Structure-Function Analysis of the Prosegment and the Cysteine-Rich Domain of the Proprotein Convertase PC5A: Its

Total Page:16

File Type:pdf, Size:1020Kb

Structure-Function Analysis of the Prosegment and the Cysteine-Rich Domain of the Proprotein Convertase PC5A: Its Structure-function analysis of the prosegment and the cysteine-rich domain of the proprotein convertase PC5A: its interaction with TIMP-2 By Nadia Nour Department of Medicine Division of Experimental Medicine McGill University Montreal, Quebec August 2004 A thesis submitted to McGill University in fulfilment of the requirements for the degree of Doctor of Philosophy © Nadia Nour, 2004 ACKNOWLEDGMENTS This work was carried out at the Clinical Research Institute of Montreal, Mc Gill University, during the years 1998-2004. I am sincerely grateful to have worked under the supervision of Dr. Nabil G. Seidah. I am very indebted to Nabil G. Seidah for his valuable contributions and his encouragement throughout the years. It was a pleasure to work with someone that has a vast knowledge of the field of proprotein processing and several other fields. Moreover, his enthusiastic dedication to the scientific world has been of great importance to me in completing this thesis. I also want to express my appreciation for my thesis committee members: Dr. Hugues Bennett, Dr. Mirek Cygler and Dr. David Lohnes for providing their time, scientific insight and guidance throughout my research. Their optimism and encouragements helped me to improve and surpass myself. I wish to thank all my former colleagues in the Chretien-Seidah laboratories, especially Jwadiga Marcienkiewicz, Dr. Michel Chrétien, Dr. Ajoy Basak, Suzanne Benjannet, Josée Hamelin, Marie-Claude Asselin, Dr. Claude Lazure, Dr. Majambu Mbikay, Philomena Pullikotil and Andrew Chen. I am also grateful to Brigitte Mary for her assistance in all secretarial matters and to Christian Charbonneau and Dr. Gaétan Thibault for sharing their invaluable knowledge in confocal analysis. This study was rendered possible by the generous contributions of the Canadian Institutes of Health Research (CIHR) for a five year studentship and the Protein Engineering Network Centers of Excellence of Canada (PENCE). Je voudrais remercier mes parents ainsi que mes deux soeurs Sandra et Sonia pour m’ avoir encouragée et soutenue à travers cette période de ma vie. I am most grateful to my future husband Yves for his unfailing love and support throughout these years. His patience and understanding attitude regarding my work as well as his faith in me have been essential for the completion of this ii thesis and to become Dr. Nad. I also thank you for careful readings of my articles and of my thesis. All my friends deserve my special thanks for bringing joy into my life. I wish to thank Dominique Nolet, Sonia Brault, Melisa Pham, Marie-Elizabeth Desourdy and Veronique Sanscoucy for sharing such enjoyable moments with me outside the laboratory. I would like to express my deep gratitude to Eric Bergeron, Ahmed Zaid, Daniel Gauthier and Nadia Rabah for their friendship and support. Enlightening scientific and non-scientific discussions with them have been helpful and a joy during my graduate years. A special thanks to Ann Chamberland and Dani Gauthier for their friendship, their sense of humour and their great technical assistance. Their positive attitudes are inspiring and were very supportive throughout the years. iii Abstract The mammalian proprotein convertases (PCs) of the secretory pathway are calcium-dependent serine proteinases related to bacterial subtilisin and yeast Kexin. As Kexin and subtilisin, all basic aa-specific convertases contain a comparable N-terminal structure starting with a signal peptide followed by a prosegment and a conserved catalytic domain. The convertases possess additional domains at their C-terminus following the catalytic domain. All PCs exhibit a P-domain prior to the C-terminal architecture, which is specific to each convertase. Three of the basic-aa-specific convertases, furin, PACE4 and PC5 display the presence of a Cysteine-rich domain (CRD). The function of the CRD has not been studied extensively and remains unclear whereas the inhibitory function of the prosegments has been investigated previously. In this manuscript, both the function of the prosegment and the CRD of PC5A were investigated as very little was known about the zymogen activation of PC5A, the inhibitory role of its prosegment and the characterisation of the function of its CRD. Previous subtilisin- and furin-based studies demonstrated that the prosegment acts as an intramolecular chaperone and as a potent inhibitor of its cognate enzyme. From these results, the inhibitory function of the prosegment of PC5A was investigated. The data revealed that the prosegment of PC5 is a potent inhibitor in vitro and ex vivo of its parent enzyme, but is not iv selective. Introduction of single point mutations within the prosegment did not increase the potency or the selectivity of the inhibitor. We next characterised the relevance of the CRD of PC5A as it implication in the cell surface localisation of the enzyme. The plasma membrane retention was demonstrated to be via the interaction of the CRD of PC5A with TIMP-2, an endogenous MMP inhibitor. This study also showed that PC5A may have an anti-proliferative role as its overexpression diminishes cell proliferation while its inactivation by siRNA causes an increase in the proliferation rate. This study on the structure-function analysis of both the prosegment and the cysteine-rich domain of PC5A will aid us to define the biological function of this enzyme. v Sommaire Les convertases des proprotéines qui résident dans la voie de sécrétion sont des serine protéases de mammifères, apparentées par leur structure aux subtilisines bactériennes et à l’ enzyme de la levure kexine. Comme ceux-ci, les convertases possèdent un peptide signal, un segment pro et une région catalytique conservée. De plus, ces protéases possèdent deux domaines supplémentaires, appelés domaines P et C-terminal qui sont absents chez les subtilisines mais présents chez la kexine. Le domaine C-terminal est unique à chaque convertase. Trois membres de la famille des convertases, furine, PACE4 et PC5 démontrent la présence d’ un domaine riche en cysteine (CRD). La fonction de ce domaine ne fut jamais sérieusement étudiée et demeure inconnue, toutefois, l’ activité inhibitrice du segment pro de la subtilisine ainsi que de certaines convertases furent étudiées extensivement auparavant. Dans ce mémoire, la fonction du segment pro ainsi que du domaine riche en cysteine de PC5A furent étudiées. Des études précédentes sur la subtilisine et la furine ont demontrées que le segment pro agit à la fois de chaperone et d’ inhibiteur de l’ enzyme parental. Inspirée de ces études, la fonction inhibitrice du segment pro de PC5 fut investiguée et révéla que ce domaine est un inhibiteur puissant de PC5 in vitro et ex vivo, cependant l’ inhibition n’ est pas spécifique à une seule convertase. De plus, des mutations ponctuelles vi introduites dans la région pro n’ ont augmenté ni la puissance, ni la spécificité de l’ inhibiteur. Auncune fonction du CRD n’ avait été définie chez les PCs. Ce domaine joue un rôle important dans la localisation de l’ enzyme puisqu’ il permet à PC5A d’ être retenu à la surface cellulaire. Sans ce domain riche en cysteine, PC5A n’ est plus retrouvée à la surface car c’ est au niveau de ce domaine que PC5A interragit avec TIMP-2 qui se trouve à la surface cellulaire. De plus, la surexpression de PC5A dans des cellules tumorales cause une diminution de la proliferation, par contre, les cellules traitées avec un siRNA contre PC5 prolifèrent d’ avantage. Cette recherche sur la structure-fonction du segment pro et du domaine riche en cysteine de PC5A va aider à définir la fonction biologique de cet enzyme en plus de définir le role de ces deux domaines chez les autres convertases. vii Preface This thesis is submitted to the department of Graduate and Postdoctoral studies, McGill University. There are two types of thesis formats accepted for submission. The first option is the traditional thesis format and as an alternative, the second format consists of a dissertation based on a collection of submitted publications. This present dissertation follows the second format consisting of a manuscript- based thesis conforming to the specifications of the faculty of Graduate and Postdoctoral studies. Candidates have the option of including, as part of the thesis, the text of one or more papers submitted, or to be submitted, for publication, or the clearly- duplicated text (not the reprints) of one or more published papers. These texts must conform to the "Guidelines for Thesis Preparation" with respect to font size, line spacing and margin sizes and must be bound together as an integral part of the thesis. The thesis must be more than a collection of manuscripts. All components must be integrated into a cohesive unit with a logical progression from one chapter to the next. In order to ensure that the thesis has continuity, connecting texts that provide logical bridges preceeding and following each manuscript are mandatory. The thesis must conform to all other requirements of the "Guidelines for Thesis Preparation" in addition to the manuscripts: a table of contents; a brief abstract in viii both English and French; an introduction which clearly states the rational and objectives of the research; a comprehensive review of the literature (in addition to that covered in the introduction to each paper); a final conclusion and summary; a thorough bibliography; Appendix containing an ethics certificate in the case of research involving human or animal subjects, microorganisms, living cells, other biohazards and/or radioactive material. As manuscripts for publication are frequently very concise documents, where appropriate, additional material must be provided (e.g., in appendices) in sufficient detail to allow a clear and precise judgement to be made of the importance and originality of the research reported in the thesis. In general, when co-authored papers are included in a thesis the candidate must have made a substantial contribution to all papers included in the thesis.
Recommended publications
  • Serine Proteases with Altered Sensitivity to Activity-Modulating
    (19) & (11) EP 2 045 321 A2 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) Int Cl.: 08.04.2009 Bulletin 2009/15 C12N 9/00 (2006.01) C12N 15/00 (2006.01) C12Q 1/37 (2006.01) (21) Application number: 09150549.5 (22) Date of filing: 26.05.2006 (84) Designated Contracting States: • Haupts, Ulrich AT BE BG CH CY CZ DE DK EE ES FI FR GB GR 51519 Odenthal (DE) HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI • Coco, Wayne SK TR 50737 Köln (DE) •Tebbe, Jan (30) Priority: 27.05.2005 EP 05104543 50733 Köln (DE) • Votsmeier, Christian (62) Document number(s) of the earlier application(s) in 50259 Pulheim (DE) accordance with Art. 76 EPC: • Scheidig, Andreas 06763303.2 / 1 883 696 50823 Köln (DE) (71) Applicant: Direvo Biotech AG (74) Representative: von Kreisler Selting Werner 50829 Köln (DE) Patentanwälte P.O. Box 10 22 41 (72) Inventors: 50462 Köln (DE) • Koltermann, André 82057 Icking (DE) Remarks: • Kettling, Ulrich This application was filed on 14-01-2009 as a 81477 München (DE) divisional application to the application mentioned under INID code 62. (54) Serine proteases with altered sensitivity to activity-modulating substances (57) The present invention provides variants of ser- screening of the library in the presence of one or several ine proteases of the S1 class with altered sensitivity to activity-modulating substances, selection of variants with one or more activity-modulating substances. A method altered sensitivity to one or several activity-modulating for the generation of such proteases is disclosed, com- substances and isolation of those polynucleotide se- prising the provision of a protease library encoding poly- quences that encode for the selected variants.
    [Show full text]
  • Intracellular Peptides: from Discovery to Function
    e u p a o p e n p r o t e o m i c s 3 ( 2 0 1 4 ) 143–151 Available online at www.sciencedirect.com ScienceDirect journal homepage: http://www.elsevier.com/locate/euprot Intracellular peptides: From discovery to function a,∗ b a,c d,∗∗ Emer S. Ferro , Vanessa Rioli , Leandro M. Castro , Lloyd D. Fricker a Department of Pharmacology, Biomedical Sciences Institute, University of São Paulo, São Paulo, SP, Brazil b Special Laboratory of Applied Toxicology-CeTICS, Butantan Institute, São Paulo, SP, Brazil c Department of Biophysics, Federal University of São Paulo, São Paulo, SP, Brazil d Department of Molecular Pharmacology and Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA a r t i c l e i n f o a b s t r a c t Article history: Peptidomics techniques have identified hundreds of peptides that are derived from proteins Received 8 October 2013 present mainly in the cytosol, mitochondria, and/or nucleus; these are termed intracellular Received in revised form peptides to distinguish them from secretory pathway peptides that function primarily out- 29 November 2013 side of the cell. The proteasome and thimet oligopeptidase participate in the production and Accepted 14 February 2014 metabolism of intracellular peptides. Many of the intracellular peptides are common among mouse tissues and human cell lines analyzed and likely to perform a variety of functions Keywords: within cells. Demonstrated functions include the modulation of signal transduction, mito- Peptides chondrial stress, and development; additional functions will likely be found for intracellular Cell signaling peptides.
    [Show full text]
  • A Case of Prohormone Convertase Deficiency Diagnosed with Type 2 Diabetes
    Turkish CASE REPORT Archives of DOI: 10.14744/TurkPediatriArs.2020.36459 Pediatrics A case of prohormone convertase deficiency diagnosed with type 2 diabetes Gülin Karacan Küçükali1 , Şenay Savaş Erdeve1 , Semra Çetinkaya1 , Melikşah Keskin1 , Ayşe Derya Buluş2 , Zehra Aycan1 1Department of Pediatric Endocrinology, University of Health Science, Dr. Sami Ulus Obstetrics and Gynecology, Children’s Health and Disease Training and Research Hospital, Ankara, Turkey 2Department of Pediatric Endocrinology, University of Health Science, Keçiören Training and Research Hospital, Ankara, Turkey What is already known ABSTRACT on this topic? Prohormone convertase 1/3, encoded by the proprotein convertase subtilisin/kexin type 1 gene, • Prohormone convertase defi- is essential for processing prohormones; therefore, its deficiency is characterized by a defi- ciency is characterized by a de- ciency of variable levels in all hormone systems. Although a case of postprandial hypoglycemia ficiency of variable levels in all has been previously reported in the literature, prohormone convertase insufficiency with type hormone systems. 2 diabetes mellitus has not yet been reported. Our case, a 14-year-old girl, was referred due to • Postprandial hypoglycemia is a excess weight gain. She was diagnosed as having type 2 diabetes mellitus based on laboratory disorder of glucose metabolism test results. Prohormone convertase deficiency was considered due to the history of resistant reported in this disease. diarrhea during the infancy period and her rapid weight gain. Proinsulin level was measured as >700 pmol/L(3.60-22) during diagnosis. In genetic analysis, a c.685G> T(p.V229F) homozygous mutation in the PCSK1 gene was detected and this has not been reported in relation to this dis- order.
    [Show full text]
  • Electronic Supplementary Material (ESI) for Analyst. This Journal Is © the Royal Society of Chemistry 2020
    Electronic Supplementary Material (ESI) for Analyst. This journal is © The Royal Society of Chemistry 2020 Table S1.
    [Show full text]
  • 1.2.Obesity-Pathophysiology.Pdf
    What Is the Disease of Obesity? Obesity Pathophysiology Obesity Has Multiple Pathophysiologic Origins Epigenetic Environmental Genetic Obesity Sociocultural Physiologic Behavioral Bray GA, et al. Lancet. 2016;387:1947-1956. 2 Obesity Pathophysiology Genetic and Epigenetic Origins 3 Genetic Determinants of Obesity Supported by Genome-Wide Association Studies Gene Tissue expressed Gene product / role in energy balance MC4R Adipocyte, hypothalamus, liver Melanocortin 4 receptor / Appetite stimulation; monogenic cause of obesity ADRB3 Visceral adipose tissue β3-Adrenergic receptor / Regulates lipolysis PCSK1 Neuroendocrine cells (brain, Proprotein convertase 1 / Conversion of hormones (including insulin) pituitary and adrenal glands) into metabolically active forms BDNF Hypothalamus Brain-derived neurotrophic factor / Appetite stimulation; regulated by MC4R signaling and nutritional state LCT Intestinal epithelial cells Lactase / Digestion of lactose MTNR1B Nearly ubiquitous Melantonin receptor 1 B / Regulation of circadian rhythms TLR4 Adipocyte, macrophage Toll-like receptor 4 / Lipolysis, inflammatory reactions ENPP1 Nearly ubiquitous Ecotnucleotide pyrophosphatase/phosphodiesterase 1 / Inhibits tyrosine kinase activity of the insulin receptor, downregulating insulin signaling and decreasing insulin sensitivity FGFR1 Adipose, hypothalamus Fibroblast growth factor receptor 1 / Hypothalamic regulation of food intake and physical activity LEP, LEPR Adipocyte Leptin, leptin receptor / Appetite inhibition den Hoed M, Loos RJF. In: Bray GA, Bouchard
    [Show full text]
  • Discovery of an Allosteric Site on Furin, Contributing to Potent Inhibition: a Promising Therapeutic for the Anemia of Chronic Inflammation
    Brigham Young University BYU ScholarsArchive Theses and Dissertations 2014-07-01 Discovery of an Allosteric Site on Furin, contributing to Potent Inhibition: A Promising Therapeutic for the Anemia of Chronic Inflammation Andrew Jacob Gross Brigham Young University Follow this and additional works at: https://scholarsarchive.byu.edu/etd Part of the Chemistry Commons BYU ScholarsArchive Citation Gross, Andrew Jacob, "Discovery of an Allosteric Site on Furin, contributing to Potent Inhibition: A Promising Therapeutic for the Anemia of Chronic Inflammation" (2014). Theses and Dissertations. 6537. https://scholarsarchive.byu.edu/etd/6537 This Dissertation is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of BYU ScholarsArchive. For more information, please contact [email protected]. Discovery of an Allosteric Site on Furin, Contributing to Potent Inhibition: A Promising Therapeutic for the Anemia of Chronic Inflammation Andrew J. Gross A dissertation submitted to the faculty of Brigham Young University in partial fulfillment of the requirements for the degree of Doctor of Philosophy Richard K. Watt, Chair Dixon J. Woodbury Roger G. Harrison Chad R. Hancock John T. Prince Department of Chemistry and Biochemistry Brigham Young University July 2014 Copyright © 2014 Andrew J. Gross All Rights Reserved ABSTRACT Discovery of an Allosteric site on Furin, Contributing to potent Inhibition: A promising Therapeutic for the Anemia of Chronic Inflammation Andrew J. Gross Department of Chemistry and Biochemistry, BYU Doctor of Philosophy Anemia of chronic inflammation (ACI) is a condition that develops in a setting of chronic immune activation. ACI is characterized and triggered by inflammatory cytokines and the disruption of iron homeostasis.
    [Show full text]
  • PCSK9 Biology and Its Role in Atherothrombosis
    International Journal of Molecular Sciences Review PCSK9 Biology and Its Role in Atherothrombosis Cristina Barale, Elena Melchionda, Alessandro Morotti and Isabella Russo * Department of Clinical and Biological Sciences, Turin University, I-10043 Orbassano, TO, Italy; [email protected] (C.B.); [email protected] (E.M.); [email protected] (A.M.) * Correspondence: [email protected]; Tel./Fax: +39-011-9026622 Abstract: It is now about 20 years since the first case of a gain-of-function mutation involving the as- yet-unknown actor in cholesterol homeostasis, proprotein convertase subtilisin/kexin type 9 (PCSK9), was described. It was soon clear that this protein would have been of huge scientific and clinical value as a therapeutic strategy for dyslipidemia and atherosclerosis-associated cardiovascular disease (CVD) management. Indeed, PCSK9 is a serine protease belonging to the proprotein convertase family, mainly produced by the liver, and essential for metabolism of LDL particles by inhibiting LDL receptor (LDLR) recirculation to the cell surface with the consequent upregulation of LDLR- dependent LDL-C levels. Beyond its effects on LDL metabolism, several studies revealed the existence of additional roles of PCSK9 in different stages of atherosclerosis, also for its ability to target other members of the LDLR family. PCSK9 from plasma and vascular cells can contribute to the development of atherosclerotic plaque and thrombosis by promoting platelet activation, leukocyte recruitment and clot formation, also through mechanisms not related to systemic lipid changes. These results further supported the value for the potential cardiovascular benefits of therapies based on PCSK9 inhibition. Actually, the passive immunization with anti-PCSK9 antibodies, evolocumab and alirocumab, is shown to be effective in dramatically reducing the LDL-C levels and attenuating CVD.
    [Show full text]
  • PACE4 Expression in Mouse Basal Keratinocytes Results in Basement Membrane Disruption and Acceleration of Tumor Progression
    Research Article PACE4 Expression in Mouse Basal Keratinocytes Results in Basement Membrane Disruption and Acceleration of Tumor Progression Daniel E. Bassi,1,3 Ricardo Lopez De Cicco,1 Jonathan Cenna,1 Samuel Litwin,2 Edna Cukierman,2 and Andres J.P. Klein-Szanto1,3 Departments of 1Pathology and 2Biomathematics and Biostatistics, and 3Tumor Cell Biology Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania Abstract and studying the in vivo effects after overexpressing genes, such as h Collagen type IV degradation results in disruption and transforming growth factor- (3), epidermal growth factor receptor breakdown of the normal basement membrane architecture, (4), and insulin-like growth factor (5). a key process in the initiation of tumor microinvasion into the Proprotein convertases constitute a family of serine proteases that activate their cognate substrates by limited proteolysis at consensus connective tissue. PACE4, a proprotein convertase, activates # membrane type matrix metalloproteinases (MT-MMPs) that in sequence RXR/KR (6). Many of these, such as insulin-like growth turn process collagenase type IV. Because PACE4 is overex- factor-I (7) and its receptor (8), membrane-type matrix metal- pressed in skin carcinomas and in vitro overexpression of loproteinase (MT-MMP; refs. 9, 10), and integrins (11–14) have direct PACE4 resulted in enhanced invasiveness, we investigated roles in tumor progression and metastasis. Although proprotein whetherornotin vivo PACE4 expression leads to the convertases recognize and cleave a specific sequence, variations in the amino acid sequences that surround this motif, as well as acquisition of invasiveness and increased tumorigenesis. Two transgenic mouse lines were designed by targeting PACE4 to preferences in K or R preceding the COOH-terminal R, account for the epidermal basal keratinocytes.
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2004/0081648A1 Afeyan Et Al
    US 2004.008 1648A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2004/0081648A1 Afeyan et al. (43) Pub. Date: Apr. 29, 2004 (54) ADZYMES AND USES THEREOF Publication Classification (76) Inventors: Noubar B. Afeyan, Lexington, MA (51) Int. Cl." ............................. A61K 38/48; C12N 9/64 (US); Frank D. Lee, Chestnut Hill, MA (52) U.S. Cl. ......................................... 424/94.63; 435/226 (US); Gordon G. Wong, Brookline, MA (US); Ruchira Das Gupta, Auburndale, MA (US); Brian Baynes, (57) ABSTRACT Somerville, MA (US) Disclosed is a family of novel protein constructs, useful as Correspondence Address: drugs and for other purposes, termed “adzymes, comprising ROPES & GRAY LLP an address moiety and a catalytic domain. In Some types of disclosed adzymes, the address binds with a binding site on ONE INTERNATIONAL PLACE or in functional proximity to a targeted biomolecule, e.g., an BOSTON, MA 02110-2624 (US) extracellular targeted biomolecule, and is disposed adjacent (21) Appl. No.: 10/650,592 the catalytic domain So that its affinity Serves to confer a new Specificity to the catalytic domain by increasing the effective (22) Filed: Aug. 27, 2003 local concentration of the target in the vicinity of the catalytic domain. The present invention also provides phar Related U.S. Application Data maceutical compositions comprising these adzymes, meth ods of making adzymes, DNA's encoding adzymes or parts (60) Provisional application No. 60/406,517, filed on Aug. thereof, and methods of using adzymes, Such as for treating 27, 2002. Provisional application No. 60/423,754, human Subjects Suffering from a disease, Such as a disease filed on Nov.
    [Show full text]
  • A Genomic Analysis of Rat Proteases and Protease Inhibitors
    A genomic analysis of rat proteases and protease inhibitors Xose S. Puente and Carlos López-Otín Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Instituto Universitario de Oncología, Universidad de Oviedo, 33006-Oviedo, Spain Send correspondence to: Carlos López-Otín Departamento de Bioquímica y Biología Molecular Facultad de Medicina, Universidad de Oviedo 33006 Oviedo-SPAIN Tel. 34-985-104201; Fax: 34-985-103564 E-mail: [email protected] Proteases perform fundamental roles in multiple biological processes and are associated with a growing number of pathological conditions that involve abnormal or deficient functions of these enzymes. The availability of the rat genome sequence has opened the possibility to perform a global analysis of the complete protease repertoire or degradome of this model organism. The rat degradome consists of at least 626 proteases and homologs, which are distributed into five catalytic classes: 24 aspartic, 160 cysteine, 192 metallo, 221 serine, and 29 threonine proteases. Overall, this distribution is similar to that of the mouse degradome, but significatively more complex than that corresponding to the human degradome composed of 561 proteases and homologs. This increased complexity of the rat protease complement mainly derives from the expansion of several gene families including placental cathepsins, testases, kallikreins and hematopoietic serine proteases, involved in reproductive or immunological functions. These protease families have also evolved differently in the rat and mouse genomes and may contribute to explain some functional differences between these two closely related species. Likewise, genomic analysis of rat protease inhibitors has shown some differences with the mouse protease inhibitor complement and the marked expansion of families of cysteine and serine protease inhibitors in rat and mouse with respect to human.
    [Show full text]
  • Myeloid Cell Expressed Proprotein Convertase FURIN Attenuates Inflammation
    www.impactjournals.com/oncotarget/ Oncotarget, Vol. 7, No. 34 Research Paper: Immunology Myeloid cell expressed proprotein convertase FURIN attenuates inflammation Zuzet Martinez Cordova1, Anna Grönholm1, Ville Kytölä2, Valentina Taverniti3, Sanna Hämäläinen1, Saara Aittomäki1, Wilhelmiina Niininen1, Ilkka Junttila4,5, Antti Ylipää2, Matti Nykter2 and Marko Pesu1,6 1 Team Immunoregulation, Institute of Biosciences and Medical Technology (BioMediTech), University of Tampere, Tampere, Finland 2 Team Computational Biology, Institute of Biosciences and Medical Technology (BioMediTech), University of Tampere, Tampere, Finland 3 Department of Food, Environmental and Nutritional Sciences (DeFENS), Division of Food Microbiology and Bioprocessing, Università degli Studi di Milano, Milan, Italy 4 School of Medicine, University of Tampere, Tampere, Finland 5 Fimlab Laboratories, Pirkanmaa Hospital District, Tampere, Finland 6 Department of Dermatology, Tampere University Hospital, Tampere, Finland Correspondence to: Marko Pesu, email: [email protected] Keywords: cytokine, FURIN, LysM, macrophage, TGF-β1, Immunology and Microbiology Section, Immune response, Immunity Received: February 25, 2016 Accepted: July 22, 2016 Published: August 05, 2016 ABSTRACT The proprotein convertase enzyme FURIN processes immature pro-proteins into functional end- products. FURIN is upregulated in activated immune cells and it regulates T-cell dependent peripheral tolerance and the Th1/Th2 balance. FURIN also promotes the infectivity of pathogens by activating bacterial toxins and by processing viral proteins. Here, we evaluated the role of FURIN in LysM+ myeloid cells in vivo. Mice with a conditional deletion of FURIN in their myeloid cells (LysMCre-fur(fl/fl)) were healthy and showed unchanged proportions of neutrophils and macrophages. Instead, LysMCre-fur(fl/fl) mice had elevated serum IL-1β levels and reduced numbers of splenocytes.
    [Show full text]
  • Hysteretic Behavior of Proprotein Convertase 1/3 (PC1/3)
    Hysteretic Behavior of Proprotein Convertase 1/3 (PC1/3) Marcelo Y. Icimoto1, Nilana M. Barros2, Juliana C. Ferreira1, Marcelo F. Marcondes1, Douglas Andrade1, Mauricio F. Machado1, Maria A. Juliano1, Wagner A. Ju´ dice3, Luiz Juliano1, Vitor Oliveira1* 1 Departamento de Biofı´sica, Universidade Federal de Sa˜o Paulo, Sa˜o Paulo, Brazil, 2 Cieˆncias Exatas e da Terra, Universidade Federal de Sa˜o Paulo, Sa˜o Paulo, Brazil, 3 Centro Interdisciplinar de Investigac¸a˜o Bioquı´mica, Universidade de Mogi das Cruzes, Sa˜o Paulo, Brazil Abstract The proprotein convertases (PCs) are calcium-dependent proteases responsible for processing precursor proteins into their active forms in eukariotes. The PC1/3 is a pivotal enzyme of this family that participates in the proteolytic maturation of prohormones and neuropeptides inside the regulated secretory pathway. In this paper we demonstrate that mouse proprotein convertase 1/3 (mPC1/3) has a lag phase of activation by substrates that can be interpreted as a hysteretic behavior of the enzyme for their hydrolysis. This is an unprecedented observation in peptidases, but is frequent in regulatory enzymes with physiological relevance. The lag phase of mPC1/3 is dependent on substrate, calcium concentration and pH. This hysteretic behavior may have implications in the physiological processes in which PC1/3 participates and could be considered an additional control step in the peptide hormone maturation processes as for instance in the transformation of proinsulin to insulin. Citation: Icimoto MY, Barros NM, Ferreira JC, Marcondes MF, Andrade D, et al. (2011) Hysteretic Behavior of Proprotein Convertase 1/3 (PC1/3). PLoS ONE 6(9): e24545.
    [Show full text]