Outburst and Splitting of Interstellar Comet 2I/Borisov
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
SPECIAL Comet Shoemaker-Levy 9 Collides with Jupiter
SL-9/JUPITER ENCOUNTER - SPECIAL Comet Shoemaker-Levy 9 Collides with Jupiter THE CONTINUATION OF A UNIQUE EXPERIENCE R.M. WEST, ESO-Garching After the Storm Six Hectic Days in July eration during the first nights and, as in other places, an extremely rich data The recent demise of comet Shoe ESO was but one of many profes material was secured. It quickly became maker-Levy 9, for simplicity often re sional observatories where observations evident that infrared observations, es ferred to as "SL-9", was indeed spectac had been planned long before the critical pecially imaging with the far-IR instru ular. The dramatic collision of its many period of the "SL-9" event, July 16-22, ment TIMMI at the 3.6-metre telescope, fragments with the giant planet Jupiter 1994. It is now clear that practically all were perfectly feasible also during day during six hectic days in July 1994 will major observatories in the world were in time, and in the end more than 120,000 pass into the annals of astronomy as volved in some way, via their telescopes, images were obtained with this facility. one of the most incredible events ever their scientists or both. The only excep The programmes at most of the other predicted and witnessed by members of tions may have been a few observing La Silla telescopes were also successful, this profession. And never before has a sites at the northernmost latitudes where and many more Gigabytes of data were remote astronomical event been so ac the bright summer nights and the very recorded with them. -
KAREN J. MEECH February 7, 2019 Astronomer
BIOGRAPHICAL SKETCH – KAREN J. MEECH February 7, 2019 Astronomer Institute for Astronomy Tel: 1-808-956-6828 2680 Woodlawn Drive Fax: 1-808-956-4532 Honolulu, HI 96822-1839 [email protected] PROFESSIONAL PREPARATION Rice University Space Physics B.A. 1981 Massachusetts Institute of Tech. Planetary Astronomy Ph.D. 1987 APPOINTMENTS 2018 – present Graduate Chair 2000 – present Astronomer, Institute for Astronomy, University of Hawaii 1992-2000 Associate Astronomer, Institute for Astronomy, University of Hawaii 1987-1992 Assistant Astronomer, Institute for Astronomy, University of Hawaii 1982-1987 Graduate Research & Teaching Assistant, Massachusetts Inst. Tech. 1981-1982 Research Specialist, AAVSO and Massachusetts Institute of Technology AWARDS 2018 ARCs Scientist of the Year 2015 University of Hawai’i Regent’s Medal for Research Excellence 2013 Director’s Research Excellence Award 2011 NASA Group Achievement Award for the EPOXI Project Team 2011 NASA Group Achievement Award for EPOXI & Stardust-NExT Missions 2009 William Tylor Olcott Distinguished Service Award of the American Association of Variable Star Observers 2006-8 National Academy of Science/Kavli Foundation Fellow 2005 NASA Group Achievement Award for the Stardust Flight Team 1996 Asteroid 4367 named Meech 1994 American Astronomical Society / DPS Harold C. Urey Prize 1988 Annie Jump Cannon Award 1981 Heaps Physics Prize RESEARCH FIELD AND ACTIVITIES • Developed a Discovery mission concept to explore the origin of Earth’s water. • Co-Investigator on the Deep Impact, Stardust-NeXT and EPOXI missions, leading the Earth-based observing campaigns for all three. • Leads the UH Astrobiology Research interdisciplinary program, overseeing ~30 postdocs and coordinating the research with ~20 local faculty and international partners. -
Disintegration of Active Asteroid P/2016 G1 (PANSTARRS) Olivier R
A&A 628, A48 (2019) https://doi.org/10.1051/0004-6361/201935868 Astronomy & © ESO 2019 Astrophysics Disintegration of active asteroid P/2016 G1 (PANSTARRS) Olivier R. Hainaut1, Jan T. Kleyna2, Karen J. Meech2, Mark Boslough3, Marco Micheli4,5, Richard Wainscoat2, Marielle Dela Cruz2, Jacqueline V. Keane2, Devendra K. Sahu6, and Bhuwan C. Bhatt6 1 European Southern Observatory, Karl-Schwarzschild-Strasse 2, 85748 Garching bei München, Germany e-mail: [email protected] 2 Institute for Astronomy, 2680 Woodlawn Drive, Honolulu, HI 96822, USA 3 University of NM – 1700 Lomas Blvd, NE. Suite 2200, Albuquerque, NM 87131-0001 USA 4 ESA SSA-NEO Coordination Centre, Largo Galileo Galilei, 1 00044 Frascati (RM), Italy 5 INAF – Osservatorio Astronomico di Roma, Via Frascati, 33, 00040 Monte Porzio Catone (RM), Italy 6 Indian Institute of Astrophysics, II Block, Koramangala, Bengaluru 560 034, India Received 10 May 2019 / Accepted 26 June 2019 ABSTRACT We report on the catastrophic disintegration of P/2016 G1 (PANSTARRS), an active asteroid, in April 2016. Deep images over three months show that the object is made up of a central concentration of fragments surrounded by an elongated coma, and presents previously unreported sharp arc-like and narrow linear features. The morphology and evolution of these characteristics independently point toward a brief event on 2016 March 6. The arc and the linear feature can be reproduced by large particles on a ring, moving at ∼2:5 m s−1. The expansion of the ring defines a cone with a ∼40◦ half-opening. We propose that the P/2016 G1 was hit by a small object which caused its (partial or total) disruption, and that the ring corresponds to large fragments ejected during the final stages of the crater formation. -
Early Observations of the Interstellar Comet 2I/Borisov
geosciences Article Early Observations of the Interstellar Comet 2I/Borisov Chien-Hsiu Lee NSF’s National Optical-Infrared Astronomy Research Laboratory, Tucson, AZ 85719, USA; [email protected]; Tel.: +1-520-318-8368 Received: 26 November 2019; Accepted: 11 December 2019; Published: 17 December 2019 Abstract: 2I/Borisov is the second ever interstellar object (ISO). It is very different from the first ISO ’Oumuamua by showing cometary activities, and hence provides a unique opportunity to study comets that are formed around other stars. Here we present early imaging and spectroscopic follow-ups to study its properties, which reveal an (up to) 5.9 km comet with an extended coma and a short tail. Our spectroscopic data do not reveal any emission lines between 4000–9000 Angstrom; nevertheless, we are able to put an upper limit on the flux of the C2 emission line, suggesting modest cometary activities at early epochs. These properties are similar to comets in the solar system, and suggest that 2I/Borisov—while from another star—is not too different from its solar siblings. Keywords: comets: general; comets: individual (2I/Borisov); solar system: formation 1. Introduction 2I/Borisov was first seen by Gennady Borisov on 30 August 2019. As more observations were conducted in the next few days, there was growing evidence that this might be an interstellar object (ISO), especially its large orbital eccentricity. However, the first astrometric measurements do not have enough timespan and are not of same quality, hence the high eccentricity is yet to be confirmed. This had all changed by 11 September; where more than 100 astrometric measurements over 12 days, Ref [1] pinned down the orbit elements of 2I/Borisov, with an eccentricity of 3.15 ± 0.13, hence confirming the interstellar nature. -
Photometric Study of Two Near-Earth Asteroids in the Sloan Digital Sky Survey Moving Objects Catalog
University of North Dakota UND Scholarly Commons Theses and Dissertations Theses, Dissertations, and Senior Projects January 2020 Photometric Study Of Two Near-Earth Asteroids In The Sloan Digital Sky Survey Moving Objects Catalog Christopher James Miko Follow this and additional works at: https://commons.und.edu/theses Recommended Citation Miko, Christopher James, "Photometric Study Of Two Near-Earth Asteroids In The Sloan Digital Sky Survey Moving Objects Catalog" (2020). Theses and Dissertations. 3287. https://commons.und.edu/theses/3287 This Thesis is brought to you for free and open access by the Theses, Dissertations, and Senior Projects at UND Scholarly Commons. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of UND Scholarly Commons. For more information, please contact [email protected]. PHOTOMETRIC STUDY OF TWO NEAR-EARTH ASTEROIDS IN THE SLOAN DIGITAL SKY SURVEY MOVING OBJECTS CATALOG by Christopher James Miko Bachelor of Science, Valparaiso University, 2013 A Thesis Submitted to the Graduate Faculty of the University of North Dakota in partial fulfillment of the requirements for the degree of Master of Science Grand Forks, North Dakota August 2020 Copyright 2020 Christopher J. Miko ii Christopher J. Miko Name: Degree: Master of Science This document, submitted in partial fulfillment of the requirements for the degree from the University of North Dakota, has been read by the Faculty Advisory Committee under whom the work has been done and is hereby approved. ____________________________________ Dr. Ronald Fevig ____________________________________ Dr. Michael Gaffey ____________________________________ Dr. Wayne Barkhouse ____________________________________ Dr. Vishnu Reddy ____________________________________ ____________________________________ This document is being submitted by the appointed advisory committee as having met all the requirements of the School of Graduate Studies at the University of North Dakota and is hereby approved. -
Make a Comet Materials: Students Should First Line Their Mixing Bowls with Trash Bags
Build Your Own Comet Prep Time: 30 minutes Grades: 6-8 Lesson Time: 55 minutes Essential Questions: • What is a comet composed of? • What gives a comet its tail? • What makes a comet different from other Near-Earth Objects (NEOs)? Objectives: • Create a physical representation of a comet and its properties. • Observe distinguishable factors between comets and other NEOs. Standards: • MS – PS1-4: Develop a model that predicts and describes changes in particle motion, temperature, and state of a pure substance when thermal energy is added or removed. • CCSS.ELA-LITERACY.RST.6-8.3 - Follow precisely a multistep procedure when carrying out experiments, taking measurements, or performing technical tasks. Teacher Prep: • Materials per comet: o 5 lbs. dry ice, ice chest, paper cups, towels, small container (for scooping), wooden or plastic mixing spoon, trash bag, mixing bowl, heavy work gloves, 1 tablespoon or less of starch, 1 tablespoon or less of dark corn syrup (or soda), 1 tablespoon or less of vinegar, 1 tablespoon or less of rubbing alcohol, large beaker, water, 1 c dirt/sand, 1 L of water. • Additional materials: o Hammer or mallet, paper cups, towels, flashlight, hair dryer. • Most of the dry ice needs to be in a fine powder before the students arrive, so use the hammer to do this ahead of time. There should be about 50-60% fine powder in order to hold the comet together. It is best to separate the dry ice ahead of time with towels. • This can also be done as a class demonstration. Teacher Notes/Background: • This lesson was adapted from NASA’s Make Your Own Comet activity. -
Comet Section Observing Guide
Comet Section Observing Guide 1 The British Astronomical Association Comet Section www.britastro.org/comet BAA Comet Section Observing Guide Front cover image: C/1995 O1 (Hale-Bopp) by Geoffrey Johnstone on 1997 April 10. Back cover image: C/2011 W3 (Lovejoy) by Lester Barnes on 2011 December 23. © The British Astronomical Association 2018 2018 December (rev 4) 2 CONTENTS 1 Foreword .................................................................................................................................. 6 2 An introduction to comets ......................................................................................................... 7 2.1 Anatomy and origins ............................................................................................................................ 7 2.2 Naming .............................................................................................................................................. 12 2.3 Comet orbits ...................................................................................................................................... 13 2.4 Orbit evolution .................................................................................................................................... 15 2.5 Magnitudes ........................................................................................................................................ 18 3 Basic visual observation ........................................................................................................ -
The Comet's Tale
THE COMET’S TALE Newsletter of the Comet Section of the British Astronomical Association Volume 5, No 1 (Issue 9), 1998 May A May Day in February! Comet Section Meeting, Institute of Astronomy, Cambridge, 1998 February 14 The day started early for me, or attention and there were displays to correct Guide Star magnitudes perhaps I should say the previous of the latest comet light curves in the same field. If you haven’t day finished late as I was up till and photographs of comet Hale- got access to this catalogue then nearly 3am. This wasn’t because Bopp taken by Michael Hendrie you can always give a field sketch the sky was clear or a Valentine’s and Glynn Marsh. showing the stars you have used Ball, but because I’d been reffing in the magnitude estimate and I an ice hockey match at The formal session started after will make the reduction. From Peterborough! Despite this I was lunch, and I opened the talks with these magnitude estimates I can at the IOA to welcome the first some comments on visual build up a light curve which arrivals and to get things set up observation. Detailed instructions shows the variation in activity for the day, which was more are given in the Section guide, so between different comets. Hale- reminiscent of May than here I concentrated on what is Bopp has demonstrated that February. The University now done with the observations and comets can stray up to a offers an undergraduate why it is important to be accurate magnitude from the mean curve, astronomy course and lectures are and objective when making them. -
Interstellar Comet 2I/Borisov
Interstellar comet 2I/Borisov Piotr Guzik1*, Michał Drahus1*, Krzysztof Rusek2, Wacław Waniak1, Giacomo Cannizzaro3,4, Inés Pastor-Marazuela5,6 1 Astronomical Observatory, Jagiellonian University, ul. Orla 171, 30-244 Kraków, Poland 2 AGH University of Science and Technology, al. Mickiewicza 30, Kraków 30-059, Poland 3 SRON, Netherlands Institute for Space Research, Sorbonnelaan, 2, NL-3584CA Utrecht, the Netherlands 4 Department of Astrophysics/IMAPP, Radboud University, P.O. Box 9010, 6500 GL Nijmegen, the Netherlands 5 Anton Pannekoek Institute for Astronomy, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands 6 ASTRON, Netherlands Institute for Radio Astronomy, Oude Hoogeveensedijk 4, 7991 PD Dwingeloo, The Netherlands * These authors contributed equally to this work. Interstellar comets penetrating through the Solar System were anticipated for decades1,2. The discovery of non-cometary 1I/‘Oumuamua by Pan-STARRS was therefore a huge surprise and puzzle. Furthermore, its physical properties turned out to be impossible to reconcile with Solar System objects3-5, which radically changed our view on interstellar minor bodies. Here, we report the identification of a new interstellar object which has an evidently cometary appearance. The body was identified by our data mining code in publicly available astrometric data. The data clearly show significant systematic deviation from what is expected for a parabolic orbit and are consistent with an enormous orbital eccentricity of 3.14 ± 0.14. Images taken by the William Herschel Telescope and Gemini North telescope show an extended coma and a faint, broad tail – the canonical signatures of cometary activity. The observed g’ and r’ magnitudes are equal to 19.32 ± 0.02 and 18.69 ± 0.02, respectively, implying g’-r’ color index of 0.63 ± 0.03, essentially the same as measured for the native Solar System comets. -
Initial Characterization of Interstellar Comet 2I/Borisov
Initial characterization of interstellar comet 2I/Borisov Piotr Guzik1*, Michał Drahus1*, Krzysztof Rusek2, Wacław Waniak1, Giacomo Cannizzaro3,4, Inés Pastor-Marazuela5,6 1 Astronomical Observatory, Jagiellonian University, Kraków, Poland 2 AGH University of Science and Technology, Kraków, Poland 3 SRON, Netherlands Institute for Space Research, Utrecht, the Netherlands 4 Department of Astrophysics/IMAPP, Radboud University, Nijmegen, the Netherlands 5 Anton Pannekoek Institute for Astronomy, University of Amsterdam, Amsterdam, the Netherlands 6 ASTRON, Netherlands Institute for Radio Astronomy, Dwingeloo, the Netherlands * These authors contributed equally to this work; email: [email protected], [email protected] Interstellar comets penetrating through the Solar System had been anticipated for decades1,2. The discovery of asteroidal-looking ‘Oumuamua3,4 was thus a huge surprise and a puzzle. Furthermore, the physical properties of the ‘first scout’ turned out to be impossible to reconcile with Solar System objects4–6, challenging our view of interstellar minor bodies7,8. Here, we report the identification and early characterization of a new interstellar object, which has an evidently cometary appearance. The body was discovered by Gennady Borisov on 30 August 2019 UT and subsequently identified as hyperbolic by our data mining code in publicly available astrometric data. The initial orbital solution implies a very high hyperbolic excess speed of ~32 km s−1, consistent with ‘Oumuamua9 and theoretical predictions2,7. Images taken on 10 and 13 September 2019 UT with the William Herschel Telescope and Gemini North Telescope show an extended coma and a faint, broad tail. We measure a slightly reddish colour with a g′–r′ colour index of 0.66 ± 0.01 mag, compatible with Solar System comets. -
Gemini Observations of Active Asteroid 354P/LINEAR (2010 A2)
Gemini Observations of Active Asteroid 354P/LINEAR (2010 A2) Yoonyoung Kim, Masateru Ishiguro Seoul National University (Korea) Science & Evolution of Gemini Observatory 2018 Fisherman’s Wharf, San Francisco Contents • Overview • Active asteroids resulting from impacts • The case of 354P/LINEAR (2010 A2) • Concluding remark Overview “Small Solar System bodies are primitive, but...” Solar System Formation “Snow line” Credit: Univ. of Hawaii Primitive small bodies Kuiper Belt ~30-55 AU Oort Cloud ~104-105 AU Yeomans 2000 Primitive small bodies (easy to observe) are comets and asteroids Kuiper Belt ~30-55 AU Oort Cloud ~104-105 AU Yeomans 2000 but, primitive small bodies also evolved... by solar radiative heating by impacts NASA/JPL/Univ. of Maryland but, primitive small bodies also evolved... by solar radiative heating by impacts NASA/JPL/Univ. of Maryland Purpose of this study • We aim to figure out one of the major evolutionary processes in the Solar System (impacts) through observational studies of • Active asteroids resulting from impacts • The case of 354P/LINEAR (2010 A2) Comets Active Asteroids Active asteroids Dormant Comets Asteroids resulting from impacts : The case of 354P/LINEAR (2010 A2) Kim, Y., Ishiguro, M., et al. 2017, AJ Kim, Y., Ishiguro, M., & Lee, M. G. 2017, ApJL Background “Evidences of past impacts” Credit: D. Jewitt The case of (596) Scheila Ishiguro+2011 The case of 354P/2010 A2 Jewitt+2011 The case of 354P/2010 A2 The case of 354P/2010 A2 Previous modelings (Jewitt+10,13; Snodgrass+10; Hainaut+12; Agarwal+13; Kleyna+13) Jewitt+2013 Kleyna+2013 Observation 2010 Model Observation Agarwal+2013 Obs. -
Detection of Exocometary CO Within the 440 Myr Old Fomalhaut Belt: a Similar CO+CO2 Ice Abundance in Exocomets and Solar System Comets
UCLA UCLA Previously Published Works Title Detection of Exocometary CO within the 440 Myr Old Fomalhaut Belt: A Similar CO+CO2 Ice Abundance in Exocomets and Solar System Comets Permalink https://escholarship.org/uc/item/1zf7t4qn Journal Astrophysical Journal, 842(1) ISSN 0004-637X Authors Matra, L MacGregor, MA Kalas, P et al. Publication Date 2017-06-10 DOI 10.3847/1538-4357/aa71b4 Peer reviewed eScholarship.org Powered by the California Digital Library University of California The Astrophysical Journal, 842:9 (15pp), 2017 June 10 https://doi.org/10.3847/1538-4357/aa71b4 © 2017. The American Astronomical Society. All rights reserved. Detection of Exocometary CO within the 440 Myr Old Fomalhaut Belt: A Similar CO+CO2 Ice Abundance in Exocomets and Solar System Comets L. Matrà1, M. A. MacGregor2, P. Kalas3,4, M. C. Wyatt1, G. M. Kennedy1, D. J. Wilner2, G. Duchene3,5, A. M. Hughes6, M. Pan7, A. Shannon1,8,9, M. Clampin10, M. P. Fitzgerald11, J. R. Graham3, W. S. Holland12, O. Panić13, and K. Y. L. Su14 1 Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA, UK; [email protected] 2 Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138, USA 3 Astronomy Department, University of California, Berkeley CA 94720-3411, USA 4 SETI Institute, Mountain View, CA 94043, USA 5 Univ. Grenoble Alpes/CNRS, IPAG, F-38000 Grenoble, France 6 Department of Astronomy, Van Vleck Observatory, Wesleyan University, 96 Foss Hill Dr., Middletown, CT 06459, USA 7 MIT Department of Earth, Atmospheric, and