Clinicoanatomical Study of Blood Supply of Extrahepatic Biliary Ductal System

Total Page:16

File Type:pdf, Size:1020Kb

Clinicoanatomical Study of Blood Supply of Extrahepatic Biliary Ductal System Journal Home Page www.bbbulletin.org BRITISH BIOMEDICAL BULLETIN Original Clinicoanatomical Study of Blood Supply of Extrahepatic Biliary Ductal System Sachin Patil*1, Kumkum Rana 2, Smita Kakar 3 and A K Mittal 4 1Senior Resident, Dept of Anatomy, MAMC 2Professor, Dept of Anatomy, North DMC Medical College 3DirectorProfessor,Dept of Anatomy,MAMC 4HOD, Dept of Forensic medicine, VMMC & Safdarjung Hospital. New Delhi A R T I C L E I N F O A B S T R A C T Received 14 June 2014 Received in revised form 22 June 2014 Accepted 27 June 2014 The major blood supply of extrahepatic biliary ductal system is by cystic artery, which supplies to cystic duct, common hepatic duct and the upper part of the common bile duct. The lower part of bile Keywords : Cystic artery, duct is supplied by gastroduodenal artery. The present study is Extra hepatic, aimed at determining the anatomical variations of blood supply of Bile ducts, extrahepatic biliary ductal system and its clinical implications. The Variations, Laparoscopic cholecystectomy. present study of the blood supply of extrahepatic biliary ductal system has been conducted on 30 cadavers. After exposing the abdominal cavity and removing peritoneal fat, extrahepatic biliary system and its blood supply was carefully dissected and relevant photographs were taken. Special attention was given to the relationship of the cystic artery to the Calot’s triangle. Along with the arteries, the variations in the venous drainage were also noted. Major importance of knowledge of blood supply of extrahepatic biliary ductal system may well lie in the understanding of the etiology of postoperative bile duct strictures and in their prevention. A clear understanding of the major arterial supply to Corresponding author: Department of Anatomy Maulana Azad Medical College, the extrahepatic bile ducts should be of assistance in biliary Bahadhur shah zafar marg, New Delhi- reconstruction and treating hemobilia. 110002,India E-mail address: [email protected] © 2014 British Biomedical Bulletin. All rights reserved Introduction The cystic artery is the chief source pancreaticoduodenal artery. The right and of blood supply to gallbladder, cystic duct, left hepatic ducts are supplied by the right common hepatic duct and the upper part of and left hepatic arteries and their sectoral or the bile duct. The lower part of bile duct is segmental branches. 1,2 supplied by ascending marginal vessels Knowledge of relevant anatomy is derived from the postero-superior important for the safe execution of any Patil et al______________________________________________________ ISSN-2347-5447 operative procedure. Specifically, in the dissection for academic purpose, before the context of a cholecystectomy, it has been disturbance of liver and extrahepatic biliary recognized since long that misinterpretation ductal system by students. Abdominal cavity of normal anatomy as well as the presence was exposed by making a midline incision of anatomical variations contribute to the from xiphoid process to the pubic symphysis occurrence of major postoperative and carrying this incision to the right complications especially biliary injuries. anterior superior iliac spine. After exposing There is now a fair amount of data to the abdominal cavity and removing suggest that the acceptance of laparoscopic peritoneal fat, extrahepatic biliary system cholecystectomy as the standard procedure was carefully dissected and relevant has led to an increase in bile duct injuries. photographs were taken. Special attention This seems partly related to the different was given to the relationship of the cystic anatomical exposure of the area around the artery to the Calot’s triangle. Along with gallbladder especially the Calot's triangle the arteries, the variations in the venous during the laparoscopic procedure as drainage were also noted.In post-mortem opposed to the open procedure. 3 cases, all the observations were taken before The Calot’s triangle is an anatomical removal of abdominal viscera for post space bounded superiorly by the inferior mortem examination. These observations border of the liver, inferiorly by the cystic were taken in similar manner to those taken duct and medially by the right hepatic duct. in cadavers. The most common variant of Calot’s triangle, which is bounded medially by the Observation and Results common hepatic duct, was adopted, and currently the name ‘hepatobiliary triangle’ is The cystic artery was the chief source suggested. 4 of blood supply to cystic duct, common Major importance of knowledge of hepatic duct and the upper part of the blood supply of extrahepatic biliary system common bile duct .The lower part of common may well lie in the understanding of the bile duct was supplied by the branches of etiology of postoperative bile duct strictures gastroduodenal artery and posterosuperior and in their prevention. 5 pancreaticoduodenal artery. Our study showed that in all the cases the right and left Materials and Methods hepatic ducts were in the substance of liver. Hence their blood supply was not included in The present study of the blood the study. The origins of the cystic artery supply of extrahepatic biliary ductal system were from the right hepatic artery in half of has been conducted on 30 cases: Cadavers the cases (50%) which was very low as (15) in the Departments of Anatomy, compared to other studies. In other cases Maulana Azad Medical College and Bodies (50%), the cystic arteries arose from the (15) undergoing post-mortem in the hepatic artery proper(40%), the common Department of Forensic Medicine and hepatic artery(3.3%), the celiac trunk(3.3%), Toxicology, Maulana Azad Medical or the gastroduodenal artery(3.3%) (Figure1- College, New Delhi. Before the 2). commencement of study, the research In 86.6 % (26 out of 30) of all the proposal was reviewed and approved by a cases studied, the cystic artery coursed human research ethics committee of college. through the Calot’s triangle to reach the In cadavers, all the observations were taken gallbladder. Only in 13.3% (4 out of 30) of when the abdomen was opened for the cases did the cystic artery not pass BBB[2][2][2014]447-459 Patil et al______________________________________________________ ISSN-2347-5447 through the triangle. In our study 36.6 % (11 superior pancreaticoduodenal (0.3%), right out of 30) of all the cystic arteries ran gastric (0.1 %), celiac trunk (0.3 %) and posterior to the common hepatic duct as they superior mesenteric artery (0.8%). 6,7 entered the Calot’s triangle.40 % (12 out of The cystic artery may arise from any 30) of the cystic arteries ran anterior to the of the above-mentioned arteries, but it usually common hepatic duct.23.3 %( 7 out of 30) of arises from the right hepatic artery, which is cystic arteries were not related to common one of the terminal branches of the proper hepatic duct. Our study have shown that the hepatic artery. The cystic artery from the right cystic artery was a single vessel in as much as hepatic artery is usually given off in the 93.3%(28 out of 30 cases).Our study showed Calot's triangle. It has a variable length and double cystic artery in 6.6% (2 out of enters the gallbladder in the neck or body 30) (Figure 3). area. The course and length of the cystic The gastroduodenal artery was a artery in the Calot's triangle is variable. source of the cystic artery in 3.3% (1 out of Although classically the artery traverses the 30) cases. The origin of the cystic artery from triangle almost through its center, it can the trunk of the proper hepatic artery, was occasionally be very close or even lower than observed in this research in 40 %(12 out of the cystic duct. The cystic artery passes 30) cases, which is very high as compared to behind the common hepatic duct (CHD) to other studies. The common hepatic artery was the superior aspect of the gallbladder's neck, a source of the cystic artery in 3.3% (1 out of where it descends to the body of gallbladder. 30) cases. The celiac trunk was a source of It bifurcates into a superficial branch, running the cystic artery in 3.3% (1 out of 30) cases. along the peritoneal surface (subserously) of Derivation of the cystic artery from the left the gallbladder, and a deep branch, which hepatic artery was not seen in any of our runs between the gallbladder and the cases. In most of the cases two cystic veins gallbladder fossa. The two arteries were draining the venous blood from the gall anastomose and yield small branches that bladder (93.3%).These cystic veins entered enter the gallbladder parenchyma. 3,6,8, the liver in most of the cases (89.2%). In During development, the extra-hepatic some cases the veins drained into the portal biliary system arises from an intestinal vein outside the liver (10.7%).The common diverticulum, which carries a rich supply of hepatic duct, cystic duct and common bile vessels from the aorta, coeliac trunk and duct drained directly into portal vein through superior mesenteric artery. Later most of small veins in all the cases. The venous these vessels are absorbed, leaving in place drainage of RHD and LHD cannot be studied the mature vascular system. As the pattern of because the ducts were present in the absorption is highly variable, it is not unusual substance of liver and common hepatic duct for the cystic artery and its branches to derive was form within the liver. (Figure 4) from any other artery in the vicinity (Nowak, 1977). 7 Discussion In our study the origins of the cystic artery were from the right hepatic artery in Arteries distributed to the extrahepatic half of the cases (50%). In other cases (50%), biliary system show great variability in size these arose from the hepatic artery proper, the and it is difficult to treat hemorrhages during common hepatic artery, the celiac trunk, or or after biliary operations.
Recommended publications
  • PERIPHERAL VASCULATURE Average Vessel Diameter
    PERIPHERAL VASCULATURE Average Vessel Diameter A Trio of Technologies. Peripheral Embolization Solutions A Single Solution. Fathom™ Steerable Guidewires Total Hypotube Tip Proximal/ UPN Length (cm) Length (cm) Length (cm) Distal O.D. Hepatic, Gastro-Intestinal and Splenic Vasculature 24 8-10 mm Common Iliac Artery 39 2-4 mm Internal Pudendal Artery M00150 900 0 140 10 10 cm .016 in 25 6-8 mm External Iliac Artery 40 2-4 mm Middle Rectal M00150 901 0 140 20 20 cm .016 in 26 4-6 mm Internal Iliac Artery 41 2-4 mm Obturator Artery M00150 910 0 180 10 10 cm .016 in 27 5-8 mm Renal Vein 42 2-4 mm Inferior Vesical Artery 28 43 M00150 911 0 180 20 20 cm .016 in 15-25 mm Vena Cava 2-4 mm Superficial Epigastric Artery 29 44 M00150 811 0 200 10 10 cm pre-shaped .014 in 6-8 mm Superior Mesenteric Artery 5-8 mm Femoral Artery 30 3-5 mm Inferior Mesenteric Artery 45 2-4 mm External Pudendal Artery M00150 810 0 200 10 10 cm .014 in 31 1-3 mm Intestinal Arteries M00150 814 0 300 10 10 cm .014 in 32 Male 2-4 mm Superior Rectal Artery A M00150 815 0 300 10 10 cm .014 in 33 1-3 mm Testicular Arteries 1-3 mm Middle Sacral Artery B 1-3 mm Testicular Veins 34 2-4 mm Inferior Epigastric Artery Direxion™ Torqueable Microcatheters 35 2-4 mm Iliolumbar Artery Female 36 2-4 mm Lateral Sacral Artery C 1-3 mm Ovarian Arteries Usable 37 D UPN Tip Shape RO Markers 3-5 mm Superior Gluteal Artery 1-3 mm Ovarian Veins Length (cm) 38 2-4 mm Inferior Gluteal Artery E 2-4 mm Uterine Artery M001195200 105 Straight 1 M001195210 130 Straight 1 M001195220 155 Straight 1 Pelvic
    [Show full text]
  • Common and Separate Origins of the Left and Right Inferior Phrenic Artery with a Review of the Literature H
    Folia Morphol. Vol. 76, No. 3, pp. 408–413 DOI: 10.5603/FM.a2017.0025 O R I G I N A L A R T I C L E Copyright © 2017 Via Medica ISSN 0015–5659 www.fm.viamedica.pl Common and separate origins of the left and right inferior phrenic artery with a review of the literature H. Terayama1, S.-Q. Yi2, O. Tanaka1, T. Kanazawa1, K. Suyama1, N. Kosemura1, S. Tetsu3, H. Yamazaki3, R. Sakamoto3, S. Kawakami4, T. Suzuki3, K. Sakabe1 1Department of Anatomy, Division of Basic Medicine, Tokai University School of Medicine, Japan 2Laboratory of Functional Morphology, Department of Frontier Health Science, Tokyo Metropolitan University, Japan 3Department of Anaesthesiology, Division of Surgery, Tokai University School of Medicine, Japan 4Division of Oral and Craniofacial Anatomy, Graduate School of Dentistry, Tohoku University, Japan [Received: 16 August 2016; Accepted: 18 August 2016] In a 94-year-old male cadaver, upon which routine dissection was being conducted, a rare variation was found in the gastrophrenic trunk (GPT), the common trunk of the left gastric artery (LGA), right inferior phrenic artery (RIPA), and left inferior phrenic artery (LIPA); the GPT arises from the abdominal aorta. A hepatosplenic trunk accompanied the variation. In this variation, the RIPA first branched from the GPT and then to the LIPA and LGA. Variations in the common trunk of the LIPA and RIPA in the GPT are common, but to our knowledge, a variation (separate inferior phrenic artery in the GPT) similar to our findings has not been previously reported. We discuss the incidence and developmental and clinical significance of this variation with a detailed review of the literature.
    [Show full text]
  • Portal Vein: a Review of Pathology and Normal Variants on MDCT E-Poster: EE-005
    Portal vein: a review of pathology and normal variants on MDCT e-Poster: EE-005 Congress: ESGAR2016 Type: Educational Exhibit Topic: Diagnostic / Abdominal vascular imaging Authors: C. Carneiro, C. Bilreiro, C. Bahia, J. Brito; Portimao/PT MeSH: Abdomen [A01.047] Portal System [A07.231.908.670] Portal Vein [A07.231.908.670.567] Hypertension, Portal [C06.552.494] Any information contained in this pdf file is automatically generated from digital material submitted to e-Poster by third parties in the form of scientific presentations. References to any names, marks, products, or services of third parties or hypertext links to third-party sites or information are provided solely as a convenience to you and do not in any way constitute or imply ESGAR’s endorsement, sponsorship or recommendation of the third party, information, product, or service. ESGAR is not responsible for the content of these pages and does not make any representations regarding the content or accuracy of material in this file. As per copyright regulations, any unauthorised use of the material or parts thereof as well as commercial reproduction or multiple distribution by any traditional or electronically based reproduction/publication method is strictly prohibited. You agree to defend, indemnify, and hold ESGAR harmless from and against any and all claims, damages, costs, and expenses, including attorneys’ fees, arising from or related to your use of these pages. Please note: Links to movies, ppt slideshows and any other multimedia files are not available in the pdf version of presentations. www.esgar.org 1. Learning Objectives To review the embryology and anatomy of the portal venous system.
    [Show full text]
  • A Rare Combined Variation of the Coeliac Trunk, Renal and Testicular Vasculature
    A rare combined variation of the coeliac trunk, renal and testicular vasculature Abstract The authors report a rare variation of the coeliac trunk, renal and testicular vasculature in a 27-year- old male cadaver. In the present case, the coeliac trunk and superior mesenteric artery was replaced by a modified coeliacomesenteric trunk formed by hepato-gastric and superior mesenteric arteries. Here the hepato-gastric artery or trunk contributed towards the total hepatic inflow as well as a gastro-duodenal artery. A separate right gastric artery and an additional superior pancreatico- duodenal artery was also found in addition with a retro-aortic left renal vein and a bilateral double renal arterial supply. The aforementioned coeliac trunk variation, to our knowledge, has never been reported before and this variation combined with the renal vasculature requires careful surgical consideration. Key words: Coeliacomesenteric trunk, coeliac trunk, hepato-gastric trunk, pancreatico-duodenal artery, retro-aortic left renal vein The typical trifurcation of the coeliac trunk into the left gastric, common hepatic and splenic arteries was first described by Albrecht von Haller (1708-1777) [1]. Haller, born in Berne, Switzerland, studied medicine at University of Tübingen in 1723. Haller felt dissatisfied with his progress at Tübingen and became a student of Boerhaave and Albinus at Leyden University in 1727. The young prodigy with a wide-ranging intellect received his medical degree at nineteen [2]. The coeliac branches (tripos Halleri) represents the normal configuration of the blood supply of the foregut viscera within the abdominal cavity. Knowledge of any deviation from the norm, as a result embryologic changes in the development of the ventral splanchnic arteries, proves indispensable in the planning and execution surgical operations.
    [Show full text]
  • Vessels and Circulation
    CARDIOVASCULAR SYSTEM OUTLINE 23.1 Anatomy of Blood Vessels 684 23.1a Blood Vessel Tunics 684 23.1b Arteries 685 23.1c Capillaries 688 23 23.1d Veins 689 23.2 Blood Pressure 691 23.3 Systemic Circulation 692 Vessels and 23.3a General Arterial Flow Out of the Heart 693 23.3b General Venous Return to the Heart 693 23.3c Blood Flow Through the Head and Neck 693 23.3d Blood Flow Through the Thoracic and Abdominal Walls 697 23.3e Blood Flow Through the Thoracic Organs 700 Circulation 23.3f Blood Flow Through the Gastrointestinal Tract 701 23.3g Blood Flow Through the Posterior Abdominal Organs, Pelvis, and Perineum 705 23.3h Blood Flow Through the Upper Limb 705 23.3i Blood Flow Through the Lower Limb 709 23.4 Pulmonary Circulation 712 23.5 Review of Heart, Systemic, and Pulmonary Circulation 714 23.6 Aging and the Cardiovascular System 715 23.7 Blood Vessel Development 716 23.7a Artery Development 716 23.7b Vein Development 717 23.7c Comparison of Fetal and Postnatal Circulation 718 MODULE 9: CARDIOVASCULAR SYSTEM mck78097_ch23_683-723.indd 683 2/14/11 4:31 PM 684 Chapter Twenty-Three Vessels and Circulation lood vessels are analogous to highways—they are an efficient larger as they merge and come closer to the heart. The site where B mode of transport for oxygen, carbon dioxide, nutrients, hor- two or more arteries (or two or more veins) converge to supply the mones, and waste products to and from body tissues. The heart is same body region is called an anastomosis (ă-nas ′tō -mō′ sis; pl., the mechanical pump that propels the blood through the vessels.
    [Show full text]
  • Rare Variation in Arterial Branching of Celiac Trunk with Three Aberrant Hepatic Arteries – Case Report
    Case report http://dx.doi.org/10.4322/jms.067114 Rare variation in arterial branching of celiac trunk with three aberrant hepatic arteries – Case report RACHANA K.1, SAMPATH MADHYASTHA2*,VASUDHA SARALAYA3, TERESA JOY3, DIVYA PREMCHANDRAN3 and SANTHOSH RAI4 1Department of Anatomy, Kasturba Medical College, 576104, Mangalore, Manipal University, INDIA 2Additional professor, Department of Anatomy, Kasturba Medical College, Mangalore, INDIA-576104 3Department of Anatomy, Kasturba Medical College, 576104, Mangalore, Manipal University, INDIA 4Department of Radiodiagnosis, Kasturba Medical College, 576104, Mangalore, Manipal University, INDIA *E-mail: [email protected] Abstract The celiac trunk shows a trifurcate division which branches to supply the hepatobiliary system, stomach, parts of the digestive tract. The celiac trunk usually exhibits regular pattern of branching with few variations reported. This case report highlights on the vitality of anomalous branching of the celiac trunk and it branches. Surgical complications involving these organs would be partially explained by studying the anomalous branching of the vascular components supplying it. Here we have reported anomalous origin of three aberrant hepatic arteries, one accessory hepatic artery and an aberrant cystic artery. These variations are of importance to radiologists and hepatic surgeons. Keywords: aberrant hepatic artery, anomalous branching, celiac trunk, inferior phrenic artery, cystic artery. 1 Introduction Celiac trunk takes its origin from the ventral aspect by these authors, was more precise and it was universally of abdominal aorta at level of T12 vertebrae measuring accepted. However, the case we reported here was different about 1.5 cms to 2 cms from its origin. After its origin it from the classically explained pattern of branching of the normally trifurcates into left gastric, splenic and the common hepatic artery.
    [Show full text]
  • Origin of Accessory Left Hepatic Artery from Left Gastric Artery
    International Journal of Research in Medical Sciences Chaitra BR et al. Int J Res Med Sci. 2014 Nov;2(4):1780-1782 www.msjonline.org pISSN 2320-6071 | eISSN 2320-6012 DOI: 10.5455/2320-6012.ijrms201411112 Case Report Origin of accessory left hepatic artery from left gastric artery B.R. Chaitra1*, K.R. Dakshayani1 1 Department of Anatomy, Mysore Medical College and Research Institute, Mysore- 570001, Karnataka, India Received: 10 October 2014 Accepted: 24 October 2014 *Correspondence: Dr. B.R. Chaitra, E-mail: [email protected] Copyright: © the author(s), publisher and licensee Medip Academy. This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. ABSTRACT Liver is supplied by the branches of celiac trunk. Common hepatic artery which is a branch of celiac trunk continues as proper hepatic artery after giving gastroduodenal artery. Proper hepatic artery enters the liver at Porta hepatis after diving into right and left hepatic artery. The knowledge of branching patterns of arteries and their variations is important in various surgical and radiological procedures. During routine dissection conducted in the Department of Anatomy, MMC&RI, Mysore, an accessory left hepatic artery was seen arising from left gastric artery in an elderly male cadaver aged around 60 years. An accessory left hepatic artery was arising from left gastric artery and was entering the left lobe of liver. In less than 1% of cases, the accessory left hepatic artery supplies the part of left lobe of liver or whole liver.
    [Show full text]
  • Rare Variations in the Origin, Branching Pattern and Course of the Celiac Trunk: Report of Two Cases
    Case Report Rare variations in the Origin, Branching Pattern and Course of the Celiac Trunk: Report of Two Cases Lokadolalu Chandracharya Prasanna, Rohini alva, Guruprasad Kaltur sneha, Kumar M r Bhat Submitted: 10 Jul 2014 Department of Anatomy, Kasturba Medical College, Manipal University, Accepted: 23 Aug 2014 Manipal-576104, India Abstract Multiple anomalies in the celiac arterial system presents as rare vascular malformations, depicting deviations of the normal vascular developmental pattern. We found a common left gastro- phrenic trunk and a hepato-spleno-mesenteric trunk arising separately from the abdominal aorta in one cadaver. We also found a common hepatic artery and a gastro-splenic trunk arising individually from the abdominal aorta in another cadaver. Even though many variations in the celiac trunk have been described earlier, the complex variations described here are not mentioned and classified by earlier literature. Knowledge of such variations has significance in the surgical and invasive arterial radiological procedures in the upper abdomen. Keywords: celiac artery, superior mesenteric artery, variations, common hepatic artery Introduction Case Report In general, vascular anomalies of the During routine dissection for educational upper abdominal aorta are asymptomatic but purposes, we found rare variations in the origin, become important in patients undergoing branching pattern, and the course of the celiac invasive radiological procedures like diagnostic trunk in two middle aged male cadavers. The angiography for gastrointestinal bleeding, celiac dissection of the abdomen was carried out axis compression syndrome, liver transplantation, meticulously to analyse the origin, course and the or prior to an operative procedures on upper supply of ventral branches of the abdominal aorta.
    [Show full text]
  • Portal Vein Ultrasound Protocol
    Portal Vein Ultrasound Protocol Concealing and foster Tracy often stickles some championship charily or yields suably. Empire-builder and wakeless Mohammed never enough?disassembled mutually when Randal cocainises his mule. Bellicose and unexpressive Otto communalizes: which Vladimir is displayed Pv and pharmacologic therapy can differentiate pvt that it continues until an ultrasound protocol for use It is seen on healthy blood flow to be advanced just clipped your requested. Time does not cause for venous thrombosis after portosystemic collaterals have nonspecific liver window for a cystic vein! Access to be seen in such as a clear from south america. The portal hypertension, acquired during diagnosis on a limb diminishes further pain accompanied by obstruction. Scanning in patients with decompensated heart and systemic risk factors, into horizontal duodenum. Ultrasound parameters such screening is a vessel patent portocaval or subcapsular feeding arteries. Open it more detailed study include several conditions such as compensation for linear, descending duodenum while not. Us if definite diagnosis is purely intravascular ultrasound. Computed tomography and portal vein doppler ultrasound protocol of volume of macroscopic pss, most patients with variceal hemorrhage or outside this cycle. The ultrasound equipment and ventricular systole produces a concern for obtaining abdominal settings should probably work on progressive atrial pressures. Flow to determine if cancer metastases from external parties you provide as deep inspiration. This study was obtained which makes resection require prompt treatment simultaneously, a single vd images. All hepatic veins in at. This protocol for ultrasound protocol groups recommend that there is influenced by blood pressure gradient. The interventional radiology. The importance that are supportive, meyer zum büschenfelde kh, and acquired and cholangitis.
    [Show full text]
  • Part Innervation Blood Supply Venous Drainage
    sheet PART INNERVATION BLOOD SUPPLY VENOUS DRAINAGE LYMPH DRAINAGE Roof: greater palatine & nasopalatine Mouth nerves (maxillary N.) Floor: lingual nerve (mandibular N.) Taste {ant 1/3}: chorda tympani nerve (facial nerve) Cheeks: buccal nerve (mandibular N.) Buccinator muscle: Buccal Nerve 1 (facial Nerve) Orbicularis oris muscle: facial nerve Tip: Submental LNs Tongue lingual artery (ECA) sides of ant 2/3: Ant 1/3: Lingual nerve (sensory) & tonsillar branch of facial artery lingual veins correspond to submandibular & chorda tympani (Taste) (ECA) the arteries and drain into IJV deep cervical LNs Post 2/3: glossopharyngeal N. (both) ascending pharyngeal artery post 1/3: Deep (ECA) cervical LNs greater palatine vein greater palatine artrey Palate Hard Palate: greater palatine and (→maxillary V.) (maxillary A.) nasopalatine nerves ascending palatine vein Deep cervical lymph ascending palatine artrey Soft Palate: lesser palatine and (→facial V.) nodes (facial A.) glossopharyngeal nerves ascending pharyngeal ascending pharyngeal artery vein PANS (secreto-motor) & Sensory: 2 Parotid gland Auriculotemporal nerve {Inferior salivary Nucleus → tympanic branch of glossopharyngeal N.→ Lesser petrosal nerve parasympathetic preganglionic fibres → otic ganglia → auriculotemporal nerve parasympathetic postganglionic fibres} sheet PART INNERVATION BLOOD SUPPLY VENOUS DRAINAGE LYMPH DRAINAGE PANS (secreto-motor): facial nerve Submandibular Sensory: lingual nerve gland {Superior salivary Nucleus → Chorda tympani branch from facial
    [Show full text]
  • Anatomical Variations of Cystic Artery: Telescopic Facts
    ORIGINAL ARTICLE Anatomical Variations Of Cystic Artery: Telescopic Facts Muhammad Zubair, FRCS*, Lubna Habib, FCPS**, Masoom Raza Mirza, FRCS**, Muhammad Ali Channa, FCPS**, Mahmood Yousuf, FRCS**, Muhammad Saeed Quraishy, FRCS* *Dow University of Health Sciences, Civil Hospital, Karachi, Pakistan, **Hamdard College of Medicine & Dentistry, Hamdard University Hospital, Surgery, R-374, Secter 15-A-5, Buffer Zone, North-Karachi, Karachi, Sindh 75850, Pakistan divided the different vascular patterns into 3 groups: INTRODUCTION The introduction of laparoscopic cholecystectomy has stimulated a renewed interest in the anatomy of Calot’s Group 1 triangle 1. This triangle is a focal area of anatomical Cystic artery or arteries seen in Calot’s triangle and no other importance in cholecystectomy and a good knowledge of its source of supply is present. This group is further sub-divided anatomy is essential for both open and laparoscopic into two groups: cholecystectomy 2, 3 . This triangle was described by Calot in 1a Single artery is seen in Calot’s triangle (normal 1891 as bounded by the cystic duct, the right hepatic duct anatomy). and lower edge of liver 4. In its present interpretation the 1b Two vessels are identified in Calot’s triangle. upper border is formed by the inferior surface of the liver with the other two boundaries being the cystic duct and the Cystic artery syndrome (figure 1) is described as a variation common hepatic duct 2,5 . Its contents usually include the right in group 1. This is a single cystic artery originating from the hepatic artery (RHA), the cystic artery, the cystic lymph node right hepatic and then hooking round the cystic duct from (of Lund), connective tissue and lymphatics 5,6 .
    [Show full text]
  • Accessory Right Hepatic Artery Compensating Rudimentary Right Branch of Hepatic Artery Proper-A Case Report
    International Journal of Health Sciences and Research www.ijhsr.org ISSN: 2249-9571 Case Report Accessory Right Hepatic Artery Compensating Rudimentary Right Branch of Hepatic Artery Proper - A Case Report Naveen Kumar, Swamy Ravindra S, Prakashchandra Shetty, Satheesha B Nayak, Jyothsna Patil, Surekha D Shetty, Anitha Guru Department of Anatomy, Melaka Manipal Medical College (Manipal Campus), Manipal University, Manipal. Karnataka, INDIA. Corresponding Author: Swamy Ravindra S Received: 25/03//2014 Revised: 14/04/2014 Accepted: 15/04/2014 ABSTRACT Replaced right hepatic artery and accessory right hepatic artery (ARHA) are the rare form of variant hepatic arterial system. During routine dissection of abdominal cavity, we observed an ARHA arising from the proximal part of superior mesenteric artery. This anomalous artery was found to be compensating the nutritional source of the right lobe of the liver which might have been deprived due to rudimentary right branch of hepatic artery proper. In addition to this, the AHA was also supplying the gall bladder and cystic duct through its cystic branches. Presence of ARHA in addition to original right branch of the hepatic artery proper may get unnoticed by the surgeons or therapeutic radiologists leading to serious complications following its iatrogenic injury. Therefore, ascertaining the presence or absence of ARHA is prerequisite before planning and executing surgical or radiological interventions in this region. Keywords: accessory right hepatic artery, celiac trunk, superior mesenteric artery, right hepatic artery INTRODUCTION Occasionally, the right hepatic artery Among the branches of celiac trunk, originates from neighbouring arteries and the hepatic arterial system is known to show may replace the conventional right hepatic its variation.
    [Show full text]