Microheater Array Powder Sintering (MAPS) for Printing Flexible Electronics Nicholas Holt University of Arkansas, Fayetteville
Total Page:16
File Type:pdf, Size:1020Kb
University of Arkansas, Fayetteville ScholarWorks@UARK Theses and Dissertations 5-2018 Microheater Array Powder Sintering (MAPS) for Printing Flexible Electronics Nicholas Holt University of Arkansas, Fayetteville Follow this and additional works at: http://scholarworks.uark.edu/etd Part of the Applied Mechanics Commons, and the Electro-Mechanical Systems Commons Recommended Citation Holt, Nicholas, "Microheater Array Powder Sintering (MAPS) for Printing Flexible Electronics" (2018). Theses and Dissertations. 2811. http://scholarworks.uark.edu/etd/2811 This Thesis is brought to you for free and open access by ScholarWorks@UARK. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of ScholarWorks@UARK. For more information, please contact [email protected], [email protected]. Microheater Array Powder Sintering (MAPS) for Printing Flexible Electronics A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Mechanical Engineering by Nicholas Holt University of Arkansas Bachelor of Science in Mechanical Engineering, 2014 May 2018 University of Arkansas This thesis is approved for recommendation to the Graduate Council Wenchao Zhou, PhD Thesis Director Steve Tung, PhD Simon Ang, PhD Committee Member Committee Member Abstract Microheater array powder sintering (MAPS) is a novel additive manufacturing process that uses an array of microheaters to selectively sinter powder particles. MAPS shows great promise as a new method of printing flexible electronics by enabling digital curing of conductive inks on a variety of substrates. MAPS operation relies on establishing a precision air gap of a few microns between an array of microheaters, which can reach temperatures of 600°C, and a layer of conductive ink which can be deposited onto a flexible substrate. This system presents challenges, being: the fabrication of a microheater that can reach suitable temperatures in an acceptable time frame and is reliable, electronic control of a single microheater, electronic control of an array of microheaters, and precise control of the position of the array of microheaters relative to the substrate. This work describes the design and fabrication of a printer which uses this novel technology to print flexible circuit boards. Various simulations are discussed which are used to explore the parameters affecting the MAPS printing process. Then, a small microheater array is fabricated and controlled using an electronic circuit using a PID feedback loop. This microheater array is used in an experimental proof of concept machine to print conductive lines onto a flexible substrate. Finally, a prototype MAPS printer is developed which is capable of using an improved microheater array to print simple circuits onto flexible substrates. Acknowledgements I gratefully acknowledge the help of my lab mates for their continued support throughout my graduate career: Chao Sui, Edidiong Udofia, and Mahsa Montezeri. I would also like to thank Lucas Galvan Marques for his role in designing electronic components that were used for this project. I would also like to credit Steven Brown, who helped tremendously in creating the first proof of concept printer described in this thesis. Thank you to Errol Porter, Clint Hardee, and other members of the HiDEC staff at the University of Arkansas for their expert advice when fabricating components for this project. Lastly, thank you to my advisor Dr. Wenchao Zhou for helping me reach my potential; I have not met anyone else with as much passion for a project as him. And of course, thank you to the University of Arkansas and Oak Ridge Associated Universities for the funding which made this project possible. Table of Contents CHAPTER 1 Introduction............................................................................................................... 1 1.1 Flexible Electronics .......................................................................................................... 1 1.2 Manufacturing Technologies and Limitations ................................................................. 1 1.3 Problem Formulation........................................................................................................ 3 1.4 MAPS Printing ................................................................................................................. 4 1.5 Outline of Thesis .............................................................................................................. 5 CHAPTER 2 Literature Review ..................................................................................................... 6 2.1 Similar Additive Manufacturing Technologies ................................................................ 6 2.2 Rapid Sintering in Additive Manufacturing ................................................................... 10 2.3 Microheaters ................................................................................................................... 12 2.4 Gap Control .................................................................................................................... 15 CHAPTER 3 Microheater Development ...................................................................................... 18 3.1 Design and Numerical Modeling ................................................................................... 18 3.1.1 Numerical Model .................................................................................................... 19 3.1.2 Sintering of Silver Nanoparticles ............................................................................ 22 3.1.3 Effect of Dwell Time on Resolution ....................................................................... 23 3.1.4 Increasing Air Gap .................................................................................................. 25 3.2 Microheater Fabrication ................................................................................................. 28 3.2.1 Microheater Die Design .......................................................................................... 28 3.2.2 Microheater Die Fabrication ................................................................................... 30 3.2.3 Microheater Packaging ........................................................................................... 32 3.3 Microheater Control ....................................................................................................... 34 3.4 Microheater Validation .................................................................................................. 35 CHAPTER 4 Experimental Proof of Concept .............................................................................. 39 4.1 Design............................................................................................................................. 39 4.2 Experimental Setup ........................................................................................................ 40 4.2.1 Microheater Package ............................................................................................... 41 4.2.2 Printhead Assembly ................................................................................................ 42 4.2.3 Printing Stage .......................................................................................................... 43 4.2.4 Printhead Mount...................................................................................................... 44 4.3 Air Gap Analysis ............................................................................................................ 44 4.3.1 Contact Sensor ........................................................................................................ 45 4.3.2 Air Gap Tolerance................................................................................................... 46 4.3.3 Parallelism............................................................................................................... 47 4.3.4 Flatness and Total Thickness Variation .................................................................. 48 4.3.5 Surface Roughness .................................................................................................. 50 4.3.6 Deflection ................................................................................................................ 50 4.3.7 Air gap tolerance ..................................................................................................... 51 4.4 Printing Test ................................................................................................................... 52 4.4.1 Substrate and Printing Material .............................................................................. 52 4.4.2 Experimental Procedures ........................................................................................ 52 4.4.3 Results ..................................................................................................................... 54 4.4.4 Comparison to other processes ............................................................................... 55 CHAPTER 5 MAPS Printer for Flexible Electronics ................................................................... 57 5.1 Expanded Microheater Array ......................................................................................... 59 5.1.1 Design ....................................................................................................................