Chapter 12 Fourier Series
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Convolution Theorem
Module 2 : Signals in Frequency Domain Lecture 18 : The Convolution Theorem Objectives In this lecture you will learn the following We shall prove the most important theorem regarding the Fourier Transform- the Convolution Theorem We are going to learn about filters. Proof of 'the Convolution theorem for the Fourier Transform'. The Dual version of the Convolution Theorem Parseval's theorem The Convolution Theorem We shall in this lecture prove the most important theorem regarding the Fourier Transform- the Convolution Theorem. It is this theorem that links the Fourier Transform to LSI systems, and opens up a wide range of applications for the Fourier Transform. We shall inspire its importance with an application example. Modulation Modulation refers to the process of embedding an information-bearing signal into a second carrier signal. Extracting the information- bearing signal is called demodulation. Modulation allows us to transmit information signals efficiently. It also makes possible the simultaneous transmission of more than one signal with overlapping spectra over the same channel. That is why we can have so many channels being broadcast on radio at the same time which would have been impossible without modulation There are several ways in which modulation is done. One technique is amplitude modulation or AM in which the information signal is used to modulate the amplitude of the carrier signal. Another important technique is frequency modulation or FM, in which the information signal is used to vary the frequency of the carrier signal. Let us consider a very simple example of AM. Consider the signal x(t) which has the spectrum X(f) as shown : Why such a spectrum ? Because it's the simplest possible multi-valued function. -
Lecture 7: Fourier Series and Complex Power Series 1 Fourier
Math 1d Instructor: Padraic Bartlett Lecture 7: Fourier Series and Complex Power Series Week 7 Caltech 2013 1 Fourier Series 1.1 Definitions and Motivation Definition 1.1. A Fourier series is a series of functions of the form 1 C X + (a sin(nx) + b cos(nx)) ; 2 n n n=1 where C; an; bn are some collection of real numbers. The first, immediate use of Fourier series is the following theorem, which tells us that they (in a sense) can approximate far more functions than power series can: Theorem 1.2. Suppose that f(x) is a real-valued function such that • f(x) is continuous with continuous derivative, except for at most finitely many points in [−π; π]. • f(x) is periodic with period 2π: i.e. f(x) = f(x ± 2π), for any x 2 R. C P1 Then there is a Fourier series 2 + n=1 (an sin(nx) + bn cos(nx)) such that 1 C X f(x) = + (a sin(nx) + b cos(nx)) : 2 n n n=1 In other words, where power series can only converge to functions that are continu- ous and infinitely differentiable everywhere the power series is defined, Fourier series can converge to far more functions! This makes them, in practice, a quite useful concept, as in science we'll often want to study functions that aren't always continuous, or infinitely differentiable. A very specific application of Fourier series is to sound and music! Specifically, re- call/observe that a musical note with frequency f is caused by the propogation of the lon- gitudinal wave sin(2πft) through some medium. -
Calculus 1 to 4 (2004–2006)
Calculus 1 to 4 (2004–2006) Axel Schuler¨ January 3, 2007 2 Contents 1 Real and Complex Numbers 11 Basics .......................................... 11 Notations ..................................... 11 SumsandProducts ................................ 12 MathematicalInduction. 12 BinomialCoefficients............................... 13 1.1 RealNumbers................................... 15 1.1.1 OrderedSets ............................... 15 1.1.2 Fields................................... 17 1.1.3 OrderedFields .............................. 19 1.1.4 Embedding of natural numbers into the real numbers . ....... 20 1.1.5 The completeness of Ê .......................... 21 1.1.6 TheAbsoluteValue............................ 22 1.1.7 SupremumandInfimumrevisited . 23 1.1.8 Powersofrealnumbers.. .. .. .. .. .. .. 24 1.1.9 Logarithms ................................ 26 1.2 Complexnumbers................................. 29 1.2.1 TheComplexPlaneandthePolarform . 31 1.2.2 RootsofComplexNumbers . 33 1.3 Inequalities .................................... 34 1.3.1 MonotonyofthePowerand ExponentialFunctions . ...... 34 1.3.2 TheArithmetic-Geometricmeaninequality . ...... 34 1.3.3 TheCauchy–SchwarzInequality . .. 35 1.4 AppendixA.................................... 36 2 Sequences and Series 43 2.1 ConvergentSequences .. .. .. .. .. .. .. .. 43 2.1.1 Algebraicoperationswithsequences. ..... 46 2.1.2 Somespecialsequences . .. .. .. .. .. .. 49 2.1.3 MonotonicSequences .. .. .. .. .. .. .. 50 2.1.4 Subsequences............................... 51 2.2 CauchySequences -
Fourier Series
Academic Press Encyclopedia of Physical Science and Technology Fourier Series James S. Walker Department of Mathematics University of Wisconsin–Eau Claire Eau Claire, WI 54702–4004 Phone: 715–836–3301 Fax: 715–836–2924 e-mail: [email protected] 1 2 Encyclopedia of Physical Science and Technology I. Introduction II. Historical background III. Definition of Fourier series IV. Convergence of Fourier series V. Convergence in norm VI. Summability of Fourier series VII. Generalized Fourier series VIII. Discrete Fourier series IX. Conclusion GLOSSARY ¢¤£¦¥¨§ Bounded variation: A function has bounded variation on a closed interval ¡ ¢ if there exists a positive constant © such that, for all finite sets of points "! "! $#&% (' #*) © ¥ , the inequality is satisfied. Jordan proved that a function has bounded variation if and only if it can be expressed as the difference of two non-decreasing functions. Countably infinite set: A set is countably infinite if it can be put into one-to-one £0/"£ correspondence with the set of natural numbers ( +,£¦-.£ ). Examples: The integers and the rational numbers are countably infinite sets. "! "!;: # # 123547698 Continuous function: If , then the function is continuous at the point : . Such a point is called a continuity point for . A function which is continuous at all points is simply referred to as continuous. Lebesgue measure zero: A set < of real numbers is said to have Lebesgue measure ! $#¨CED B ¢ £¦¥ zero if, for each =?>A@ , there exists a collection of open intervals such ! ! D D J# K% $#L) ¢ £¦¥ ¥ ¢ = that <GFIH and . Examples: All finite sets, and all countably infinite sets, have Lebesgue measure zero. "! "! % # % # Odd and even functions: A function is odd if for all in its "! "! % # # domain. -
The Summation of Power Series and Fourier Series
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Journal of Computational and Applied Mathematics 12&13 (1985) 447-457 447 North-Holland The summation of power series and Fourier . series I.M. LONGMAN Department of Geophysics and Planetary Sciences, Tel Aviv University, Ramat Aviv, Israel Received 27 July 1984 Abstract: The well-known correspondence of a power series with a certain Stieltjes integral is exploited for summation of the series by numerical integration. The emphasis in this paper is thus on actual summation of series. rather than mere acceleration of convergence. It is assumed that the coefficients of the series are given analytically, and then the numerator of the integrand is determined by the aid of the inverse of the two-sided Laplace transform, while the denominator is standard (and known) for all power series. Since Fourier series can be expressed in terms of power series, the method is applicable also to them. The treatment is extended to divergent series, and a fair number of numerical examples are given, in order to illustrate various techniques for the numerical evaluation of the resulting integrals. Keywork Summation of series. 1. Introduction We start by considering a power series, which it is convenient to write in the form s(x)=/.Q-~2x+&x2..., (1) for reasons which will become apparent presently. Here there is no intention to limit ourselves to alternating series since, even if the pLkare all of one sign, x may take negative and even complex values. It will be assumed in this paper that the pLk are real. -
Harmonic Analysis from Fourier to Wavelets
STUDENT MATHEMATICAL LIBRARY ⍀ IAS/PARK CITY MATHEMATICAL SUBSERIES Volume 63 Harmonic Analysis From Fourier to Wavelets María Cristina Pereyra Lesley A. Ward American Mathematical Society Institute for Advanced Study Harmonic Analysis From Fourier to Wavelets STUDENT MATHEMATICAL LIBRARY IAS/PARK CITY MATHEMATICAL SUBSERIES Volume 63 Harmonic Analysis From Fourier to Wavelets María Cristina Pereyra Lesley A. Ward American Mathematical Society, Providence, Rhode Island Institute for Advanced Study, Princeton, New Jersey Editorial Board of the Student Mathematical Library Gerald B. Folland Brad G. Osgood (Chair) Robin Forman John Stillwell Series Editor for the Park City Mathematics Institute John Polking 2010 Mathematics Subject Classification. Primary 42–01; Secondary 42–02, 42Axx, 42B25, 42C40. The anteater on the dedication page is by Miguel. The dragon at the back of the book is by Alexander. For additional information and updates on this book, visit www.ams.org/bookpages/stml-63 Library of Congress Cataloging-in-Publication Data Pereyra, Mar´ıa Cristina. Harmonic analysis : from Fourier to wavelets / Mar´ıa Cristina Pereyra, Lesley A. Ward. p. cm. — (Student mathematical library ; 63. IAS/Park City mathematical subseries) Includes bibliographical references and indexes. ISBN 978-0-8218-7566-7 (alk. paper) 1. Harmonic analysis—Textbooks. I. Ward, Lesley A., 1963– II. Title. QA403.P44 2012 515.2433—dc23 2012001283 Copying and reprinting. Individual readers of this publication, and nonprofit libraries acting for them, are permitted to make fair use of the material, such as to copy a chapter for use in teaching or research. Permission is granted to quote brief passages from this publication in reviews, provided the customary acknowledgment of the source is given. -
Conceptual Power Series Knowledge of STEM Majors
Paper ID #21246 Conceptual Power Series Knowledge of STEM Majors Dr. Emre Tokgoz, Quinnipiac University Emre Tokgoz is currently the Director and an Assistant Professor of Industrial Engineering at Quinnipiac University. He completed a Ph.D. in Mathematics and another Ph.D. in Industrial and Systems Engineer- ing at the University of Oklahoma. His pedagogical research interest includes technology and calculus education of STEM majors. He worked on several IRB approved pedagogical studies to observe under- graduate and graduate mathematics and engineering students’ calculus and technology knowledge since 2011. His other research interests include nonlinear optimization, financial engineering, facility alloca- tion problem, vehicle routing problem, solar energy systems, machine learning, system design, network analysis, inventory systems, and Riemannian geometry. c American Society for Engineering Education, 2018 Mathematics & Engineering Majors’ Conceptual Cognition of Power Series Emre Tokgöz [email protected] Industrial Engineering, School of Engineering, Quinnipiac University, Hamden, CT, 08518 Taylor series expansion of functions has important applications in engineering, mathematics, physics, and computer science; therefore observing responses of graduate and senior undergraduate students to Taylor series questions appears to be the initial step for understanding students’ conceptual cognitive reasoning. These observations help to determine and develop a successful teaching methodology after weaknesses of the students are investigated. Pedagogical research on understanding mathematics and conceptual knowledge of physics majors’ power series was conducted in various studies ([1-10]); however, to the best of our knowledge, Taylor series knowledge of engineering majors was not investigated prior to this study. In this work, the ability of graduate and senior undergraduate engineering and mathematics majors responding to a set of power series questions are investigated. -
Convolution.Pdf
Convolution March 22, 2020 0.0.1 Setting up [23]: from bokeh.plotting import figure from bokeh.io import output_notebook, show,curdoc from bokeh.themes import Theme import numpy as np output_notebook() theme=Theme(json={}) curdoc().theme=theme 0.1 Convolution Convolution is a fundamental operation that appears in many different contexts in both pure and applied settings in mathematics. Polynomials: a simple case Let’s look at a simple case first. Consider the space of real valued polynomial functions P. If f 2 P, we have X1 i f(z) = aiz i=0 where ai = 0 for i sufficiently large. There is an obvious linear map a : P! c00(R) where c00(R) is the space of sequences that are eventually zero. i For each integer i, we have a projection map ai : c00(R) ! R so that ai(f) is the coefficient of z for f 2 P. Since P is a ring under addition and multiplication of functions, these operations must be reflected on the other side of the map a. 1 Clearly we can add sequences in c00(R) componentwise, and since addition of polynomials is also componentwise we have: a(f + g) = a(f) + a(g) What about multiplication? We know that X Xn X1 an(fg) = ar(f)as(g) = ar(f)an−r(g) = ar(f)an−r(g) r+s=n r=0 r=0 where we adopt the convention that ai(f) = 0 if i < 0. Given (a0; a1;:::) and (b0; b1;:::) in c00(R), define a ∗ b = (c0; c1;:::) where X1 cn = ajbn−j j=0 with the same convention that ai = bi = 0 if i < 0. -
Fourier Series of Functions of A-Bounded Variation
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 74, Number 1, April 1979 FOURIER SERIES OF FUNCTIONS OF A-BOUNDED VARIATION DANIEL WATERMAN1 Abstract. It is shown that the Fourier coefficients of functions of A- bounded variation, A = {A„}, are 0(Kn/n). This was known for \, = n&+l, — 1 < ß < 0. The classes L and HBV are shown to be complementary, but L and ABV are not complementary if ABV is not contained in HBV. The partial sums of the Fourier series of a function of harmonic bounded variation are shown to be uniformly bounded and a theorem analogous to that of Dirichlet is shown for this class of functions without recourse to the Lebesgue test. We have shown elsewhere that functions of harmonic bounded variation (HBV) satisfy the Lebesgue test for convergence of their Fourier series, but if a class of functions of A-bounded variation (ABV) is not properly contained in HBV, it contains functions whose Fourier series diverge [1]. We have also shown that Fourier series of functions of class {nB+x} — BV, -1 < ß < 0, are (C, ß) bounded, implying that the Fourier coefficients are 0(nB) [2]. Here we shall estimate the Fourier coefficients of functions in ABV. Without recourse to the Lebesgue test, we shall prove a theorem for functions of HBV analogous to that of Dirichlet and also show that the partial sums of the Fourier series of an HBV function are uniformly bounded. From this one can conclude that L and HBV are complementary classes, i.e., Parseval's formula holds (with ordinary convergence) for/ G L and g G HBV. -
1 Infinite Sequences and Series
1 Infinite Sequences and Series In experimental science and engineering, as well as in everyday life, we deal with integers, or at most rational numbers. Yet in theoretical analysis, we use real and complex numbers, as well as far more abstract mathematical constructs, fully expecting that this analysis will eventually provide useful models of natural phenomena. Hence we proceed through the con- struction of the real and complex numbers starting from the positive integers1. Understanding this construction will help the reader appreciate many basic ideas of analysis. We start with the positive integers and zero, and introduce negative integers to allow sub- traction of integers. Then we introduce rational numbers to permit division by integers. From arithmetic we proceed to analysis, which begins with the concept of convergence of infinite sequences of (rational) numbers, as defined here by the Cauchy criterion. Then we define irrational numbers as limits of convergent (Cauchy) sequences of rational numbers. In order to solve algebraic equations in general, we must introduce complex numbers and the representation of complex numbers as points in the complex plane. The fundamental theorem of algebra states that every polynomial has at least one root in the complex plane, from which it follows that every polynomial of degree n has exactly n roots in the complex plane when these roots are suitably counted. We leave the proof of this theorem until we study functions of a complex variable at length in Chapter 4. Once we understand convergence of infinite sequences, we can deal with infinite series of the form ∞ xn n=1 and the closely related infinite products of the form ∞ xn n=1 Infinite series are central to the study of solutions, both exact and approximate, to the differ- ential equations that arise in every branch of physics. -
Convergence of Fourier Series
CONVERGENCE OF FOURIER SERIES KEVIN STEPHEN STOTTER CUDDY Abstract. This paper sets out to explore and explain some of the basic con- cepts of Fourier analysis and its applications. Convolution and questions of convergence will be central. An application to the isoperimetric inequality will conclude the paper. Contents 1. Introduction to Fourier Series 1 2. Convolution and Kernels 2 3. Criteria for Convergence 8 4. Isoperimetric Inequality 18 Acknowledgments 19 References 19 1. Introduction to Fourier Series It will be important for the reader to recall Euler's Formula: ix (1.1) e = cos(x) + i sin(x); 8x 2 R Throughout this paper, an \integrable" function should be interpreted as integrable in the Riemann sense as well as bounded. Definition 1.2. For an integrable, bounded function f :[a; b] ! C we can define, for any integer n, the nth Fourier coefficient 1 Z b f^(n) = f(x)e−2πinx=(b−a)dx: b − a a When there is no question about the function we are referring to we may write ^ P1 ^ 2πinx f(n) = an. From these coefficients we get the Fourier series S(x) = n=−∞ f(n)e (note that this sum may or may not converge). To denote that a Fourier series is associated to a function f we write 1 X f ∼ f^(n)e2πinx n=−∞ Definition 1.3. The N th partial sum of the Fourier series for f, where N is a PN ^ 2πinx=L positive integer, is given by SN (f)(x) = n=−N f(n)e . Date: DEADLINE AUGUST 26, 2012. -
Complex Analysis Mario Bonk
Complex Analysis Mario Bonk Course notes for Math 246A and 246B University of California, Los Angeles Contents Preface 6 1 Algebraic properties of complex numbers 8 2 Topological properties of C 18 3 Differentiation 26 4 Path integrals 38 5 Power series 43 6 Local Cauchy theorems 55 7 Power series representations 62 8 Zeros of holomorphic functions 68 9 The Open Mapping Theorem 74 10 Elementary functions 79 11 The Riemann sphere 86 12 M¨obiustransformations 92 13 Schwarz's Lemma 105 14 Winding numbers 113 15 Global Cauchy theorems 122 16 Isolated singularities 129 17 The Residue Theorem 142 18 Normal families 152 19 The Riemann Mapping Theorem 161 3 CONTENTS 4 20 The Cauchy transform 170 21 Runge's Approximation Theorem 179 References 187 Preface These notes cover the material of a course on complex analysis that I taught repeatedly at UCLA. In many respects I closely follow Rudin's book on \Real and Complex Analysis". Since Walter Rudin is the unsurpassed master of mathematical exposition for whom I have great admiration, I saw no point in trying to improve on his presentation of subjects that are relevant for the course. The notes give a fairly accurate account of the material covered in class. They are rather terse as oral discussions that gave further explanations or put results into perspective are mostly omitted. In addition, all pictures and diagrams are currently missing as it is much easier to produce them on the blackboard than to put them into print. 6 1 Algebraic properties of complex numbers 1.1.