How Biocontrol Helps Fight the Asian Citrus Psyllid

Total Page:16

File Type:pdf, Size:1020Kb

How Biocontrol Helps Fight the Asian Citrus Psyllid By Thomas Grandperrin of UAV-IQ Precision Agriculture. This article is part of a series on biological control and Integrated Pest Management written by UAV-IQ (www.uaviq.com). See other articles in this series: 'Most of our biocontrol customers are conventional growers' - Chrissie Davis of Koppert Biological Systems Digital integrated pest management: A conversation with Farm Dog's founder and CEO Is Integrated Pest Management the future of agriculture? With the high volume of globally traded agricultural products as well as the impacts of climate change on pest patterns, growers are facing the arrival of exotic pests which can quickly spread and threaten yields. This is especially threatening when a newly introduced pest has no natural enemies in its new habitat. One of the current threats citrus growers around the world are facing is the Asian citrus psyllid, which is a vector of the lethal citrus greening disease. Dr. Mark Hoddle, an entomologist and biological control specialist at the University of California Riverside, has led several research projects evaluating methods to control these invasive pests in citrus, avocados and grapes. During our conversation we discussed how the state of California has managed to hold the Asian citrus psyllid (ACP) at very low levels thus far by using a classical biocontrol approach. Mark elaborated on the importance of augmented and conservation biocontrol as well as ant management in the fight against ACP and other sap-sucking pests, and he also told me more about implementing proactive biocontrol programs as insurance against potential invasive exotic pests. Classical biocontrol of the Asian citrus psyllid FreshFruitPortal.com According to the USDA, the citrus greening disease (also known as Huanglongbing or HLB) has wiped-out 74 percent of the Florida citrus industry since 2005, creating a high level of nervousness among growers of California and other citrus producing areas who fear that the same situation could repeat itself in their orchards. Asian citrus psyllid adult feeding on citrus. Credit: Mike Lewis, Center for Invasive Species Research, UC Riverside But over 12 years after the Asian citrus psyllid was first detected in California, the state still hasn't witnessed any massive epidemic level outbreaks of Asian citrus psyllid in commercial citrus orchards. How did it manage to hold this pest in check? Mark Hoddle is one of the best people to answer this question. When the spread of the Asian citrus psyllid became an obvious threat in Southern California he, along with members of the team he is leading at UC Riverside, started to monitor field sites from Los Angeles all the way to Riverside County for about three years. They noticed the insect densities were very high on unmanaged trees in urban areas and in parks. In parallel, they began to study the potential biocontrol options and identified Tamarixia radiata, a parasitoid of the Asian citrus psyllid that was imported from Pakistan. After doing safety testing and quarantine in the UC Riverside facility to demonstrate that it wouldn't be an environmental threat, they finally got the permission to start releasing it. FreshFruitPortal.com Mark Hoddle in Pakistan collecting Tamarixia radiata, a natural enemy of Asian citrus psyllid, Diaphorina citri. Credit: Unknown, University of Agriculture Faisalabad, Pakistan. The releases were done primarily in urban areas instead of commercial orchards for two main reasons. The first one is that the industry was very worried about the spread of HLB, so citrus growers were almost always spraying their orchards if they found Asian citrus psyllids, giving the beneficials no chance to survive. “We'd be putting our parasitoids, which are difficult and expensive to rear, into a toxic environment where they'd probably die almost immediately. So it makes no sense to do that. On the other hand, trees in urban areas are generally not sprayed with insecticide,” points out Mark. The second reason is the extent of the agricultural-urban interface in California, which are the zones pressing up very closely to agricultural areas. These urban trees could act as incubators for Asian citrus Psyllid which would fly out of people's backyards and into citrus orchards. Mark adds that, “we thought that if we could establish our natural enemies in people's FreshFruitPortal.com backyards, not only would we control Asian citrus psyllid, but we would reduce that invasion pressure coming out of these urban areas into commercial citrus groves.” After the initial releases, Tamarixia established very readily and spread thanks to the abundance of food for it in the citrus trees. At the time, no predators were using Asian citrus psyllid populations for food, so Tamarixia were finding hundreds of psyllid nymphs on the trees that it could parasitize for its larvae to feed on. Tamarixia radiata parasitizing an Asian citrus psyllid nymph. Credit: Mike Lewis, Center for Invasive Species Research, UC Riverside They performed various monitoring research: life table studies where they followed the fates of individual Asian citrus psyllids on citrus trees, population counts and also videography studies. Mark details the process: “We set up little micro video cameras in citrus trees that were solar-powered and we filmed little clusters or colonies of Asian citrus Psyllid 24 hours a day, seven days a week until they had either emerged as adults or they had been killed and FreshFruitPortal.com eaten.” Based on the results of their three years' study, the UC Riverside team concluded “that natural enemies were the driving factor that had caused Asian citrus psyllid to decline by about 70% in people's backyards.” The mass rearing and release program has since then been passed over to the California Department of Food and Agriculture (CFDA), allowing the operations to scale up and go from thousands of these parasitoids reared per year to millions of them. The role of IPM and conservation biocontrol in the fight against the Asian citrus psyllid Is classical biocontrol the only non-chemical method proven to prevent major Asian citrus psyllids outbreak? Not necessarily. Naturally occurring enemies or augmented release of beneficial insects in IPM orchards, while probably not enough by themselves, could also have an important part to play. Similar to what Chris Sayer, a citrus grower in Ventura County,California also suggested, Mark believes that one reason why Asian citrus psyllid has not blown up in areas with a long tradition of integrated pest management (IPM) is because orchards that are under minimal chemical management have very good biotic resistance, mainly from natural enemies. “I've completed a couple of studies which suggest that the most important predator attacking Asian citrus psyllid nymphs are the larvae of hover flies and syrphid flies. They recruited very strongly to Asian citrus psyllid colonies. The female hover flies laid their eggs on those colonies and the larvae just obliterated colonies of Asian citrus psyllids. They destroyed them all!”, Mark relates. To attract and help these beneficial insects establish, Mark has looked at sweet alyssum as a cover crop in citrus orchards. He demonstrated that it is highly attractive to hoverflies, which, as a bonus to growers, is also a predator of mealybugs. This low growing, flowering creeping plant does very well in sunny areas. It requires minimal management and doesn't interfere with machining equipment. Proactive biological control as an insurance against new invasive pests. HLB, and its vector the Asian citrus psyllid, is also a threat to other citrus growing countries such as Chile, Peru, Spain or Italy. These countries are not impacted by the pest yet, so could they get ahead of the game? Mark is promoting a simple, but yet effective concept FreshFruitPortal.com called “Proactive biological control” that should be seen as an insurance against potential invasive exotic pests. He observes that: “If you're looking out on the pest horizon from California, or maybe even Chile and you see some obvious pests that have high invasion potential, doesn't it make sense to get ahead of that problem before it actually arrives in your country or in your state? "Typically, what we do in classical biological control is that we react to the invasion. We have a pretty good idea that the pest is coming, maybe it's even been intercepted a few times, but we don't do anything. We react when the pest is finally established, spreading, and causing economic damage. "Only then we initiate the biological control program. In that scenario, we lose years of time. So when there is an obvious threat like the Asian citrus psyllids, why not start saving that time now by beginning a proactive program?” He also explains the complexity of a classical biocontrol program, justifying this proactive approach. “We have to do the foreign exploration, look for the natural enemies, bring them back to quarantine, do the required safety testing, analyze all the data, begin the process of requesting permission to release those natural enemies from quarantine if the data indicates that they're safe... "You're probably looking at about three to five years before you could get anything released into the environment. So why not start saving that time now by beginning a proactive program? You could have the tests done, safety demonstrated, have all the permits ready for release. "And when Asian citrus psyllid shows up and establishes in Chile, for example, and has spread over such a big area that eradication and containment are no longer considered possible, you can begin the biological control program virtually the next day.” Mark is currently working on two proactive biological control programs. The first one, in collaboration with Dr. Kent Daane at UC Berkeley, looks at the natural enemies of the spotted lantern fly, a pest of grapes and nuts with a high invasion potential into California.
Recommended publications
  • Citrus Flushing Patterns, Diaphorina Citri (Hemiptera: Psyllidae) Populations and Parasitism by Tamarixia Radiata (Hymenoptera: Eulophidae) in Puerto Rico
    36 Florida Entomologist 91(1) March 2008 CITRUS FLUSHING PATTERNS, DIAPHORINA CITRI (HEMIPTERA: PSYLLIDAE) POPULATIONS AND PARASITISM BY TAMARIXIA RADIATA (HYMENOPTERA: EULOPHIDAE) IN PUERTO RICO RICHARD W. H. PLUKE, JAWWAD A. QURESHI AND PHILIP A. STANSLY Department of Entomology and Nematology, University of Florida/IFAS Southwest Florida Research and Education Center, 2686 SR 29N, Immokalee, FL 34142, USA ABSTRACT Discovery of citrus greening disease or Huanglongbing in Brazil and Florida has elevated the vector psyllid, Diaphorina citri (Hemiptera: Psyllidae), to key pest status in both re- gions. Detected in Puerto Rico within 3 years of first detection in Florida, the psyllid ap- peared to be relatively scarce in the Island’s limited citrus and alternate rutaceous host, orange jasmine, Murraya paniculata. Monthly surveys were conducted at 4 locations during 2004 through 2005 to evaluate citrus flushing patterns, psyllid densities, and prevalence of parasitism by Tamarixia radiata. Although low levels of D. citri are known to be established in the high, cool areas of Adjuntas, a total lack of psyllids at the particular study location was attributed to scarcity of flush except for a short period in Feb. Greatest and most prolonged production of new flush, highest psyllid numbers, and greatest incidence of parasitism oc- curred at Isabela, the most coastal location and the only one with irrigated citrus. Favorable climate and irrigation resulted in prolonged availability of new foliage needed to maintain populations of psyllids and consequently its parasitoid. There, apparent parasitism of late instars was estimated to average 70% and approached 100% on 3 different occasions. Tam- arixia radiata also was found parasitizing psyllid nymphs in orange jasmine at the rate of 48% and 77% at Río Piedras and San Juan, respectively, approaching 100% on 5 occasions during spring and summer.
    [Show full text]
  • Biocontrol Program Targets Asian Citrus Psyllid in California's Urban
    REVIEW ARTICLE Biocontrol program targets Asian citrus psyllid in California’s urban areas Two parasitoids of the Asian citrus psyllid, from Pakistan, have been released in Southern California with promising results. by Ivan Milosavljević, Kelsey Schall, Christina Hoddle, David Morgan and Mark Hoddle sian citrus psyllid (ACP), Diaphorina citri Ku- wayama (Hemiptera: Liviidae), has emerged as Abstract Athe most important exotic insect pest of citrus in California. Damage is two-fold. First, psyllids cause In California, Asian citrus psyllid vectors the bacterium Candidatus direct injury to citrus through feeding on phloem juice Liberibacter asiaticus, which causes the lethal citrus disease in immature foliage, deforming the leaves (Halbert and huanglongbing. The top priority for California’s citrus industry has been Manjunath 2004); and second, and more importantly, to diminish the rate of bacterium spread by reducing Asian citrus psyllid they vector the bacterium Candidatus Liberibacter asi- populations in urban areas, where this pest primarily resides. Attempts aticus (CLas), which causes the lethal and untreatable at eradicating and containing the psyllid with insecticides were citrus disease, huanglongbing (HLB), also called citrus unsuccessful. An alternative approach has been a classical biological greening disease. control program using two parasitoids from Pakistan, Tamarixia radiata Characteristic symptoms associated with CLas in- and Diaphorencyrtus aligarhensis, which attack the psyllid nymphs. fection are reduced vigor, foliar discoloration and die- T. radiata has established widely and, in combination with generalist back, misshapen fruit with bitter juice and malformed predators, natural enemies are providing substantial control of psyllids seeds, premature fruit drop, overall yield reductions in urban areas. and, ultimately, tree death (Gottwald 2010).
    [Show full text]
  • Tamarixia Radiata (Hymenoptera: Eulophidae) 3 Diaphorina Citri (Hemiptera: Liviidae): Mass Rearing and Potential Use of the Parasitoid in Brazil
    Journal of Integrated Pest Management (2016) 7(1): 5; 1–11 doi: 10.1093/jipm/pmw003 Profile Tamarixia radiata (Hymenoptera: Eulophidae) 3 Diaphorina citri (Hemiptera: Liviidae): Mass Rearing and Potential Use of the Parasitoid in Brazil Jose´Roberto Postali Parra, Gustavo Rodrigues Alves, Alexandre Jose´Ferreira Diniz,1 and Jaci Mendes Vieira Departamento de Entomologia e Acarologia, Escola Superior de Agricultura Luiz de Queiroz, Universidade de Sa˜o Paulo, Av. Padua Dias, 11, Piracicaba, Sa˜o Paulo, Brazil ([email protected]; [email protected]; [email protected]; [email protected]), and 1Corresponding author, e-mail: [email protected] Received 3 July 2015; Accepted 15 January 2016 Downloaded from Abstract Huanglongbing (HLB) is the most serious disease affecting citriculture worldwide. Its vector in the main produc- ing regions is the Asian citrus psyllid, Diaphorina citri Kuwayama, 1908 (Hemiptera: Liviidae). Brazil has the larg- est orange-growing area and is also the largest exporter of processed juice in the world. Since the first detection http://jipm.oxfordjournals.org/ of the disease in this country, >38 million plants have been destroyed and pesticide consumption has increased considerably. During early research on control methods, the parasitoid Tamarixia radiata (Waterston, 1922) (Hymenoptera: Eulophidae) was found in Brazil. Subsequent studies focused on its bio-ecological aspects and distribution in citrus-producing regions. Based on successful preliminary results for biological control with T. radiata in small areas, mass rearing was initiated for mass releases in Brazilian conditions. Here, we review the Brazilian experience using T. radiata in D. citri control, with releases at sites of HLB outbreaks, adjacent to commercial areas, in abandoned groves, areas with orange jessamine (a psyllid host), and backyards.
    [Show full text]
  • Behavioral Response of Tamarixia Radiata (Waterston) (Hymenoptera: Eulophidae) to Volatiles Emanating from Diaphorina Citri Kuwayama (Hemiptera: Psyllidae) and Citrus
    J Insect Behav (2010) 23:447–458 DOI 10.1007/s10905-010-9228-6 Behavioral Response of Tamarixia radiata (Waterston) (Hymenoptera: Eulophidae) to Volatiles Emanating from Diaphorina citri Kuwayama (Hemiptera: Psyllidae) and Citrus R. S. Mann & J. A. Qureshi & P. A. Stansly & L. L. Stelinski Revised: 5 August 2010 /Accepted: 16 August 2010 / Published online: 25 August 2010 # Springer Science+Business Media, LLC 2010 Abstract Tamarixia radiata Waterston (Hymenoptera: Eulophidae) is an effective idiobiont ectoparasitoid of the psyllid Diaphorina citri Kuwayama (Hemiptera: Psyllidae), vector of the huanglongbing (HLB). We examined the olfactory responses of T. radiata to volatiles emanating from D. citri or plant volatiles using a custom designed T-maze olfactometer and open arena bioassays. We also examined the behavioral response of male and female T. radiata to conspecifics of the opposite sex to determine whether olfactory signals mediate mate location. T. radiata adults exhibited a sexually dimorphic response to volatiles emanating from D. citri and citrus. Female T. radiata responded positively to the odors emanating from D. citri nymphs in both olfactometer and open arena bioassays. However, female wasps showed no response to odors emanating from D. citri adults, D. citri honey dew secretions, intact citrus or orange jasmine leaves. Odors emanating from D. citri damaged citrus were not attractive to T. radiata females but stimulated attraction of wasps to D. citri on damaged plants. T. radiata females were not attracted to D. citri immatures when they were presented as visual cues. Male T. radiata did not show attraction to D. citri nymphs or other putative odors that were attractive to female T.
    [Show full text]
  • Incidence of Invasive Diaphorina Citri (Hemiptera: Psyllidae) and Its Introduced Parasitoid Tamarixia Radiata (Hymenoptera: Eulophidae) in Florida Citrus
    HORTICULTURAL ENTOMOLOGY Incidence of Invasive Diaphorina citri (Hemiptera: Psyllidae) and Its Introduced Parasitoid Tamarixia radiata (Hymenoptera: Eulophidae) in Florida Citrus 1,2 3 4 1 JAWWAD A. QURESHI, MICHAEL E. ROGERS, DAVID G. HALL, AND PHILIP A. STANSLY Department of Entomology and Nematology, University of Florida/IFAS, SWFREC, 2686 State Road 29 North, Immokalee, FL 34142 J. Econ. Entomol. 102(1): 247Ð256 (2009) ABSTRACT Diaphorina citri Kuwayama (Hemiptera: Psyllidae), vectors the bacterium Candidatus Liberibacter asiaticus, one of the causal organisms of the devastating citrus disease “huanglongbing” or citrus greening. In the United States, D. citri was Þrst discovered in Florida, in 1998. Tamarixia radiata Waterston (Hymenoptera: Eulophidae) was imported from Asia and released in Florida in 1999Ð2001 to improve biological control of D. citri before citrus greening was detected in Florida in 2005. Florida citrus groves were surveyed during 2006Ð2007 for D. citri and T. radiata. Results showed that D. citri was established in all 28 citrus groves surveyed across 16 counties. Adult populations averaged 3.52, 1.27, and 1.66 individuals per “tap” sample at locations in the central, southwest, and eastern coastal regions, respectively. A tap sample consisted of 22- by 28-cm white paper sheet (on a clipboard) held under branches selected at random that were tapped three times. Averages of 67, 44, and 45% citrus shoots infested with psyllid eggs or nymphs were obtained in the central, southwest, and eastern coastal regions, respectively. T. radiata was recovered from fourth- and Þfth-instar psyllid nymphs at 26 of the 28 locations. However, apparent parasitism rates were variable and averaged Ͻ20% during spring and summer over all locations.
    [Show full text]
  • Tamarixia Radiata Behaviour Is Influenced by Volatiles from Both
    insects Article Tamarixia radiata Behaviour is Influenced by Volatiles from Both Plants and Diaphorina citri Nymphs Yan-Mei Liu 1,2 , Shu-Hao Guo 1, Fei-Feng Wang 1, Li-He Zhang 2, Chang-Fei Guo 2, Andrew G. S. Cuthbertson 3, Bao-Li Qiu 1,2 and Wen Sang 1,2,* 1 Key Laboratory of Bio-Pesticide Innovation and Application, Department of Entomology, South China Agricultural University, Guangzhou 510640, China; [email protected] (Y.-M.L.); [email protected] (S.-H.G.); wff[email protected] (F.-F.W.); [email protected] (B.-L.Q.) 2 Engineering Research Center of Biological control, Ministry of Education, Guangzhou 510640, China; [email protected] (L.-H.Z.); [email protected] (C.-F.G.) 3 Independent Science Advisor, York YO41 1LZ, UK; [email protected] * Correspondence: [email protected]; Tel.: +86-20-8528-3717 Received: 7 March 2019; Accepted: 13 May 2019; Published: 16 May 2019 Abstract: Tamarixia radiata (Waterston) is an important ectoparasitoid of the Asian citrus psyllid, Diaphorina citri Kuwayama, a globally destructive pest of citrus. In the present study, a Y-tube olfactometer was employed to investigate whether the parasitoid T. radiata is capable of utilizing the odour source emitted by both plants and insect hosts during its foraging. The odour sources included Murraya paniculata (L.) shoots, 1st, 2nd, 3rd, 4th, and 5th D. citri instar nymphs, both individually and in combinations. Moreover, nymph-stage choice for parasitism, including 3rd, 4th, and 5th D. citri instar nymphs, was carried out. The results indicated that female T. radiata were only significantly attracted to volatiles emitted by M.
    [Show full text]
  • MANUAL DE Tamarixia Radiata
    MANUAL DE REPRODUCCIÓN MASIVA DE Tamarixia radiata Principal parasitoide del psílido asiático de los cítricos, vector del HLB MANUAL DE REPRODUCCIÓN MASIVA DE Tamarixia radiata Principal parasitoide del psílido asiático de los cítricos, vector del HLB Primera edición 2015 Servicio Nacional de Sanidad, Inocuidad y Calidad Agroalimentaria. (SENASICA) Diseño Editorial Unidad de Promoción y Vinculación - SENASICA ISBN: Reservados todos los derechos. No se permite la reproducción, total o parcial de este libro ni el almacenamiento en un sistema informático, ni la transmisión de cualquier forma o cualquier medio, electrónico, mecánico, fotocopia, registro u otros medios sin el permiso previo y por escrito de los titulares del copyrigth. Directorio Lic. José Eduardo Calzada Rovirosa Secretario de Agricultura, Ganadería, Desarrollo Rural, Pesca y Alimentación. M.V.Z. Enrique Sánchez Cruz Director en jefe del Servicio Nacional de Sanidad, Inocuidad y Calidad Agroalimentaria. Dr. Francisco Javier Trujillo Arriaga Director General de Sanidad Vegetal. M.C. José Abel López Buenfil Director del Centro Nacional de Referencia Fitosanitaria. M.C. Hugo César Arredondo Bernal Subdirector del Centro Nacional de Referencia de Control Biológico Centro Nacional de Referencia de Control Biológico Km 1.5 Carretera Tecomán-Estación FFCC Col. Tepeyac. C.P. 28110 Tecomán, Col. México Tel: (313) 324 0745 Fax: (313) 324 2773 Correo electrónico: [email protected] Dirigido por: M.C. Hugo Cesar Arredondo Bernal Elaborado por: Ing. Jorge Antonio Sánchez González Biol. Nora Isabel Vizcarra Valdez Ing. Gabriel Moreno Carrillo Ing. Raul Antonio Alpizar Puente Biol. Yadira Contreras Bermúdez Biol. Denise Esmeralda Sandoval Rodríguez Dr. Martín Palomares Pérez Dr. Jaime González Cabrera Biol.
    [Show full text]
  • Biological Control of Diaphorina Citri (Hemiptera: Psyllidae)
    Biological control of Diaphorina citri in Guadeloupe Original article Biological control of Diaphorina citri (Hemiptera: Psyllidae) in Guadeloupe by imported Tamarixia radiata (Hymenoptera: Eulophidae) Jean Étiennea*, Serge Quilicib, Daniel Marivala, Antoine Franckb a Inra-URPV, Biological control of Diaphorina citri (Hemiptera: Psyllidae) Domaine Duclos, in Guadeloupe by imported Tamarixia radiata (Hymenoptera: Eulophidae). 97170 Petit-Bourg, Abstract — Introduction. The Asian citrus psyllid, Diaphorina citri Kuwayama, is particu- Guadeloupe, France larly harmful to citrus plantations as it is one of the two psyllid vectors of the citrus greening b disease or Huanglongbing. This disease, which limits the longevity of trees, is due to an intra- Cirad Réunion, cellular bacterium which mainly affects the phloem. Past experience of biological control Pôle de Protection des Plantes, of D. citri in Reunion Island. In Reunion Island, this disease, detected in 1967, was the main 7 Chemin de L’Irat, obstacle to the development of the cultivation of citrus fruit. Control of the vector D. citri, by 97410 Saint-Pierre, introducing from India and multiplying on site the specific parasitoid Tamarixia radiata La Réunion, France (Waterston), was carried out during 1978 when nearly 4600 adult parasitoids were released. The success of T. radiata combined with the distribution of healthy plant material was at the [email protected] origin of the revival of the cultivation of citrus fruit in Reunion Island. Programme for a [email protected] biological control of D. citri in Guadeloupe. In Guadeloupe, D. citri was reported in Jan- uary 1998. No trace of insect parasitism was found and only one fungus, Hirsutella citriformis Speare, proved, under certain conditions, capable of regulating the populations of this psyl- lid.
    [Show full text]
  • APP201955: an Application to Release Tamarixia Triozae As a Biological Control for the Tomato Potato Psyllid (Bactericera Cockerelli)
    Staff Assessment Report APP201955: An application to release Tamarixia triozae as a biological control for the tomato potato psyllid (Bactericera cockerelli) April 2016 Purpose To release from containment the psyllid parasitoid Tamarixia triozae into New Zealand to assist with the biological control of the tomato potato psyllid (Bactericera cockerelli) Application number APP201955 Application type Notified, full release Applicant Horticulture New Zealand Inc. Date formally received 27 January 2016 2 EPA advice for application APP201955 Executive Summary and Recommendation In January 2015, Horticulture New Zealand Inc. applied to the Environmental Protection Authority (EPA) to introduce the psyllid parasitoid Tamarixia triozae as a biological control agent (BCA) for the tomato potato psyllid (TPP; Bactericera cockerelli). The application was submitted on behalf of Potatoes New Zealand Inc., Tomatoes NZ Inc., Heinz-Wattie’s NZ Ltd, Vegetables NZ Inc., and NZ Tamarillo Growers Association Inc. We examined the efficacy of T. triozae to control TPP and curb transmission of Candidatus Liberibacter solanacearum, the causal agent of Zebra Chip disease, to horticulture crop plants, and the beneficial and adverse effects on the environment, market economy and on Māori and their relationship to the environment. Our assessment found that we consider it likely that the release of T. triozae will improve management of TPP which will support development of new integrated pest management (IPM) programmes. We consider it likely that IPM programmes will reduce applications of broad-spectrum insecticides which will improve the environmental impact of horticulture practices. We also consider the use of T. triozae will benefit Māori who use traditional (organic) pest control methods to cultivate taewa, kūmara and poroporo.
    [Show full text]
  • An Asian Citrus Psyllid Parasitoid Tamarixia Radiata (Waterston) (Insecta: Hymenoptera: Eulophidae)1
    Archival copy: for current recommendations see http://edis.ifas.ufl.edu or your local extension office. EENY 475 an Asian citrus psyllid parasitoid Tamarixia radiata (Waterston) (Insecta: Hymenoptera: Eulophidae)1 Rajinder S. Mann and Lukasz L. Stelinski2 Introduction 2004), and specimens have been found throughout the U.S., including Florida, Texas, Hawaii, Tamarixia radiata (Waterston) (Hymenoptera: Louisiana, Alabama, Georgia, Mississippi, South Eulophidae) is an effective ectoparasitoid of the Carolina, and California (National Invasive Species Asian citrus psyllid, Diaphorina citri Kuwayama Information Center). (Hemiptera: Psyllidae). Diaphorina citri is one of the most serious pests of citrus worldwide because it Currently all possible vector and disease control vectors the bacterial pathogen causing huanglongbing methods are being employed to manage HLB in (HLB) disease in citrus. In addition, both nymphs Florida including biological control with Tamarixia and adults are obligate phloem feeders that cause radiata (Waterston) (Hymenoptera: Eulophidae) and chlorosis on infested leaves and excrete honeydew Diaphorencyrtus aligarhensis (Shafee, Alam and that promotes the growth of sooty mold. HLB affects Agarwal) (Hymenoptera: Encyrtidae) (Hoy et al. plant phloem, causing yellow shoots, mottling, 2006, Qureshi et al. 2009). Tamarixia radiata is chlorosis, and twig die back which cause rapid tree presumed superior to D. aligarhensis based on decline and may ultimately cause tree death. Fruit on previous reports of high psyllid parasitization rates diseased trees do not color properly, and can be bitter and rapid establishment in new areas (Aubert 1987, tasting and misshapen as well as reduced in size Skelly and Hoy 2004). Release of T. radiata revived (Capoor 1963, Halbert and Manjunath 2004, Bové the citrus industry in Reunion Island after its 2006).
    [Show full text]
  • On Diaphorina Citri (Hemiptera: Psyllidae) at Different Temperatures
    Life Table of Tamarixia radiata (Hymenoptera: Eulophidae) on Diaphorina citri (Hemiptera: Psyllidae) at Different Temperatures Author(s): Mariuxi Lorena Gómez-Torres, Dori Edson Nava, and José Roberto Postali Parra Source: Journal of Economic Entomology, 105(2):338-343. 2012. Published By: Entomological Society of America DOI: http://dx.doi.org/10.1603/EC11280 URL: http://www.bioone.org/doi/full/10.1603/EC11280 BioOne (www.bioone.org) is a nonprofit, online aggregation of core research in the biological, ecological, and environmental sciences. BioOne provides a sustainable online platform for over 170 journals and books published by nonprofit societies, associations, museums, institutions, and presses. Your use of this PDF, the BioOne Web site, and all posted and associated content indicates your acceptance of BioOne’s Terms of Use, available at www.bioone.org/page/terms_of_use. Usage of BioOne content is strictly limited to personal, educational, and non-commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder. BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research. BIOLOGICAL AND MICROBIAL CONTROL Life Table of Tamarixia radiata (Hymenoptera: Eulophidae) on Diaphorina citri (Hemiptera: Psyllidae) at Different Temperatures MARIUXI LORENA GO´ MEZ-TORRES,1 DORI EDSON NAVA,2 1 AND JOSE´ ROBERTO POSTALI PARRA J. Econ. Entomol. 105(2): 338Ð343 (2012); DOI: http://dx.doi.org/10.1603/EC11280 ABSTRACT Tamarixia radiata (Waterston, 1922) is the main parasitoid of Diaphorina citri (Ku- wayama, 1907), and has been used in classical biological control programs in several countries.
    [Show full text]
  • A New Way to Control Invasive Ants
    A New Way to Control Invasive Ants www.CitrusResearch.org | Citrograph Magazine 1 CRB-FUNDED RESEARCH PROGRESS REPORT Figure 1. An Argentine ant feeds from an alginate hydrogel bead filled with toxic liquid bait. Harnessing Hydrogels in the Battle Against Invasive Ants Could a hydrogel baiting system solve Argentine ant problems in southern California citrus? Kelsey Schall, Jia-Wei Tay, Ashok Mulchandani, Dong-Hwan Choe and Mark Hoddle Project Summary Despite the substantial economic threat Argentine ants (AA) pose to California’s citrus industry, control options that are effective, low-maintenance, target-specific and environmentally sustainable are lacking. This report describes progress made in the development and field evaluation of a hydrogel baiting system that eliminates the negative features associated with standard industry treatments for ant control while rivaling them in efficacy. AA cause damage by forming beneficial relationships with Why is Argentine Ant Control honeydew-producing hemipterans (HPHs – i.e., sap-sucking insects such as aphids, psyllids, mealybugs, whiteflies and Necessary? scales), many of which are invasive, economically-damaging The southern California citrus agroecosystem provides pests. Ant workers tend HPHs for the sweet, energy-rich waste a climatically optimal environment for the invasive1 AA, they produce (honeydew) and guard their highly valued replete with resources and devoid of natural enemies or “livestock” from the natural enemy “wolves” we depend on for encroaching competitor ants. Consequently, the vast majority biological control2 (biocontrol) (Figure 3; Schall and Hoddle of commercial citrus in southern California sustain heavy, 2017). persistent AA infestations (Figure 2). 30 Citrograph Vol. 9, No. 3 | Summer 2018 Figure 3.
    [Show full text]