Synaptic Plasticity, Memory and the Hippocampus

Total Page:16

File Type:pdf, Size:1020Kb

Synaptic Plasticity, Memory and the Hippocampus P E RS pec T I V E S 70. Vaynman, S., Ying, Z. & Gomez-Pinilla, F. Hippocampal 94. Rivera, S. M., Reiss, A. L., Eckert, M. A. & Menon, V. Acknowledgments BDNF mediates the efficacy of exercise on synaptic Developmental changes in mental arithmetic: evidence We would like to thank the National Institute on Aging (R01 plasticity and cognition. Eur. J. Neurosci. 20, for increased functional specialization in the left AG25,667, R01 AG25,032, R01 AG021,188) for their sup- 1030–1034 (2004). inferior parietal cortex. Cereb. Cortex. 15, port of our research and the preparation of this article. We 71. Ferris, L. T., Williams, J. S. & Shen, C. L. The effect of 1779–1790 (2005). would also like to thank A. R. Kramer for her help in crafting acute exercise on serum brain-derived neurotrophic 95. Coe, D. P., Pivarnik, J. M., Womack, C. J., Reeves, the article title. factor levels and cognitive function. Med. Sci. Sport M. J. & Malina, R. M. Effects of physical education Exerc. 39, 728–734 (2007). and activity levels on academic achievement in children. 72. Gold, S. M. et al. Basal serum levels and reactivity of Med. Sci. Sport Exerc. 38, 1515–1519 (2006). DATABASES nerve growth factor and brain-derived neurotrophic 96. Sallis, J. F. et al. Effects of health-related physical Entrez Gene: http://www.ncbi.nlm.nih.gov/entrez/query. factor to standardized acute exercise in multiple education on academic achievement: Project SPARK. fcgi?db=gene sclerosis and controls. J. Neuroimmunol. 138, Res. Q. Exerc. Sport. 70, 127–138 (1999). APOE | BDNF | IGF1 | TRKB| VEGF 99–105 (2003). 97. Martin, J. H. Neuroanatomy Text and Atlas. 2nd edn OMIM: http://www.ncbi.nlm.nih.gov/entrez/query. 73. Adlard, P. A., Perreau, V. M., Pop, V. & Cotman, C. W. (Appleton and Lange, Stanford Connecticut, 1996). fcgi?db=OMIM Voluntary exercise decreases amyloid load in a 98. Hall, C. D. Smith, A. L. & Keele, S. W. The impact of Alzheimer’s disease | Parkinson’s disease transgenic model of Alzheimer’s disease. J. Neurosci. aerobic activity on cognitive function in older adults: a 25, 4217–4221 (2005). new synthesis based on the concept of executive FURTHER INFORMATION 74. Cotman, C. W., Berchtold, N. C. & Christie, L.-A. control. Eur. J. Cogn. Psychol. 13, 279–300 (2001). Charles H. Hillman’s homepage: http://www.kch.uiuc.edu/ Exercise builds brain health: key roles of growth factor 99. Bush, G., Luu, P. & Posner, M. I. Cognitive and labs/neurocognitive%2Dkinesiology/default.htm cascades and inflammation. Trends Neurosci. 30, emotional influences in anterior cingulate cortex. ALL LINKS ARE ACTIVE IN THE ONLINE PDF 464–472 (2007). Trends Cogn. Sci. 4, 215–222 (2000). 75. Prakash, R. et al. Cardiorespiratory fitness: a predictor of cortical plasticity in multiple sclerosis. Neuroimage 34, 1238–1244 (2007). 76. Berchtold, N. C., Chinn, G., Chou, M., Kesslak, J. P. & Cotman, C. W. Exercise primes a molecular memory for brain derived neurotrophic factor protein induction in the rate hippocampus. Neurosci. 133, 853–861 (2005). O P inion 77. Molteni, R. et al. Exercise reverses the harmful effects of consumption of a high-fat diet on synaptic and behavioral plasticity associated to the action of brain- derived neurotrophic factor. Neurosci. 123, 429–440 Synaptic plasticity, memory and (2004). 78. Stranahan, A. M. et al. Social isolation delays the positive effects of running on adult neurogenesis. the hippocampus: a neural network Nature Neurosci. 9, 526–533 (2006). 79. Barbour, K. A. & Blumenthal, J. A. Exercise training and depression in older adults. Neurobiol. Aging 26 (Suppl. 1), 119–123 (2005). approach to causality 80. Russo-Neustadt, A. A. & Chen, M. J. Brain-derived neurotrophic factor and antidepressant activity. Curr. Pharm. Des. 11, 1495–1510 (2005). Guilherme Neves, Sam F. Cooke* and Tim V. P. Bliss 81. Goldstein, D. B., Need, A. C., Singh, R. & Sisodiya, S. M. Potential genetic causes of heterogeneity of treatment effects. Am. J. Med.120 (Suppl. 1), S21–S25 (2007). Abstract | Two facts about the hippocampus have been common currency among 82. Etnier, J. et al. Cognitive performance in older women relative to ApoeE-epsilon4 genotype and aerobic neuroscientists for several decades. First, lesions of the hippocampus in humans fitness. Med. Sci. Sport Exerc. 39, 199–207 (2007). prevent the acquisition of new episodic memories; second, activity-dependent 83. Podewils, L. J. et al. Physical activity, APOE genotype, and dementia risk: findings from the cardiovascular health synaptic plasticity is a prominent feature of hippocampal synapses. Given this cognition study. Am. J. Epi. 161, 639–651 (2005). 84. Rovio, S. et al. Leisure time physical activity at midlife background, the hypothesis that hippocampus-dependent memory is mediated, and the risk of dementia and Alzheimer’s disease. Lancet Neurol. 4, 705–711 (2005). at least in part, by hippocampal synaptic plasticity has seemed as cogent in theory 85. Schuit, A. J. et al. Physical activity and cognitive as it has been difficult to prove in practice. Here we argue that the recent decline, the role of apoliprotein e4 allele. Med. Sci. Sports Exerc. 26, 772–777 (2001). development of transgenic molecular devices will encourage a shift from 86. Egan, M. F. et al. The BDNF val66met polymorphism affects activity dependent secretion of BDNF and mechanistic investigations of synaptic plasticity in single neurons towards an human memory and hippocampal function. Cell 112, 257–269 (2003). analysis of how networks of neurons encode and represent memory, and we 87. Kleim, J. A. et al. BDNF val66met polymorphism is suggest ways in which this might be achieved. In the process, the hypothesis that associated with modified experienced dependent plasticity in human motor cortex. Nature Neurosci. 9, synaptic plasticity is necessary and sufficient for information storage in the brain 735–737 (2006). 88. California Department of Education. California may finally be validated. physical fitness test: Report to the governor and legislature. Sacramento, California. Department of Education Standards and Assessment Division (2001). 89. Fields, T., Diego, M. & Sanders, C. E. Exercise is positively related to adolescents’ relationships and Multiple strands of evidence suggest an confirmed that the hippocampus is essential academics. Adolescence 36, 105–110 (2001). important role for the hippocampus in for the formation of new episodic memo- 90. Lindner, K. J. The physical activity participation- academic performance relationship revisited: episodic memory in animals and humans. ries and might also have a role in their perceived and actual performance and the effect of Most notable among human patients has long-term storage. Animal studies reveal banding (academic tracking). Ped. Exerc. Sci. 14, 155–169 (2002). been H.M., who as a young man suffered that controlled lesions, pharmacologi- 91. Maguire, E. A., Frith, C. D. & Morris, R. G. M. The from intractable epilepsy and underwent cal inactivation or molecular knockouts functional neuroanatomy of comprehension and memory: the importance of prior knowledge. Brain experimental surgery involving bilateral limited to the hippocampus result in either 122, 1839–1850 (1999). removal of the medial temporal lobe, a failure to learn or a loss of spatial mem- 92. Ansari, D. & Dhital, B. Age-related changes in the 2–5 6 activation of the intraparietal sulcus during including large parts of both hippocampi. ory . Electrophysiological recordings and nonsymbolic magnitude processing: an event-related The procedure left H.M. with an inability to molecular imaging studies in animals7,8, as functional magnetic resonance imaging study. J. Cogn. 9–11 Neuro. 18, 1820–1828 (2006). form new episodic memories (anterograde well as MRI imaging studies in humans , 93. Gobel, S. M., Johansen-Berg, H., Behrens, T. & amnesia), coupled with a substantial, but provide correlative evidence that episodic or Rushworth, M. F. Response-selection-related parietal activation during number comparison. J. Cogn. not total, loss of old memories (retrograde episodic-like learning and memory involves Neurosci. 16, 1536–1551 (2004). amnesia)1. Other cases since H.M. have hippocampal activity. NatUre reVieWS | NEUROSCIENCE VOLUme 9 | JANUarY 2008 | 65 © 2008 Nature Publishing Group P E RS pec T I V E S Polymodal sensory information Hippocampus Entorhinal cortex Temporoammonic Schaffer collaterals path Medial CA1 Lateral CA3 II III V Dentate Associational/ gyrus commissural fibres Mossy fibres Perforant path Modulatory input Figure 1 | Basic anatomy of the hippocampus. The wiring diagram of the addition to the sequential trisynaptic circuit, there is also a dense associa- hippocampus is traditionally presented as a trisynaptic loop. The major tive network interconnecting CA3 cells on theNatur samee Re side.views CA3 | Neur pyramidaloscience input is carried by axons of the perforant path, which convey polymodal cells are also innervated by a direct input from layer II cells of the entorhinal sensory information from neurons in layer II of the entorhinal cortex to the cortex (not shown). The distal apical dendrites of CA1 pyramidal neurons dentate gyrus. Perforant path axons make excitatory synaptic contact with receive a direct input from layer III cells of the entorhinal cortex. There is the dendrites of granule cells: axons from the lateral and medial entorhinal also substantial modulatory input to hippocampal neurons. The three major cortices innervate the outer and middle third of the dendritic tree, respec- subfields have an elegant laminar organization in which the cell bodies are tively. Granule cells project, through their axons (the mossy fibres), to the tightly packed in an interlocking C-shaped arrangement, with afferent fibres proximal apical dendrites of CA3 pyramidal cells which, in turn, project to terminating on selective regions of the dendritic tree. The hippocampus is ipsilateral CA1 pyramidal cells through Schaffer collaterals and to contra- also home to a rich diversity of inhibitory neurons that are not shown in the lateral CA3 and CA1 pyramidal cells through commissural connections.
Recommended publications
  • Neuromodulators and Long-Term Synaptic Plasticity in Learning and Memory: a Steered-Glutamatergic Perspective
    brain sciences Review Neuromodulators and Long-Term Synaptic Plasticity in Learning and Memory: A Steered-Glutamatergic Perspective Amjad H. Bazzari * and H. Rheinallt Parri School of Life and Health Sciences, Aston University, Birmingham B4 7ET, UK; [email protected] * Correspondence: [email protected]; Tel.: +44-(0)1212044186 Received: 7 October 2019; Accepted: 29 October 2019; Published: 31 October 2019 Abstract: The molecular pathways underlying the induction and maintenance of long-term synaptic plasticity have been extensively investigated revealing various mechanisms by which neurons control their synaptic strength. The dynamic nature of neuronal connections combined with plasticity-mediated long-lasting structural and functional alterations provide valuable insights into neuronal encoding processes as molecular substrates of not only learning and memory but potentially other sensory, motor and behavioural functions that reflect previous experience. However, one key element receiving little attention in the study of synaptic plasticity is the role of neuromodulators, which are known to orchestrate neuronal activity on brain-wide, network and synaptic scales. We aim to review current evidence on the mechanisms by which certain modulators, namely dopamine, acetylcholine, noradrenaline and serotonin, control synaptic plasticity induction through corresponding metabotropic receptors in a pathway-specific manner. Lastly, we propose that neuromodulators control plasticity outcomes through steering glutamatergic transmission, thereby gating its induction and maintenance. Keywords: neuromodulators; synaptic plasticity; learning; memory; LTP; LTD; GPCR; astrocytes 1. Introduction A huge emphasis has been put into discovering the molecular pathways that govern synaptic plasticity induction since it was first discovered [1], which markedly improved our understanding of the functional aspects of plasticity while introducing a surprisingly tremendous complexity due to numerous mechanisms involved despite sharing common “glutamatergic” mediators [2].
    [Show full text]
  • Review Article Mechanisms of Cerebrovascular Autoregulation and Spreading Depolarization-Induced Autoregulatory Failure: a Literature Review
    Int J Clin Exp Med 2016;9(8):15058-15065 www.ijcem.com /ISSN:1940-5901/IJCEM0026645 Review Article Mechanisms of cerebrovascular autoregulation and spreading depolarization-induced autoregulatory failure: a literature review Gang Yuan1*, Bingxue Qi2*, Qi Luo1 1Department of Neurosurgery, The First Hospital of Jilin University, Changchun, China; 2Department of Endocrinology, Jilin Province People’s Hospital, Changchun, China. *Equal contributors. Received February 25, 2016; Accepted June 4, 2016; Epub August 15, 2016; Published August 30, 2016 Abstract: Cerebrovascular autoregulation maintains brain hemostasis via regulating cerebral flow when blood pres- sure fluctuation occurs. Monitoring autoregulation can be achieved by transcranial Doppler ultrasonography, the pressure reactivity index (PRx) can serve as a secondary index of vascular deterioration, and outcome and prognosis are assessed by the low-frequency PRx. Although great changes in arterial blood pressure (ABP) occur, complex neu- rogenic, myogenic, endothelial, and metabolic mechanisms are involved to maintain the flow within its narrow limits. The steady association between ABP and cerebral blood flow (CBF) reflects static cerebral autoregulation (CA). Spreading depolarization (SD) is a sustained depolarization of neurons with concomitant pronounced breakdown of ion gradients, which originates in patients with brain ischemia, hemorrhage, trauma, and migraine. It is character- ized by the propagation of an extracellular negative potential, followed by an increase in O2 and glucose consump- tion. Immediately after SD, CA is transiently impaired but is restored after 35 min. This process initiates a cascade of pathophysiological mechanisms, leading to neuronal damage and loss if consecutive events are evoked. The clini- cal application of CA in regulating CBF is to dilate the cerebral arteries as a compensatory mechanism during low blood pressure, thus protecting the brain from ischemia.
    [Show full text]
  • Long-Term Potentiation and Long-Term Depression of Primary Afferent Neurotransmission in the Rat Spinal Cord
    The Journal of Neuroscience, December 1993. 13(12): 52286241 Long-term Potentiation and Long-term Depression of Primary Afferent Neurotransmission in the Rat Spinal Cord M. RandiC, M. C. Jiang, and R. Cerne Department of Veterinary Physiology and Pharmacology, Iowa State University, Ames, Iowa 50011 Synaptic transmission between dorsal root afferents and ably mediated by L-glutamate, or a related amino acid (Jahr and neurons in the superficial laminae of the spinal dorsal horn Jessell, 1985; Gerber and RandiC, 1989; Kangrga and Randic, (laminae I-III) was examined by intracellular recording in a 1990, 1991; Yoshimura and Jessell, 1990; Ceme et al., 1991). transverse slice preparation of rat spinal cord. Brief high- Neuronal excitatory amino acids (EAAs), including gluta- frequency electrical stimulation (300 pulses at 100 Hz) of mate, produce their effects through two broad categoriesof re- primary afferent fibers produced a long-term potentiation ceptors called ionotropic and metabotropic (Honor6 et al., 1988; (LTP) or a long-term depression (LTD) of fast (monosynaptic Schoepp et al., 1991; Watkins et al., 1990). The ionotropic and polysynaptic) EPSPs in a high proportion of dorsal horn NMDA, a-amino-3-hydroxy-5-methyl-4-isoxazolepropionic neurons. Both the AMPA and the NMDA receptor-mediated acid (AMPA)/quisqualate (QA), and kainate receptors directly components of synaptic transmission at the primary afferent regulate the opening of ion channelsto Na, K+, and, in the case synapses with neurons in the dorsal horn can exhibit LTP of NMDA receptors, CaZ+as well (Mayer and Westbrook, 1987; and LTD of the synaptic responses. In normal and neonatally Ascher and Nowak, 1987).
    [Show full text]
  • Cerebral Pressure Autoregulation in Traumatic Brain Injury
    Neurosurg Focus 25 (4):E7, 2008 Cerebral pressure autoregulation in traumatic brain injury LEONARDO RANGE L -CASTIL L A , M.D.,1 JAI M E GAS C O , M.D. 1 HARING J. W. NAUTA , M.D., PH.D.,1 DAVID O. OKONK W O , M.D., PH.D.,2 AND CLUDIAA S. ROBERTSON , M.D.3 1Division of Neurosurgery, University of Texas Medical Branch, Galveston; 3Department of Neurosurgery, Baylor College of Medicine, Houston, Texas; and 2Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania An understanding of normal cerebral autoregulation and its response to pathological derangements is helpful in the diagnosis, monitoring, management, and prognosis of severe traumatic brain injury (TBI). Pressure autoregula- tion is the most common approach in testing the effects of mean arterial blood pressure on cerebral blood flow. A gold standard for measuring cerebral pressure autoregulation is not available, and the literature shows considerable disparity in methods. This fact is not surprising given that cerebral autoregulation is more a concept than a physically measurable entity. Alterations in cerebral autoregulation can vary from patient to patient and over time and are critical during the first 4–5 days after injury. An assessment of cerebral autoregulation as part of bedside neuromonitoring in the neurointensive care unit can allow the individualized treatment of secondary injury in a patient with severe TBI. The assessment of cerebral autoregulation is best achieved with dynamic autoregulation methods. Hyperven- tilation, hyperoxia, nitric oxide and its derivates, and erythropoietin are some of the therapies that can be helpful in managing cerebral autoregulation. In this review the authors summarize the most important points related to cerebral pressure autoregulation in TBI as applied in clinical practice, based on the literature as well as their own experience.
    [Show full text]
  • All-Trans Retinoic Acid Induces Synaptic Plasticity in Human Cortical Neurons
    bioRxiv preprint doi: https://doi.org/10.1101/2020.09.04.267104; this version posted September 4, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. All-Trans Retinoic Acid induces synaptic plasticity in human cortical neurons Maximilian Lenz1, Pia Kruse1, Amelie Eichler1, Julia Muellerleile2, Jakob Straehle3, Peter Jedlicka2,4, Jürgen Beck3,5, Thomas Deller2, Andreas Vlachos1,5,*. 1Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Germany. 2Institute of Clinical Neuroanatomy, Neuroscience Center, Goethe-University Frankfurt, Germany. 3Department of Neurosurgery, Medical Center and Faculty of Medicine, University of Freiburg, Germany. 4ICAR3R - Interdisciplinary Centre for 3Rs in Animal Research, Faculty of Medicine, Justus-Liebig- University, Giessen, Germany. 5Center for Basics in Neuromodulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, Germany. Abbreviated title: Synaptic plasticity in human cortex *Correspondence to: Andreas Vlachos, M.D. Albertstr. 17 79104 Freiburg, Germany Phone: +49 (0)761 203 5056 Fax: +49 (0)761 203 5054 Email: [email protected] 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.09.04.267104; this version posted September 4, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. ABSTRACT A defining feature of the brain is its ability to adapt structural and functional properties of synaptic contacts in an experience-dependent manner. In the human cortex direct experimental evidence for synaptic plasticity is currently missing.
    [Show full text]
  • SHORT-TERM SYNAPTIC PLASTICITY Robert S. Zucker Wade G. Regehr
    23 Jan 2002 14:1 AR AR148-13.tex AR148-13.SGM LaTeX2e(2001/05/10) P1: GJC 10.1146/annurev.physiol.64.092501.114547 Annu. Rev. Physiol. 2002. 64:355–405 DOI: 10.1146/annurev.physiol.64.092501.114547 Copyright c 2002 by Annual Reviews. All rights reserved SHORT-TERM SYNAPTIC PLASTICITY Robert S. Zucker Department of Molecular and Cell Biology, University of California, Berkeley, California 94720; e-mail: [email protected] Wade G. Regehr Department of Neurobiology, Harvard Medical School, Boston, Massachusetts 02115; e-mail: [email protected] Key Words synapse, facilitation, post-tetanic potentiation, depression, augmentation, calcium ■ Abstract Synaptic transmission is a dynamic process. Postsynaptic responses wax and wane as presynaptic activity evolves. This prominent characteristic of chemi- cal synaptic transmission is a crucial determinant of the response properties of synapses and, in turn, of the stimulus properties selected by neural networks and of the patterns of activity generated by those networks. This review focuses on synaptic changes that re- sult from prior activity in the synapse under study, and is restricted to short-term effects that last for at most a few minutes. Forms of synaptic enhancement, such as facilitation, augmentation, and post-tetanic potentiation, are usually attributed to effects of a resid- 2 ual elevation in presynaptic [Ca +]i, acting on one or more molecular targets that appear to be distinct from the secretory trigger responsible for fast exocytosis and phasic release of transmitter to single action potentials. We discuss the evidence for this hypothesis, and the origins of the different kinetic phases of synaptic enhancement, as well as the interpretation of statistical changes in transmitter release and roles played by other 2 2 factors such as alterations in presynaptic Ca + influx or postsynaptic levels of [Ca +]i.
    [Show full text]
  • Synaptic Plasticity: Understanding the Neurobiological Mechanisms of Learning and Memory
    www.medigraphic.org.mx ACTUALIZACION POR TEMAS SYNAPTIC PLASTICITY: UNDERSTANDING THE NEUROBIOLOGICAL MECHANISMS OF LEARNING AND MEMORY. PART I Philippe Leff,1 Héctor Romo-Parra,2 Mayra Medécigo,1 Rafael Gutiérrez,2 Benito Anton1 SUMMARY RESUMEN Plasticity of the nervous system has been related to learning and Uno de los fenómenos más interesantes dentro del campo de la memory processing as early as the beginning of the century; although, neurobiología, es el fenómeno de la plasticidad cerebral relacionada remotely, brain plasticity in relation to behavior has been connoted con los eventos de aprendizaje y el procesamiento del fenómeno de over the past two centuries. However, four decades ago, several memoria. De hecho, estos fenómenos neurobiológicos empezaron evidences have shown that experience and training induce neural a ser estudiados desde principios de siglo. Remotamente, el fenóme- changes, showing that major neuroanatomical, neurochemical as no de plasticidad cerebral en relación con el desarrollo y aprendiza- well as molecular changes are required for the establishment of a je de las conductas fue ya concebido y cuestionado desde hace más long-term memory process. Early experimental procedures showed de dos centurias. Sin embargo, desde hace cuatro décadas, múltiples that differential experience, training and/or informal experience evidencias experimentales han demostrado que tanto la experiencia could produce altered quantified changes in the brain of mammals. o el entrenamiento en la ejecución de tareas operantes aprendidas, Moreover, neuropsychologists have emphasized that different inducen cambios plásticos en la fisiología neuronal, incluyendo los memories could be localized in separate cortical areas of the brain, cambios neuroquímicos y moleculares que se requieren para conso- but updated evidences assert that memory systems are specifically lidar una memoria a largo plazo.
    [Show full text]
  • Chapter 11: Synaptic Plasticity (PDF)
    11 SYNAPTIC PLASTICITY ROBERT C. MALENKA The most fascinating and important property of the mam- SHORT-TERM SYNAPTIC PLASTICITY malian brain is its remarkable plasticity, which can be thought of as the ability of experience to modify neural Virtually every synapse that has been examined in organisms circuitry and thereby to modify future thought, behavior, ranging from simple invertebrates to mammals exhibits nu- and feeling. Thinking simplistically, neural activity can merous different forms of short-term synaptic plasticity that modify the behavior of neural circuits by one of three mech- last on the order of milliseconds to a few minutes (for de- anisms: (a) by modifying the strength or efficacy of synaptic tailed reviews, see 1 and 2). In general, these result from a transmission at preexisting synapses, (b) by eliciting the short-lasting modulation of transmitter release that can growth of new synaptic connections or the pruning away occur by one of two general types of mechanisms. One of existing ones, or (c) by modulating the excitability prop- involves a change in the amplitude of the transient rise in erties of individual neurons. Synaptic plasticity refers to the intracellular calcium concentration that occurs when an ac- first of these mechanisms, and for almost 100 years, activity- tion potential invades a presynaptic terminal. This occurs dependent changes in the efficacy of synaptic communica- because of some modification in the calcium influx before tion have been proposed to play an important role in the transmitter release or because the basal level of calcium in remarkable capacity of the brain to translate transient expe- the presynaptic terminal has been elevated because of prior riences into seemingly infinite numbers of memories that activity at the terminal.
    [Show full text]
  • Synaptic Plasticity and Addiction 2007
    REVIEWS Synaptic plasticity and addiction Julie A. Kauer* and Robert C. Malenka‡ Abstract | Addiction is caused, in part, by powerful and long-lasting memories of the drug experience. Relapse caused by exposure to cues associated with the drug experience is a major clinical problem that contributes to the persistence of addiction. Here we present the accumulated evidence that drugs of abuse can hijack synaptic plasticity mechanisms in key brain circuits, most importantly in the mesolimbic dopamine system, which is central to reward processing in the brain. Reversing or preventing these drug-induced synaptic modifications may prove beneficial in the treatment of one of society’s most intractable health problems. Long-term potentiation More than a century ago, Ramon y Cajal speculated that Addiction is not triggered instantaneously upon (LTP). Activity-dependent information storage in the brain results from alterations exposure to drugs of abuse. It involves multiple, com- strengthening of synaptic in synaptic connections between neurons1. The discov- plex neural adaptations that develop with different transmission that lasts at least ery in 1973 of long-term potentiation (LTP) of glutamate time courses ranging from hours to days to months one hour. synapses in the hippocampus2 launched an exciting (BOX 1). Work to date suggests an essential role for Long-term depression exploration into the molecular basis and behavioural synaptic plasticity in the VTA in the early behavioural (LTD). Activity-dependent correlates of synaptic plasticity. Partly because LTP was responses following initial drug exposures, as well as in weakening of synaptic first described at synapses in the hippocampus, a brain triggering long-term adaptations in regions innervated transmission that lasts at least 9 one hour.
    [Show full text]
  • Neurogenesis and Neural Plasticity Current Topics in Behavioral Neurosciences
    Current Topics in Behavioral Neurosciences 15 Catherine Belzung Peter Wigmore Editors Neurogenesis and Neural Plasticity Current Topics in Behavioral Neurosciences Volume 15 Series Editors Mark A. Geyer, La Jolla, CA, USA Bart A. Ellenbroek, Wellington, New Zealand Charles A. Marsden, Nottingham, UK For further volumes: http://www.springer.com/series/7854 About this Series Current Topics in Behavioral Neurosciences provides critical and comprehensive discussions of the most significant areas of behavioral neuroscience research, written by leading international authorities. Each volume offers an informative and contemporary account of its subject, making it an unrivalled reference source. Titles in this series are available in both print and electronic formats. With the development of new methodologies for brain imaging, genetic and genomic analyses, molecular engineering of mutant animals, novel routes for drug delivery, and sophisticated cross-species behavioral assessments, it is now possible to study behavior relevant to psychiatric and neurological diseases and disorders on the physiological level. The Behavioral Neurosciences series focuses on ‘‘translational medicine’’ and cutting-edge technologies. Preclinical and clinical trials for the development of new diagnostics and therapeutics as well as prevention efforts are covered whenever possible. Catherine Belzung • Peter Wigmore Editors Neurogenesis and Neural Plasticity 123 Editors Catherine Belzung Peter Wigmore INSERM 930 Medical School, Queen’s Medical Centre Faculté des Sciences University of Nottingham Tours Nottingham France UK ISSN 1866-3370 ISSN 1866-3389 (electronic) ISBN 978-3-642-36231-6 ISBN 978-3-642-36232-3 (eBook) DOI 10.1007/978-3-642-36232-3 Springer Heidelberg New York Dordrecht London Library of Congress Control Number: 2013936957 Ó Springer-Verlag Berlin Heidelberg 2013 This work is subject to copyright.
    [Show full text]
  • Evidence for Physiological Long-Term Potentiation (Basal Ganglia͞long-Term Depression͞motor Learning͞striatum͞synaptic Plasticity)
    Proc. Natl. Acad. Sci. USA Vol. 94, pp. 7036–7040, June 1997 Neurobiology In vivo activity-dependent plasticity at cortico-striatal connections: Evidence for physiological long-term potentiation (basal gangliaylong-term depressionymotor learningystriatumysynaptic plasticity) S. CHARPIER* AND J. M. DENIAU Institut des Neurosciences, Centre National de la Recherche Scientifique, Unite´de Recherche Associe´e1488, Universite´Pierre et Marie Curie, 9, quai Saint-Bernard, F-75005 Paris, France Communicated by Ann M. Graybiel, Massachusetts Institute of Technology, Cambridge, MA, April 11, 1997 (received for review March 18, 1997) ABSTRACT The purpose of the present study was to (11, 12) but is independent of the activation of the NMDA investigate in vivo the activity-dependent plasticity of gluta- receptor (8, 11). However, after removing the voltage- matergic cortico-striatal synapses. Electrical stimuli were dependent block of NMDA receptor channels in magnesium- applied in the facial motor cortex and intracellular recordings free medium, the tetanization of cortical fibers produced were performed in the ipsilateral striatal projection field of either short-lasting potentiation (,50 min) (13) or LTP of this cortical area. Recorded cells exhibited the typical intrin- excitatory synaptic transmission (14). Consequently, it has sic membrane properties of striatal output neurons and were been recently hypothetized that striatal LTP could occur in identified morphologically as medium spiny type I neurons. pathological conditions such as defective
    [Show full text]
  • Hebbian Spike-Driven Synaptic Plasticity for Learning Patterns of Mean firing Rates
    Biol. Cybern. 87, 459–470 (2002) DOI 10.1007/s00422-002-0356-8 Ó Springer-Verlag 2002 Hebbian spike-driven synaptic plasticity for learning patterns of mean firing rates Stefano Fusi Institute of Physiology, University of Bern, Bu¨ hlplatz 5, 3012 Bern, Switzerland Received: 18 May 2002 / Accepted: 15 July 2002 Abstract. Synaptic plasticity is believed to underlie the elevated selective rates to the stimulus, but they do not formation of appropriate patterns of connectivity that show any sustained delay activity (Miyashita 1993). This stabilize stimulus-selective reverberations in the cortex. is an indication that the delay-activity phenomenon is Here we present a general quantitative framework for established only after many presentations of the same studying the process of learning and memorizing of visual stimuli. A typical example of recorded delay patterns of mean spike rates. General considerations activity is shown in Fig. 1. In the absence of any based on the limitations of material (biological or experimental evidence of the contrary, we assume that electronic)synaptic devices show that most learning the spike activities of different neurons are asynchro- networks share the palimpsest property: old stimuli are nous, and that all the information about the identity of forgotten to make room for the new ones. In order to the stimulus is encoded in the mean spike frequency of prevent too-fast forgetting, one can introduce a stochas- every cell. tic mechanism for selecting only a small fraction of synapses to be changed upon the presentation of a stimulus. Such a mechanism can be easily implemented 1.1 The attractor picture by exploiting the noisy fluctuations in the pre- and postsynaptic activities to be encoded.
    [Show full text]