On Convergence Sets of Formal Power Series

Total Page:16

File Type:pdf, Size:1020Kb

On Convergence Sets of Formal Power Series Ma and Neelon Complex Analysis and its Synergies (2015) 1:4 DOI 10.1186/s40627-015-0004-4 RESEARCH Open Access On convergence sets of formal power series Daowei Ma1* and Tejinder S. Neelon2 *Correspondence: [email protected] Abstract 1 Department The convergence set of a divergent formal power series f (x0, ..., xn) is the set of all of Mathematics, Wichita “directions” ξ Pn along which f is absolutely convergent. We prove that every count- State University, Wichita, KS ∈ n 67260‑0033, USA able union of closed complete pluripolar sets in P is the convergence set of some Full list of author information divergent series f. The (affine) convergence sets of formal power series with polynomial is available at the end of the article coefficients are also studied. The higher-dimensional analogs of the results of Sathaye (J Reine Angew Math 283:86–98, 1976), Lelong (Proc Am Math Soc 2:11–19, 1951), Lev- enberg and Molzon (Math Z 197:411–420, 1988), and of Ribón (Ann Scuola Norm Sup Pisa Cl Sci (5) 3:657–680 2004) are obtained. Mathematics Subject Classification: Primary: 32A05, 30C85, 40A05 Keywords: Formal power series, Convergence sets, Pluripolar sets, Projective hulls 1 Background A formal power series f (x0, x1, ..., xn) with coefficients inC is said to be convergent n 1 if it converges absolutely in a neighborhood of the origin in C + . A classical result of Hartogs (see [5]) states that a series f converges if and only if fz(t) f (z0t, z1t, ..., znt) n 1 := z C + converges, as a series in t, for all ∈ . This can be interpreted as a formal analog of Hartogs’ theorem on separate analyticity. Because a divergent power series still may converge in certain directions, it is natural and desirable to consider the set of all n 1 z C + for which fz converges. Since fz(t) converges if and only if fw(t) converges ∈ n 1 for all w C + on the affine line through z, ignoring the trivial case z 0, the set of ∈ n= directions along which f converges can be identified with a subset ofP . The conver- gence set Conv(f ) of a divergent power series f is defined to be the set of all directions n 1 n 1 n ξ P fz(t) z π − (ξ) π C + 0 P ∈ such that is convergent for some ∈ , where : \{ }→ is n 1 the natural projection. For the case = , Lelong [9] proved that the convergence set of a divergent series f (x1, x2) is an Fσ polar set (i.e. a countable union of closed sets 1 1 of vanishing logarithmic capacity) in P , and moreover, every Fσ polar subset of P is contained in the convergence set of a divergent series f (x1, x2). The optimal result was later obtained by Sathaye (see [16]) who showed that the class of convergence sets of 1 divergent power series f (x1, x2) is precisely the class of Fσ polar sets in P . To study n the collection Conv(P ) of convergence sets of divergent series in higher dimensions n n we consider the class PSHω(P ) of ω-plurisubharmonic functions on P with respect ω ddc log Z Pn Conv(Pn) to the form := | | on . We show that contains projective hulls of © 2015 Ma and Neelon. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. Ma and Neelon Complex Analysis and its Synergies (2015) 1:4 Page 2 of 21 compact pluripolar sets and countable unions of projective varieties. We prove that each convergence set (of divergent power series) is a countable union of projective hulls of compact pluripolar sets. Our main result states that a countable union of closed com- n n plete pluripolar sets in P belongs to Conv(P ). This generalizes the results of Lelong [9], Levenberg and Molzon [10], and Sathaye [16]. Our line of approach was inspired by [16], and influenced by the methods developed in [10, 13, 15]. We also consider convergence sets of a formal power series of the type ∞ j f (t, x) Pj(x)t C x1, x2, ..., xn t , = ∈ [ ][[ ]] j 1 = deg Pj j Conva(f ) where ≤ . The affine convergence set of a divergent power series f(t, x) x Cn is defined to be the set of all ∈ for which f(t, x) is convergent as a series in t. We prove that a countable union of closed complete pluripolar sets is an affine convergence set. 2 Pluripolar sets in Cn C x C x1, ..., xn Let [[ ]] := [[ ]] denote the ring of formal power series with complex coefficients in n indeterminates x1, ..., xn. Let C x be the ring of all power series { } n f (x) C x that are absolutely convergent in a neighborhood of the origin in C . ∈ [[n ]] Let H(C ) denote the set of all homogeneous polynomials (including the zero poly- H n nomial) in x1, ..., xn with complex coefficients. Fork 0 let k (C ) denote set of n ≥ n p H(C ) p 0 Hk (C ) C ∈ such that = or p is homogeneous of degree k. So each is a -vec- H n H n tor space and (C ) k∞ 0 k (C ). =∪ = n k 0, Pk (C ) For an integer ≥ let denote the set of polynomials of degree at most k in x1, ..., xn with complex coefficients. For convenience the zero polynomial is considered P n to have degree 1. So k (C ) contains 0 and it is a C-vector space for k 0. In particular n − ≥ P0(C ) C = . 1 Cn n 1 A Borel subset E of is said to be pluripolar (polar when = ) if for each point x E there is a plurisubharmonic function u, u , defined in a connected neigh- ∈ n �≡ −∞ borhood U of x in C such that u on E U. A set E is said to be globally pluripo- = −∞ ∩ n lar if there is a nonconstant plurisubharmonic function u defined onC such that E y u(y) ⊂{ : = −∞}. A theorem of Josefson (see [7]) states that E is pluripolar if and only if E is globally pluripolar. n A set E C is said to be a complete pluripolar set if there is a non-constant ⊂ n plurisubharmonic function u defined onC such that E y u(y) . So the set 2 ={ : = −∞} (0, x2) C x2 < 1 { ∈ :| | } and its closure are pluripolar, but they are not complete pluripo- lar sets. A countable union of pluripolar sets is pluripolar. So the set of rationals in the interval [0, 1] is polar. It is not a complete polar set, because each complete pluripolar set is Gδ. In C each Gδ polar set is a complete polar set, which is Deny’s Theorem (see [3]). n A subset E of a domain D in C is said to be a complete pluripolar set in D if there is a E u non-constant plurisubharmonic function u defined on D such that ={ = −∞}. 1 All sets considered in this paper are assumed to be Borel. Ma and Neelon Complex Analysis and its Synergies (2015) 1:4 Page 3 of 21 Proposition 2.1 Let w be a nonconstant plurisubharmonic function defined on a Stein E w manifold , and let ={ = −∞}. Let v be a continuous, non-negative, plurisubhar- monic exhaustion function of . Then there is a plurisubharmonic function u on such u v E u that ≤ on and ={ = −∞}. j Vj x � v(x)<2 j N Mj Proof Let ={ ∈ : } for ∈ . Choose an increasing sequence { } of positive numbers such that limj Mj and Mj > supx V w(x) j. For each j, define →∞ =∞ ∈ j ∀ a function uj by 1 j max(Mj− w(x) 1), v(x) 2 ), if x Vj, uj(x) j − − ∈ = v(x) 2 , if x Vj. − �∈ Thenu j is plurisubharmonic on by the gluing theorem. On each compact subset of , j all but a finite number ofu j are negative. It follows that the sum u(x) j∞1 2− uj(x) := = is plurisubharmonic, since the sequence of the partial sums of the series is eventually decreasing. Since uj(x) v(x) for each j, we see that u(x) v(x). ≤ ≤ j x E w(x) uj(x) v(x) 2 Suppose that ∈ . Then = −∞, and = − for each j. Thus u(x) = −∞. x E x Vm Now suppose that ∈ \ . There is an m such that ∈ . Then m 1 − j ∞ j 1 u(x) 2− uj(x) 2− (M− w(x) 1) ≥ + j − j 1 jm = = m 1 − j ∞ j 1 2− uj(x) 2− ( M− w(x) 1) ≥ + − 1 | |− j 1 j 1 = = m 1 − j 1 2− uj(x) ( M− w(x) 1)> . = + − 1 | |− −∞ j 1 = E x u(x) Therefore, ={ : = −∞}. Remark We got the idea of the proof from Sadullaev (private discussion) and from Bedford and Taylor [2]. n 2 2 1/2 x C , x ( x1 xn ) For ∈ let | | := | | +···+| | . n Corollary 2.2 Let E be a complete pluripolar set in C . Then there is a plurisubhar- Cn u(x) (1/2) log(1 x 2) Cn E u monic function u on such that ≤ +| | on and ={ = −∞}. Remark A stronger version of the above corollary appeared in [2]. n Let Bn be the open unit ball in C . Corollary 2.3 Let E be a complete pluripolar set in Bn.
Recommended publications
  • Informal Lecture Notes for Complex Analysis
    Informal lecture notes for complex analysis Robert Neel I'll assume you're familiar with the review of complex numbers and their algebra as contained in Appendix G of Stewart's book, so we'll pick up where that leaves off. 1 Elementary complex functions In one-variable real calculus, we have a collection of basic functions, like poly- nomials, rational functions, the exponential and log functions, and the trig functions, which we understand well and which serve as the building blocks for more general functions. The same is true in one complex variable; in fact, the real functions we just listed can be extended to complex functions. 1.1 Polynomials and rational functions We start with polynomials and rational functions. We know how to multiply and add complex numbers, and thus we understand polynomial functions. To be specific, a degree n polynomial, for some non-negative integer n, is a function of the form n n−1 f(z) = cnz + cn−1z + ··· + c1z + c0; 3 where the ci are complex numbers with cn 6= 0. For example, f(z) = 2z + (1 − i)z + 2i is a degree three (complex) polynomial. Polynomials are clearly defined on all of C. A rational function is the quotient of two polynomials, and it is defined everywhere where the denominator is non-zero. z2+1 Example: The function f(z) = z2−1 is a rational function. The denomina- tor will be zero precisely when z2 = 1. We know that every non-zero complex number has n distinct nth roots, and thus there will be two points at which the denominator is zero.
    [Show full text]
  • MATH 305 Complex Analysis, Spring 2016 Using Residues to Evaluate Improper Integrals Worksheet for Sections 78 and 79
    MATH 305 Complex Analysis, Spring 2016 Using Residues to Evaluate Improper Integrals Worksheet for Sections 78 and 79 One of the interesting applications of Cauchy's Residue Theorem is to find exact values of real improper integrals. The idea is to integrate a complex rational function around a closed contour C that can be arbitrarily large. As the size of the contour becomes infinite, the piece in the complex plane (typically an arc of a circle) contributes 0 to the integral, while the part remaining covers the entire real axis (e.g., an improper integral from −∞ to 1). An Example Let us use residues to derive the formula p Z 1 x2 2 π 4 dx = : (1) 0 x + 1 4 Note the somewhat surprising appearance of π for the value of this integral. z2 First, let f(z) = and let C = L + C be the contour that consists of the line segment L z4 + 1 R R R on the real axis from −R to R, followed by the semi-circle CR of radius R traversed CCW (see figure below). Note that C is a positively oriented, simple, closed contour. We will assume that R > 1. Next, notice that f(z) has two singular points (simple poles) inside C. Call them z0 and z1, as shown in the figure. By Cauchy's Residue Theorem. we have I f(z) dz = 2πi Res f(z) + Res f(z) C z=z0 z=z1 On the other hand, we can parametrize the line segment LR by z = x; −R ≤ x ≤ R, so that I Z R x2 Z z2 f(z) dz = 4 dx + 4 dz; C −R x + 1 CR z + 1 since C = LR + CR.
    [Show full text]
  • Ch. 15 Power Series, Taylor Series
    Ch. 15 Power Series, Taylor Series 서울대학교 조선해양공학과 서유택 2017.12 ※ 본 강의 자료는 이규열, 장범선, 노명일 교수님께서 만드신 자료를 바탕으로 일부 편집한 것입니다. Seoul National 1 Univ. 15.1 Sequences (수열), Series (급수), Convergence Tests (수렴판정) Sequences: Obtained by assigning to each positive integer n a number zn z . Term: zn z1, z 2, or z 1, z 2 , or briefly zn N . Real sequence (실수열): Sequence whose terms are real Convergence . Convergent sequence (수렴수열): Sequence that has a limit c limznn c or simply z c n . For every ε > 0, we can find N such that Convergent complex sequence |zn c | for all n N → all terms zn with n > N lie in the open disk of radius ε and center c. Divergent sequence (발산수열): Sequence that does not converge. Seoul National 2 Univ. 15.1 Sequences, Series, Convergence Tests Convergence . Convergent sequence: Sequence that has a limit c Ex. 1 Convergent and Divergent Sequences iin 11 Sequence i , , , , is convergent with limit 0. n 2 3 4 limznn c or simply z c n Sequence i n i , 1, i, 1, is divergent. n Sequence {zn} with zn = (1 + i ) is divergent. Seoul National 3 Univ. 15.1 Sequences, Series, Convergence Tests Theorem 1 Sequences of the Real and the Imaginary Parts . A sequence z1, z2, z3, … of complex numbers zn = xn + iyn converges to c = a + ib . if and only if the sequence of the real parts x1, x2, … converges to a . and the sequence of the imaginary parts y1, y2, … converges to b. Ex.
    [Show full text]
  • Arxiv:1207.1472V2 [Math.CV]
    SOME SIMPLIFICATIONS IN THE PRESENTATIONS OF COMPLEX POWER SERIES AND UNORDERED SUMS OSWALDO RIO BRANCO DE OLIVEIRA Abstract. This text provides very easy and short proofs of some basic prop- erties of complex power series (addition, subtraction, multiplication, division, rearrangement, composition, differentiation, uniqueness, Taylor’s series, Prin- ciple of Identity, Principle of Isolated Zeros, and Binomial Series). This is done by simplifying the usual presentation of unordered sums of a (countable) family of complex numbers. All the proofs avoid formal power series, double series, iterated series, partial series, asymptotic arguments, complex integra- tion theory, and uniform continuity. The use of function continuity as well as epsilons and deltas is kept to a mininum. Mathematics Subject Classification: 30B10, 40B05, 40C15, 40-01, 97I30, 97I80 Key words and phrases: Power Series, Multiple Sequences, Series, Summability, Complex Analysis, Functions of a Complex Variable. Contents 1. Introduction 1 2. Preliminaries 2 3. Absolutely Convergent Series and Commutativity 3 4. Unordered Countable Sums and Commutativity 5 5. Unordered Countable Sums and Associativity. 9 6. Sum of a Double Sequence and The Cauchy Product 10 7. Power Series - Algebraic Properties 11 8. Power Series - Analytic Properties 14 References 17 arXiv:1207.1472v2 [math.CV] 27 Jul 2012 1. Introduction The objective of this work is to provide a simplification of the theory of un- ordered sums of a family of complex numbers (in particular, for a countable family of complex numbers) as well as very easy proofs of basic operations and properties concerning complex power series, such as addition, scalar multiplication, multipli- cation, division, rearrangement, composition, differentiation (see Apostol [2] and Vyborny [21]), Taylor’s formula, principle of isolated zeros, uniqueness, principle of identity, and binomial series.
    [Show full text]
  • Rearrangement of Divergent Fourier Series
    The Australian Journal of Mathematical Analysis and Applications AJMAA Volume 14, Issue 1, Article 3, pp. 1-9, 2017 A NOTE ON DIVERGENT FOURIER SERIES AND λ-PERMUTATIONS ANGEL CASTILLO, JOSE CHAVEZ, AND HYEJIN KIM Received 20 September, 2016; accepted 4 February, 2017; published 20 February, 2017. TUFTS UNIVERSITY,DEPARTMENT OF MATHEMATICS,MEDFORD, MA 02155, USA [email protected] TEXAS TECH UNIVERSITY,DEPARTMENT OF MATHEMATICS AND STATISTICS,LUBBOCK, TX 79409, USA [email protected] UNIVERSITY OF MICHIGAN-DEARBORN,DEPARTMENT OF MATHEMATICS AND STATISTICS,DEARBORN, MI 48128, USA [email protected] ABSTRACT. We present a continuous function on [−π, π] whose Fourier series diverges and it cannot be rearranged to converge by a λ-permutation. Key words and phrases: Fourier series, Rearrangements, λ-permutations. 2000 Mathematics Subject Classification. Primary 43A50. ISSN (electronic): 1449-5910 c 2017 Austral Internet Publishing. All rights reserved. This research was conducted during the NREUP at University of Michigan-Dearborn and it was sponsored by NSF-Grant DMS-1359016 and by NSA-Grant H98230-15-1-0020. We would like to thank Y. E. Zeytuncu for valuable discussion. We also thank the CASL and the Department of Mathematics and Statistics at the University of Michigan-Dearborn for providing a welcoming atmosphere during the summer REU program. 2 A. CASTILLO AND J. CHAVEZ AND H. KIM 1.1. Fourier series. The Fourier series associated with a continuous function f on [−π, π] is defined by ∞ X inθ fe(θ) ∼ ane , n=−∞ where Z π 1 −inθ an = f(θ)e dθ . 2π −π Here an’s are called the Fourier coefficients of f and we denote by fethe Fourier series associ- ated with f.
    [Show full text]
  • The Summation of Power Series and Fourier Series
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Journal of Computational and Applied Mathematics 12&13 (1985) 447-457 447 North-Holland The summation of power series and Fourier . series I.M. LONGMAN Department of Geophysics and Planetary Sciences, Tel Aviv University, Ramat Aviv, Israel Received 27 July 1984 Abstract: The well-known correspondence of a power series with a certain Stieltjes integral is exploited for summation of the series by numerical integration. The emphasis in this paper is thus on actual summation of series. rather than mere acceleration of convergence. It is assumed that the coefficients of the series are given analytically, and then the numerator of the integrand is determined by the aid of the inverse of the two-sided Laplace transform, while the denominator is standard (and known) for all power series. Since Fourier series can be expressed in terms of power series, the method is applicable also to them. The treatment is extended to divergent series, and a fair number of numerical examples are given, in order to illustrate various techniques for the numerical evaluation of the resulting integrals. Keywork Summation of series. 1. Introduction We start by considering a power series, which it is convenient to write in the form s(x)=/.Q-~2x+&x2..., (1) for reasons which will become apparent presently. Here there is no intention to limit ourselves to alternating series since, even if the pLkare all of one sign, x may take negative and even complex values. It will be assumed in this paper that the pLk are real.
    [Show full text]
  • Divergent and Conditionally Convergent Series Whose Product Is Absolutely Convergent
    DIVERGENTAND CONDITIONALLY CONVERGENT SERIES WHOSEPRODUCT IS ABSOLUTELYCONVERGENT* BY FLORIAN CAJOKI § 1. Introduction. It has been shown by Abel that, if the product : 71—« I(¥» + V«-i + ■•• + M„«o)> 71=0 of two conditionally convergent series : 71—0 71— 0 is convergent, it converges to the product of their sums. Tests of the conver- gence of the product of conditionally convergent series have been worked out by A. Pringsheim,| A. Voss,J and myself.§ There exist certain conditionally- convergent series which yield a convergent result when they are raised to a cer- tain positive integral power, but which yield a divergent result when they are raised to a higher power. Thus, 71 = «3 Z(-l)"+13, 7>=i n where r = 7/9, is a conditionally convergent series whose fourth power is con- vergent, but whose fifth power is divergent. || These instances of conditionally * Presented to the Society April 28, 1900. Received for publication April 28, 1900. fMathematische Annalen, vol. 21 (1883), p. 327 ; vol. 2(5 (1886), p. 157. %Mathematische Annalen, vol. 24 (1884), p. 42. § American Journal of Mathematics, vol. 15 (1893), p. 339 ; vol. 18 (1896), p. 195 ; Bulletin of the American Mathematical Society, (2) vol. 1 (1895), p. 180. || This may be a convenient place to point out a slight and obvious extension of the results which I have published in the American Journal of Mathematics, vol. 18, p. 201. It was proved there that the conditionally convergent series : V(_l)M-lI (0<r5|>). Sí n when raised by Cauchy's multiplication rule to a positive integral power g , is convergent whenever (î — l)/ï <C r ! out the power of the series is divergent, if (q— 1 )¡q > r.
    [Show full text]
  • Notes on Euler's Work on Divergent Factorial Series and Their Associated
    Indian J. Pure Appl. Math., 41(1): 39-66, February 2010 °c Indian National Science Academy NOTES ON EULER’S WORK ON DIVERGENT FACTORIAL SERIES AND THEIR ASSOCIATED CONTINUED FRACTIONS Trond Digernes¤ and V. S. Varadarajan¤¤ ¤University of Trondheim, Trondheim, Norway e-mail: [email protected] ¤¤University of California, Los Angeles, CA, USA e-mail: [email protected] Abstract Factorial series which diverge everywhere were first considered by Euler from the point of view of summing divergent series. He discovered a way to sum such series and was led to certain integrals and continued fractions. His method of summation was essentialy what we call Borel summation now. In this paper, we discuss these aspects of Euler’s work from the modern perspective. Key words Divergent series, factorial series, continued fractions, hypergeometric continued fractions, Sturmian sequences. 1. Introductory Remarks Euler was the first mathematician to develop a systematic theory of divergent se- ries. In his great 1760 paper De seriebus divergentibus [1, 2] and in his letters to Bernoulli he championed the view, which was truly revolutionary for his epoch, that one should be able to assign a numerical value to any divergent series, thus allowing the possibility of working systematically with them (see [3]). He antic- ipated by over a century the methods of summation of divergent series which are known today as the summation methods of Cesaro, Holder,¨ Abel, Euler, Borel, and so on. Eventually his views would find their proper place in the modern theory of divergent series [4]. But from the beginning Euler realized that almost none of his methods could be applied to the series X1 1 ¡ 1!x + 2!x2 ¡ 3!x3 + ::: = (¡1)nn!xn (1) n=0 40 TROND DIGERNES AND V.
    [Show full text]
  • Complex Logarithm
    Complex Analysis Math 214 Spring 2014 Fowler 307 MWF 3:00pm - 3:55pm c 2014 Ron Buckmire http://faculty.oxy.edu/ron/math/312/14/ Class 14: Monday February 24 TITLE The Complex Logarithm CURRENT READING Zill & Shanahan, Section 4.1 HOMEWORK Zill & Shanahan, §4.1.2 # 23,31,34,42 44*; SUMMARY We shall return to the murky world of branch cuts as we expand our repertoire of complex functions when we encounter the complex logarithm function. The Complex Logarithm log z Let us define w = log z as the inverse of z = ew. NOTE Your textbook (Zill & Shanahan) uses ln instead of log and Ln instead of Log . We know that exp[ln |z|+i(θ+2nπ)] = z, where n ∈ Z, from our knowledge of the exponential function. So we can define log z =ln|z| + i arg z =ln|z| + i Arg z +2nπi =lnr + iθ where r = |z| as usual, and θ is the argument of z If we only use the principal value of the argument, then we define the principal value of log z as Log z, where Log z =ln|z| + i Arg z = Log |z| + i Arg z Exercise Compute Log (−2) and log(−2), Log (2i), and log(2i), Log (−4) and log(−4) Logarithmic Identities z = elog z but log ez = z +2kπi (Is this a surprise?) log(z1z2) = log z1 + log z2 z1 log = log z1 − log z2 z2 However these do not neccessarily apply to the principal branch of the logarithm, written as Log z. (i.e. is Log (2) + Log (−2) = Log (−4)? 1 Complex Analysis Worksheet 14 Math 312 Spring 2014 Log z: the Principal Branch of log z Log z is a single-valued function and is analytic in the domain D∗ consisting of all points of the complex plane except for those lying on the nonpositive real axis, where d 1 Log z = dz z Sketch the set D∗ and convince yourself that it is an open connected set.
    [Show full text]
  • Complex Analysis
    Complex Analysis Andrew Kobin Fall 2010 Contents Contents Contents 0 Introduction 1 1 The Complex Plane 2 1.1 A Formal View of Complex Numbers . .2 1.2 Properties of Complex Numbers . .4 1.3 Subsets of the Complex Plane . .5 2 Complex-Valued Functions 7 2.1 Functions and Limits . .7 2.2 Infinite Series . 10 2.3 Exponential and Logarithmic Functions . 11 2.4 Trigonometric Functions . 14 3 Calculus in the Complex Plane 16 3.1 Line Integrals . 16 3.2 Differentiability . 19 3.3 Power Series . 23 3.4 Cauchy's Theorem . 25 3.5 Cauchy's Integral Formula . 27 3.6 Analytic Functions . 30 3.7 Harmonic Functions . 33 3.8 The Maximum Principle . 36 4 Meromorphic Functions and Singularities 37 4.1 Laurent Series . 37 4.2 Isolated Singularities . 40 4.3 The Residue Theorem . 42 4.4 Some Fourier Analysis . 45 4.5 The Argument Principle . 46 5 Complex Mappings 47 5.1 M¨obiusTransformations . 47 5.2 Conformal Mappings . 47 5.3 The Riemann Mapping Theorem . 47 6 Riemann Surfaces 48 6.1 Holomorphic and Meromorphic Maps . 48 6.2 Covering Spaces . 52 7 Elliptic Functions 55 7.1 Elliptic Functions . 55 7.2 Elliptic Curves . 61 7.3 The Classical Jacobian . 67 7.4 Jacobians of Higher Genus Curves . 72 i 0 Introduction 0 Introduction These notes come from a semester course on complex analysis taught by Dr. Richard Carmichael at Wake Forest University during the fall of 2010. The main topics covered include Complex numbers and their properties Complex-valued functions Line integrals Derivatives and power series Cauchy's Integral Formula Singularities and the Residue Theorem The primary reference for the course and throughout these notes is Fisher's Complex Vari- ables, 2nd edition.
    [Show full text]
  • Euler and His Work on Infinite Series
    BULLETIN (New Series) OF THE AMERICAN MATHEMATICAL SOCIETY Volume 44, Number 4, October 2007, Pages 515–539 S 0273-0979(07)01175-5 Article electronically published on June 26, 2007 EULER AND HIS WORK ON INFINITE SERIES V. S. VARADARAJAN For the 300th anniversary of Leonhard Euler’s birth Table of contents 1. Introduction 2. Zeta values 3. Divergent series 4. Summation formula 5. Concluding remarks 1. Introduction Leonhard Euler is one of the greatest and most astounding icons in the history of science. His work, dating back to the early eighteenth century, is still with us, very much alive and generating intense interest. Like Shakespeare and Mozart, he has remained fresh and captivating because of his personality as well as his ideas and achievements in mathematics. The reasons for this phenomenon lie in his universality, his uniqueness, and the immense output he left behind in papers, correspondence, diaries, and other memorabilia. Opera Omnia [E], his collected works and correspondence, is still in the process of completion, close to eighty volumes and 31,000+ pages and counting. A volume of brief summaries of his letters runs to several hundred pages. It is hard to comprehend the prodigious energy and creativity of this man who fueled such a monumental output. Even more remarkable, and in stark contrast to men like Newton and Gauss, is the sunny and equable temperament that informed all of his work, his correspondence, and his interactions with other people, both common and scientific. It was often said of him that he did mathematics as other people breathed, effortlessly and continuously.
    [Show full text]
  • Divergent Series Past, Present, Future
    Divergent series past, present, future. Christiane Rousseau 1 Divergent series, JMM 2015 How many students and mathematicians have never heard of divergent series? 2 Divergent series, JMM 2015 Preamble: My presentation of the subject and of some of its history is not exhaustive. Moreover, it is biased by my interest in dynamical systems. 3 Divergent series, JMM 2015 Euler: “If we get the sum 1 - 1 + 1 - 1 + 1 - 1 + ··· 1 its only reasonable value is 2.” Divergent series have been used a lot in the past by people including Fourier, Stieltjes, Euler, . 4 Divergent series, JMM 2015 Divergent series have been used a lot in the past by people including Fourier, Stieltjes, Euler, . Euler: “If we get the sum 1 - 1 + 1 - 1 + 1 - 1 + ··· 1 its only reasonable value is 2.” 5 Divergent series, JMM 2015 A hundred years before Riemann, Euler had found the functional equation of the function ζ in the form 1s-1 - 2s-1 + 3s-1 - ··· (s - 1)!(2s - 1) 1 = - cos sπ 1 1 1 (2s-1 - 1)πs 2 1s - 2s + 3s - ··· by “calculating”, for s 2 N [ f1=2;3=2g, the sums 1s - 2s + 3s - 4s + 5s - 6s + ··· and 1 1 1 1 1 1 - + - + - + ··· 1s 2s 3s 4s 5s 6s 6 Divergent series, JMM 2015 Where is the turn? 7 Divergent series, JMM 2015 Cauchy, Abel 8 Divergent series, JMM 2015 Cauchy made one exception: he justified rigorously the use of Stirling’s divergent series in numerical computations. Cauchy, Preface of “Analyse mathematique”,´ 1821 “I have been forced to admit some propositions which will seem, perhaps, hard to accept.
    [Show full text]