ) - - PAMELA Electron (e PAMELA Electron (e ry a in m li re P Spectrum Spectrum ) ) - - 0.02 PAMELA Electron (e PAMELA Electron (e AllAll electronselectrons

ee++ ++ ee-- Courtesy Luca Baldini

All three ATIC flights are consistent

Preliminary Preliminary

ATIC 1 ATIC 1+21+2+4 ATIC 2 ATIC 4

“Source on/source off” significance of bump for ATIC1+2 is about 3.8 sigma J Chang et al. Nature 456, 362 (2008)

ATIC-4 with 10 BGO layers has improved e , p separation. (~4x lower background) “Bump” is seen in all three flights.

Significance for ATIC1+2+4 is 5.1 sigma Example:Example: DMDM I. Cholis et al. arXiv:0811.3641v1

I. Cholis et al. arXiv:0811.3641v1 See Neal Weiner’s talk FermiFermi ((ee++++ ee--)) ElectronsElectrons measuredmeasured withwith H.E.S.SH.E.S.S.. FermiFermi ((ee++++ ee--)) andand PAMELAPAMELA ratioratio BergstromBergstrom etet al.al. astroastro--phph 0905.0333v10905.0333v1 FermiFermi ((ee++++ ee--)) astro-ph 0912.3887 FermiFermi ((ee++++ ee--)) astro-ph 0912.3887

γ0=-2.7 PAMELAPAMELA allall electronselectrons Preliminary GammaGamma ConstraintsConstraints

„ γ from DM annihilation

± „ γ from Inverse Compton on e in halo -upscatter of CMB, infrared and starlight on energetic e±

(Constraints on cosmological dark matter annihilation from the Fermi-LAT isotropic diffuse gamma-ray measurement) astro-ph. 1002.4415v1 (Constraints on Dark Matter Annihilation in Clusters of Galaxies with the Fermi Large Area Telescope) astro-ph.1002.2239v1

± „ radio-waves from synchrotron radiation of e AstrophysicalAstrophysical ExplanationExplanation PulsarsPulsars S.S. ProfumoProfumo AstroAstro --ph ph 08120812 - „ Mechanism: the spinning B of the pulsar--44574457 strips e that accelerated at the polar cap or at the outer gap emit γ that make production of e± that are trapped in the cloud, further accelerated and later released at τ ~ 105 years.

5 „ Young (T ~10 years) and nearby (< 1kpc) „ If not: too much diffusion, low energy, too low flux.

„ Geminga: 157 parsecs from Earth and 370,000 years old „ B0656+14: 290 parsecs from Earth and 110,000 years old „ Many others after Fermi/GLAST

„ Diffuse mature pulsars Example:Example: pulsarspulsars

H. Yüksak et al., arXiv:0810.2784v2 Contributions of e- & e+ from Geminga assuming different distance, diffuse mature &nearby young pulsars age and energetic of the pulsar Hooper, Blasi, and Serpico arXiv:0810.1527 Pulsars: Most significant contribution to high-energy CRE: Nearby (d < 1 kpc) and Mature (104 < T/yr < 106) Pulsars

D. Grasso et al.

„ Example of fit to both Fermi and Pamela data with known (ATNF catalogue) nearby, mature pulsars and with a single, nominal choice for the e+/e- injection parameters AnisotropyAnisotropy

„ Fermi is performing a detailed study of dipole anisotropy and it is setting an upper limit. HowHow reliablereliable isis thethe backgroundbackground calculation?calculation?

Secondary production Moskalenko & Strong 98 CosmicCosmic RaysRays PropagationPropagation inin thethe GalaxyGalaxy Antiproton to ratio ProtonProton andand HeliumHelium fluxesfluxes ProtonProton toto HeliumHelium ratioratio

ATICATIC CREAMCREAM

astro-ph/0808.1718 δ = 0.33 top 0.6 med. 0.7 bot. TRACER 2006 Boron – Carbon Flux Ratio

Preliminary Analysis - 70% Aperture - Conservative cuts HEAO-3 CRN TRACER 2006 Energy bin (10-300 GeV/amu) from analysis of DEDX detector only. -1 10 - Boron 8,000 events - Carbon55,000 events Boron / Carbon Flux Ratio

Increased statistics over CRN

Expect several energy bins Preliminary after energy deconvolution -2 analysis 10 2 3 Analysis of events with 1 10 10 10 Kinetic Energy (GeV/amu) transition radiation signal underway (ie > 400 GeV/amu) B/CB/C

Preliminary PAMELAPAMELA preliminarypreliminary resultsresults

Li/C Be/C PositronPositron FractionFraction Solar Modulation of galactic cosmic rays

• Study of charge sign dependent effects Pamela AMS-01 Asaoka Y. et al. 2002, Phys. Rev. Lett. 88, 051101), Caprice / Mass /TS93 Bieber, J.W., et al. Physi-cal BESS Review Letters, 84, 674, 1999. J. Clem et al. 30th ICRC 2007 U.W. Langner, M.S. Potgieter, Advances in Space Research 34 (2004) Solar modulation Interstellar spectrum

(statistical errors only) Increasing GCR flux solar activity Decreasing July 2006 August 2007 February 2008

PAMELA Ground monitor

sun-spot number

Charge dependent solar modulation +

¯ ¯

Pamela + 2006 (Preliminary!)

A > 0 A < 0

Positive particles BESS-Polar II Launch - December 22, 2007 BESS Detector

–Rigidity measurement JET/IDC – SC Solenoid (L=1m, B=1T) Rigidity – Min. material (4.7g/cm2)

– Uniform field TOF – Large acceptance β, dE/dx –Central tracker – (Drift chamber – δ ~200μm – Z, m measurement – R,β --> m = ZeR√1/β2-1 – dE/dx --> Z BESS Polar II Observations/Expectations • Event rate ~2.5 kHz; Total events ~4.7 x 109 • Total data volume 13.5 TB (3.07 kB/event) • Expected antiprotons ~10,000 10-20 times previous Solar minimum dataset

Antiproton Antideuteron Antihelium (Search for PBH) (Search for PBH) (Search for Antimatter) AMSAMS--0202 onon ISSISS InIn OrbitOrbit 20102010

TRD

Aarhus Kurchatov Inst. ESA Inst. of Theor. & Experimental Physics NIKHEF Helsinki Moscow State Univercity NLR, Amsterdam Turku Annecy Achen I & III Grenoble Montpellier Karlsruhe Munich Ciemat-Madrid Korea MIT Bucharest IHEP Ya l e IEE, IHEP Johns Hopkins LIP-Lisbon Bologna Florida Maryland Jiao Tong University Taiwan Milano Southeast University A&M Perugia Mexico ETH-Zurich Pisa CSIST Geneva Univ. Roma NCU Siena Academia Sinic NSPO Vacuum Tracker

Case MAGNET He Vessel

RICH TheThe CompletedCompleted AMSAMS DetectorDetector onon ISSISS Transition Radiation Detector (TRD) Time of Flight Detector (TOF)

Magnet Silicon Tracker

Electromagnetic Ring Image Cerenkov Calorimeter (ECAL) Counter (RICH)

Size: 3m x 3m x 3m Weight: 7 tons AMSAMS--0202 newnew configurationconfiguration AMSAMS CapabilityCapability SpaceSpace PartPart 20062006

Gamma Rays DirectDirect searchsearch forfor antimatter:antimatter: AMSAMS onon ISSISS

He Collect 2 billion nuclei with energies up to 2 trillion eV Li B C N O Ne Mg F Be Na Al Si P S Cl ArKCa Sc Ti V CrMn Fe Co y06K301

Atomic Number

Sensitivity of AMS: If no antimatter is found => there is no antimatter to the edge of the observable universe (~ 1000 Mpc). UniqueUnique positrons FeatureFeature antiprotons ofof AMSAMS

Combining searches in different channels could give (much) higher sensitiviy to SUSY DM signals

anti deuterons gamma rays TheThe NextNext FutureFuture PerspectivesPerspectives PerspectivesPerspectives ThanksThanks!!

http://http:// pamela.roma2.infn.itpamela.roma2.infn.it