Comments on Gravitoelectromagnetism of Ummarino and Gallerati in “Superconductor in a Weak Static Gravitational Field” Vs Ot

Total Page:16

File Type:pdf, Size:1020Kb

Comments on Gravitoelectromagnetism of Ummarino and Gallerati in “Superconductor in a Weak Static Gravitational Field” Vs Ot Eur. Phys. J. C (2017) 77:822 https://doi.org/10.1140/epjc/s10052-017-5386-4 Comment Comments on gravitoelectromagnetism of Ummarino and Gallerati in “Superconductor in a weak static gravitational field” vs other versions Harihar Beheraa Physics Department, BIET Higher Secondary School, Govindpur, Dhenkanal 759001, Odisha, India Received: 12 September 2017 / Accepted: 14 November 2017 / Published online: 2 December 2017 © The Author(s) 2017. This article is an open access publication Abstract Recently reported [Eur. Phys. J. C., 77, 549 ∇·Eg =−4πGρg, (1) (2017). https://doi.org/10.1140/epjc/s10052-017-5116-y] ∇·Bg = 0, (2) gravitoelectromagnetic equations of Ummarino and Gallerati 4πG 1 ∂Eg (UG) in their linearized version of general relativity (GR) are ∇×Bg =− jg + , (3) c2 c2 ∂t shown to match with (a) our previously reported special rela- g g ∂ tivistic Maxwellian Gravity equations in the non-relativistic Bg ∇×Eg =− , (4) limit and with (b) the non-relativistic equations derived here, ∂t when the speed of gravity cg (an undetermined parameter of and the equation of motion of a particle moving with non- the theory here) is set equal to c (the speed of light in vac- relativistic velocity, v, is given by Gravito-Lorentz force law: uum). Seen in the light of our new results, the UG equations satisfy the Correspondence Principle (cp), while many other dv = Eg + v × Bg. (5) versions of linearized GR equations that are being (or may be) dt used to interpret the experimental data defy the cp. Such new In the above equations ρg = ρ0 is the (rest) mass density, findings assume significance and relevance in the contexts jg = ρgv mass current density, the speed of gravitational of recent detection of gravitational waves and the gravito- waves in vacuum cg = c (the speed of light in vacuum) magnetic field of the spinning earth and their interpretations. in [1], Eg is the usual Newtonian gravitational field (called Being well-founded and self-consistent, the equations may gravitoelectric field) and Bg is the gravitational analogue of be of interest and useful to researchers exploring the phe- magnetic induction field (called gravito-magnetic field). The nomenology of gravitomagnetism, gravitational waves and Eg and Bg fields are related to gravitoelectric scalar potential the novel interplay of gravity with different states of matter φg and gravitomagnetic vector potential Ag as in flat space-time like UG’s interesting work on supercon- ∂Ag ductors in weak gravitational fields. E =−∇φ − , (6) g g ∂t Bg =∇×Ag. (7) 1 Introduction Ummarino and Gallerati [1] derived these equations from Einstein’s GR by linearization procedure in the weak field In a recent interesting theoretical study on the interplay and slow motion approximations. We name the Eqs. (1–7) of superconductivity and weak static gravitational field, to represent the General Relativistic Maxwellian Gravity of Ummarino and Gallerati [1] concluded that the reduction Ummarino-Gallerati as (GRMG-UG) to differentiate it from of the gravitational field in a superconductor, if it exists, is other existing (or future) formulations that (may) result from a transient phenomenon and depends strongly on the param- different methods of study. For instance, in this communica- eters that characterize the superconductor. The gravitational tion we show how one can derive these equations in a non- equations used by the authors in their study are represented relativistic approach without invoking the space-time curva- by the following Gravito-Maxwell Equations: ture and the linearization schemes of GR. By adopting, in essence, the non-relativistic approach of Schwinger et al. [2] a e-mail: [email protected] for their derivation of Maxwell’s equations and the Lorentz 123 822 Page 2 of 19 Eur. Phys. J. C (2017) 77 :822 force law in the electromagnetic case, we derive the fun- literature as new crucial tests of general relativity having no damental equations of Time-Dependent Galileo-Newtonian Galileo-Newtonian counterpart. For instance, Ciufolini et al. Gravitodynamics of moving bodies (called here as Non- [10], in their report of measurement of the Lense-Thirring Relativistic Maxwellian Gravity or NRMG in short) within effect4 stated: the Galileo-Newtonian relativity physics by combining the Newton’s law of gravitation has a formal counterpart following ingredients: in Coulomb’s law of electrostatics; however, Newton’s the- ory has no phenomenon formally analogous to magnetism. (a) The validity of Newton’s laws of gravitostatics, On the other hand, Einstein’s theory of gravitation predicts (b) The validity of the equation of continuity that expresses that the force generated by a current of electrical charge, the law of conservation of mass,1 and described by Ampère’s law, should also have a formal coun- (c) Postulating the existence of gravitational waves trav- terpart “force” generated by a current of mass. eling in free space with a finite velocity cg (which is an undetermined parameter of the theory but whose value may be fixed in measurement of physical quan- 2 Non-relativistic Maxwellian gravity (NRMG) tities involving cg or by comparing the field equations 5 with those obtainable from more advanced theories). In Galileo-Newtonian physics, gravitational mass, mg,is the source of Newtonian gravitational field, Eg, which obeys As will be shown here, our derived equations of NRMG the following two equations, viz., match with the Eqs. (1–7) of GRMG-UG, if c = c. Further, g ∇·E =−4πGρ and (8) if c = c, the equations of NRMG also match with those g g g ∇× = , of Special Relativistic Maxwellian Gravity (SRMG) [3]2 in Eg 0 (9) flat space-time, where c = c is a natural outcome of the g where ρg = ρ0 is the (positive) rest mass density (to be theory there (here discussed in Sect. 3). From McDonald’s shown shortly in this section and also in the next section in [4] report of little known Heaviside’s Gravity (HG) [4,5] the relativistic case) and G is Newton’s universal gravita- 3 of 1893, we find that the equations of NRMG also match tional constant having the value 6.674 × 10−11 N · m2/kg2. with those of HG in which Heaviside thought cg might be In an inertial frame, the gravitational force on a point parti- equal to c. These findings assume significance and relevance cle having gravitational mass mg in a gravitational field Eg in the contexts of recent experimental detection of gravita- is expressed as tional waves [6–9], gravito-magnetic field of the spinning Earth using the orbital data of two laser-ranged satellites Fg = mgEg =−mg∇φg, (10) (LAGEOS and LAGEOS II) [10–14] and the Gavity Probe B (GP-B) experimental results [15–17] vindicating Einstein’s where φg is gravitational potential at the position of mg. Fur- GR, because all of these results are being interpreted in the ther, the mass that appears in Newton’s second law of motion, which Newton actually wrote in The Principia, is of the fol- 1 Schwinger et al. [2] derived (b) using the Galileo-Newton principle lowing form (valid only in inertial frames): of relativity (masses at rest and masses with a common velocity viewed by a co-moving observer are physically indistinguishable). Here, we d will use this relativity principle for deriving the gravitational analogue (mv) = F = Net force on m, (11) of the Lorentz force law. dt 2 We named our relativistic gravity as Maxwellian Gravity since J. C. is called the inertial mass, m, which is a measure of inertia Maxwell [J.C Maxwell, Phil. Trans. Roy. Soc. London 155, 459–512 of a body’s resistance to any change in its state of motion (1865), sec. 82: Note on the Attraction of Gravitation] first tried to con- = struct a field theory of gravity analogous to Classical Electromagnetic represented by its velocity v or linear momentum p mv. theory and did not work on the matter further as “He was dissatisfied If m does not change with time, then the most powerful and with his results because the potential energy of a static configuration is profound Eq. (11) of Newton in classical physics, whose always negative but he felt this should be re-expressible as an integral form survived special relativistic revolution, takes the famil- over field energy density which, being the square of the gravitational v<< field, is positive [3,4]. Maxwell concluded his note on the attraction of iar non-relativistic ( c)form, gravitation with the statement,“As I am unable to understand in what dv way a medium can possess such properties, I cannot go any further in m = ma = F, (12) this direction in searching for the cause of gravitation”. dt 3 Reproduced in (1.) O. Heaviside, Electromagnetic Theory, Vol. 1, 4 455–465. The Electrician Printing and Publishing Co., London, (1894); This effect and the precessing spin axis of on board gyroscopes of the (2.) O. Heaviside, Electromagnetic Theory, Appendix B, pp. 115–118. GP-B experiment etc. can also be understood in terms of gravitomag- Dover, New York, (1950)(See also the quotation in the Introduction of netic effects. this book.); (3.) O. Heaviside, Electromagnetic Theory, Vol. 1, 3rd Ed. 5 The mass that appears in Newton’s law of Gravitation is called the 455–466. Chelsea Publishing Company, New York, N. Y., (1971). gravitational mass of a body. 123 Eur. Phys. J. C (2017) 77 :822 Page 3 of 19 822 where a is the acceleration of m as measured in an inertial his theory. Despite his great efforts, Newton could not offer a frame. In Galileo-Newtonian physics, inertia is of two types, plausible mechanism for resolving the problem of action-at- viz., inertia of rest and inertia of motion.
Recommended publications
  • Measurement of the Speed of Gravity
    Measurement of the Speed of Gravity Yin Zhu Agriculture Department of Hubei Province, Wuhan, China Abstract From the Liénard-Wiechert potential in both the gravitational field and the electromagnetic field, it is shown that the speed of propagation of the gravitational field (waves) can be tested by comparing the measured speed of gravitational force with the measured speed of Coulomb force. PACS: 04.20.Cv; 04.30.Nk; 04.80.Cc Fomalont and Kopeikin [1] in 2002 claimed that to 20% accuracy they confirmed that the speed of gravity is equal to the speed of light in vacuum. Their work was immediately contradicted by Will [2] and other several physicists. [3-7] Fomalont and Kopeikin [1] accepted that their measurement is not sufficiently accurate to detect terms of order , which can experimentally distinguish Kopeikin interpretation from Will interpretation. Fomalont et al [8] reported their measurements in 2009 and claimed that these measurements are more accurate than the 2002 VLBA experiment [1], but did not point out whether the terms of order have been detected. Within the post-Newtonian framework, several metric theories have studied the radiation and propagation of gravitational waves. [9] For example, in the Rosen bi-metric theory, [10] the difference between the speed of gravity and the speed of light could be tested by comparing the arrival times of a gravitational wave and an electromagnetic wave from the same event: a supernova. Hulse and Taylor [11] showed the indirect evidence for gravitational radiation. However, the gravitational waves themselves have not yet been detected directly. [12] In electrodynamics the speed of electromagnetic waves appears in Maxwell equations as c = √휇0휀0, no such constant appears in any theory of gravity.
    [Show full text]
  • Toy Models for Black Hole Evaporation
    UCSBTH-92-36 hep-th/9209113 Toy Models for Black Hole Evaporation∗ Steven B. Giddings† Department of Physics University of California Santa Barbara, CA 93106-9530 Abstract These notes first present a brief summary of the puzzle of information loss to black holes, of its proposed resolutions, and of the flaws in the proposed resolutions. There follows a review of recent attempts to attack this problem, and other issues in black hole physics, using two-dimensional dilaton gravity theories as toy models. These toy models contain collapsing black holes and have for the first time enabled an explicit semiclassical treatment of the backreaction of the Hawking radiation on the geometry of an evaporating black hole. However, a complete answer to the information conundrum seems to require physics beyond the semiclassical approximation. Preliminary attempts to make progress arXiv:hep-th/9209113v2 11 Nov 1992 in this direction, using connections to conformal field theory, are described. *To appear in the proceedings of the International Workshop of Theoretical Physics, 6th Session, String Quantum Gravity and Physics at the Planck Energy Scale, 21 – 28 June 1992, Erice, Italy. † Email addresses: [email protected], [email protected]. Since the discovery of black holes, physicists have been faced with the possibility that they engender a breakdown of predictability. At the classical level this breakdown arises at the singularity. Classically we do not know how to evolve past it. Inclusion of quantum effects may serve as a remedy, allowing predictable evolution, by smoothing out the singularities of general relativity. However, as suggested by Hawking [1,2], quantum effects also present another sharp challenge to predictability through the mechanism of Hawking evaporation.
    [Show full text]
  • Quantum Vacuum Energy Density and Unifying Perspectives Between Gravity and Quantum Behaviour of Matter
    Annales de la Fondation Louis de Broglie, Volume 42, numéro 2, 2017 251 Quantum vacuum energy density and unifying perspectives between gravity and quantum behaviour of matter Davide Fiscalettia, Amrit Sorlib aSpaceLife Institute, S. Lorenzo in Campo (PU), Italy corresponding author, email: [email protected] bSpaceLife Institute, S. Lorenzo in Campo (PU), Italy Foundations of Physics Institute, Idrija, Slovenia email: [email protected] ABSTRACT. A model of a three-dimensional quantum vacuum based on Planck energy density as a universal property of a granular space is suggested. This model introduces the possibility to interpret gravity and the quantum behaviour of matter as two different aspects of the same origin. The change of the quantum vacuum energy density can be considered as the fundamental medium which determines a bridge between gravity and the quantum behaviour, leading to new interest- ing perspectives about the problem of unifying gravity with quantum theory. PACS numbers: 04. ; 04.20-q ; 04.50.Kd ; 04.60.-m. Key words: general relativity, three-dimensional space, quantum vac- uum energy density, quantum mechanics, generalized Klein-Gordon equation for the quantum vacuum energy density, generalized Dirac equation for the quantum vacuum energy density. 1 Introduction The standard interpretation of phenomena in gravitational fields is in terms of a fundamentally curved space-time. However, this approach leads to well known problems if one aims to find a unifying picture which takes into account some basic aspects of the quantum theory. For this reason, several authors advocated different ways in order to treat gravitational interaction, in which the space-time manifold can be considered as an emergence of the deepest processes situated at the fundamental level of quantum gravity.
    [Show full text]
  • Experimental Tests of Quantum Gravity and Exotic Quantum Field Theory Effects
    Advances in High Energy Physics Experimental Tests of Quantum Gravity and Exotic Quantum Field Theory Effects Guest Editors: Emil T. Akhmedov, Stephen Minter, Piero Nicolini, and Douglas Singleton Experimental Tests of Quantum Gravity and Exotic Quantum Field Theory Effects Advances in High Energy Physics Experimental Tests of Quantum Gravity and Exotic Quantum Field Theory Effects Guest Editors: Emil T. Akhmedov, Stephen Minter, Piero Nicolini, and Douglas Singleton Copyright © 2014 Hindawi Publishing Corporation. All rights reserved. This is a special issue published in “Advances in High Energy Physics.” All articles are open access articles distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Editorial Board Botio Betev, Switzerland Ian Jack, UK Neil Spooner, UK Duncan L. Carlsmith, USA Filipe R. Joaquim, Portugal Luca Stanco, Italy Kingman Cheung, Taiwan Piero Nicolini, Germany EliasC.Vagenas,Kuwait Shi-Hai Dong, Mexico Seog H. Oh, USA Nikos Varelas, USA Edmond C. Dukes, USA Sandip Pakvasa, USA Kadayam S. Viswanathan, Canada Amir H. Fatollahi, Iran Anastasios Petkou, Greece Yau W. Wah, USA Frank Filthaut, The Netherlands Alexey A. Petrov, USA Moran Wang, China Joseph Formaggio, USA Frederik Scholtz, South Africa Gongnan Xie, China Chao-Qiang Geng, Taiwan George Siopsis, USA Hong-Jian He, China Terry Sloan, UK Contents Experimental Tests of Quantum Gravity and Exotic Quantum Field Theory Effects,EmilT.Akhmedov,
    [Show full text]
  • What Is Gravity and How Is Embedded in Mater Particles Giving Them Mass (Not the Higgs Field)? Stefan Mehedinteanu
    What Is Gravity and How Is Embedded in Mater Particles giving them mass (not the Higgs field)? Stefan Mehedinteanu To cite this version: Stefan Mehedinteanu. What Is Gravity and How Is Embedded in Mater Particles giving them mass (not the Higgs field)?. 2017. hal-01316929v6 HAL Id: hal-01316929 https://hal.archives-ouvertes.fr/hal-01316929v6 Preprint submitted on 23 Feb 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License What Is Gravity (Graviton) and How Is Embedded in Mater Particles Giving Them Mass (Not the Higgs Field)? Stefan Mehedinteanu1 1 (retired) Senior Researcher CITON-Romania; E-Mail: [email protected]; [email protected] “When Einstein was asked bout the discovery of new particles, the answer it was: firstly to clarify what is with the electron!” Abstract It will be shown how the Micro-black-holes particles produced at the horizon entry into a number of N 106162 by quantum fluctuation as virtual micro-black holes pairs like e+ e- creation, stay at the base of: the origin and evolution of Universe, the Black Holes (BH) nuclei of galaxies, of the free photons creation of near mass-less as by radiation decay that condensate later at Confinement in to the structure of gauge bosons (gluons) .
    [Show full text]
  • Relativity and Fundamental Physics
    Relativity and Fundamental Physics Sergei Kopeikin (1,2,*) 1) Dept. of Physics and Astronomy, University of Missouri, 322 Physics Building., Columbia, MO 65211, USA 2) Siberian State University of Geosystems and Technology, Plakhotny Street 10, Novosibirsk 630108, Russia Abstract Laser ranging has had a long and significant role in testing general relativity and it continues to make advance in this field. It is important to understand the relation of the laser ranging to other branches of fundamental gravitational physics and their mutual interaction. The talk overviews the basic theoretical principles underlying experimental tests of general relativity and the recent major achievements in this field. Introduction Modern theory of fundamental interactions relies heavily upon two strong pillars both created by Albert Einstein – special and general theory of relativity. Special relativity is a cornerstone of elementary particle physics and the quantum field theory while general relativity is a metric- based theory of gravitational field. Understanding the nature of the fundamental physical interactions and their hierarchic structure is the ultimate goal of theoretical and experimental physics. Among the four known fundamental interactions the most important but least understood is the gravitational interaction due to its weakness in the solar system – a primary experimental laboratory of gravitational physicists for several hundred years. Nowadays, general relativity is a canonical theory of gravity used by astrophysicists to study the black holes and astrophysical phenomena in the early universe. General relativity is a beautiful theoretical achievement but it is only a classic approximation to deeper fundamental nature of gravity. Any possible deviation from general relativity can be a clue to new physics (Turyshev, 2015).
    [Show full text]
  • Spacetime Geometry from Graviton Condensation: a New Perspective on Black Holes
    Spacetime Geometry from Graviton Condensation: A new Perspective on Black Holes Sophia Zielinski née Müller München 2015 Spacetime Geometry from Graviton Condensation: A new Perspective on Black Holes Sophia Zielinski née Müller Dissertation an der Fakultät für Physik der Ludwig–Maximilians–Universität München vorgelegt von Sophia Zielinski geb. Müller aus Stuttgart München, den 18. Dezember 2015 Erstgutachter: Prof. Dr. Stefan Hofmann Zweitgutachter: Prof. Dr. Georgi Dvali Tag der mündlichen Prüfung: 13. April 2016 Contents Zusammenfassung ix Abstract xi Introduction 1 Naturalness problems . .1 The hierarchy problem . .1 The strong CP problem . .2 The cosmological constant problem . .3 Problems of gravity ... .3 ... in the UV . .4 ... in the IR and in general . .5 Outline . .7 I The classical description of spacetime geometry 9 1 The problem of singularities 11 1.1 Singularities in GR vs. other gauge theories . 11 1.2 Defining spacetime singularities . 12 1.3 On the singularity theorems . 13 1.3.1 Energy conditions and the Raychaudhuri equation . 13 1.3.2 Causality conditions . 15 1.3.3 Initial and boundary conditions . 16 1.3.4 Outlining the proof of the Hawking-Penrose theorem . 16 1.3.5 Discussion on the Hawking-Penrose theorem . 17 1.4 Limitations of singularity forecasts . 17 2 Towards a quantum theoretical probing of classical black holes 19 2.1 Defining quantum mechanical singularities . 19 2.1.1 Checking for quantum mechanical singularities in an example spacetime . 21 2.2 Extending the singularity analysis to quantum field theory . 22 2.2.1 Schrödinger representation of quantum field theory . 23 2.2.2 Quantum field probes of black hole singularities .
    [Show full text]
  • Non-Abelian Gravitoelectromagnetism and Applications at Finite Temperature
    Hindawi Advances in High Energy Physics Volume 2020, Article ID 5193692, 8 pages https://doi.org/10.1155/2020/5193692 Research Article Non-Abelian Gravitoelectromagnetism and Applications at Finite Temperature A. F. Santos ,1 J. Ramos,2 and Faqir C. Khanna3 1Instituto de Física, Universidade Federal de Mato Grosso, 78060-900, Cuiabá, Mato Grosso, Brazil 2Faculty of Science, Burman University, Lacombe, Alberta, Canada T4L 2E5 3Department of Physics and Astronomy, University of Victoria, BC, Canada V8P 5C2 Correspondence should be addressed to A. F. Santos; alesandroferreira@fisica.ufmt.br Received 22 January 2020; Revised 9 March 2020; Accepted 18 March 2020; Published 3 April 2020 Academic Editor: Michele Arzano Copyright © 2020 A. F. Santos et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The publication of this article was funded by SCOAP3. Studies about a formal analogy between the gravitational and the electromagnetic fields lead to the notion of Gravitoelectromagnetism (GEM) to describe gravitation. In fact, the GEM equations correspond to the weak-field approximation of the gravitation field. Here, a non-abelian extension of the GEM theory is considered. Using the Thermo Field Dynamics (TFD) formalism to introduce temperature effects, some interesting physical phenomena are investigated. The non-abelian GEM Stefan- Boltzmann law and the Casimir effect at zero and finite temperatures for this non-abelian field are calculated. 1. Introduction between equations for the Newton and Coulomb laws and the interest has increased with the discovery of the The Standard Model (SM) is a non-abelian gauge theory with Lense-Thirring effect, where a rotating mass generates a symmetry group Uð1Þ × SUð2Þ × SUð3Þ.
    [Show full text]
  • Extended Gravitoelectromagnetism
    sid.inpe.br/mtc-m21c/2020/12.21.15.21-RPQ EXTENDED GRAVITOELECTROMAGNETISM. III. MERCURY’S PERIHELION PRECESSION Gerson Otto Ludwig URL do documento original: <http://urlib.net/8JMKD3MGP3W34R/43QQMGL> INPE São José dos Campos 2020 PUBLICADO POR: Instituto Nacional de Pesquisas Espaciais - INPE Coordenação de Ensino, Pesquisa e Extensão (COEPE) Divisão de Biblioteca (DIBIB) CEP 12.227-010 São José dos Campos - SP - Brasil Tel.:(012) 3208-6923/7348 E-mail: [email protected] CONSELHO DE EDITORAÇÃO E PRESERVAÇÃO DA PRODUÇÃO INTELECTUAL DO INPE - CEPPII (PORTARIA No 176/2018/SEI- INPE): Presidente: Dra. Marley Cavalcante de Lima Moscati - Divisão de Modelagem Numérica do Sistema Terrestre (DIMNT) Membros: Dra. Carina Barros Mello - Coordenação de Pesquisa Aplicada e Desenvolvimento Tecnológico (COPDT) Dr. Alisson Dal Lago - Divisão de Heliofísica, Ciências Planetárias e Aeronomia (DIHPA) Dr. Evandro Albiach Branco - Divisão de Impactos, Adaptação e Vulnerabilidades (DIIAV) Dr. Evandro Marconi Rocco - Divisão de Mecânica Espacial e Controle (DIMEC) Dr. Hermann Johann Heinrich Kux - Divisão de Observação da Terra e Geoinfor- mática (DIOTG) Dra. Ieda Del Arco Sanches - Divisão de Pós-Graduação - (DIPGR) Silvia Castro Marcelino - Divisão de Biblioteca (DIBIB) BIBLIOTECA DIGITAL: Dr. Gerald Jean Francis Banon Clayton Martins Pereira - Divisão de Biblioteca (DIBIB) REVISÃO E NORMALIZAÇÃO DOCUMENTÁRIA: Simone Angélica Del Ducca Barbedo - Divisão de Biblioteca (DIBIB) André Luis Dias Fernandes - Divisão de Biblioteca (DIBIB) EDITORAÇÃO ELETRÔNICA: Ivone Martins - Divisão de Biblioteca (DIBIB) Cauê Silva Fróes - Divisão de Biblioteca (DIBIB) sid.inpe.br/mtc-m21c/2020/12.21.15.21-RPQ EXTENDED GRAVITOELECTROMAGNETISM. III. MERCURY’S PERIHELION PRECESSION Gerson Otto Ludwig URL do documento original: <http://urlib.net/8JMKD3MGP3W34R/43QQMGL> INPE São José dos Campos 2020 Esta obra foi licenciada sob uma Licença Creative Commons Atribuição-NãoComercial 3.0 Não Adaptada.
    [Show full text]
  • Arxiv:Gr-Qc/0507001V3 16 Oct 2005
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by University of Missouri: MOspace February 7, 2008 3:29 WSPC/INSTRUCTION FILE ijmp˙october12 International Journal of Modern Physics D c World Scientific Publishing Company Gravitomagnetism and the Speed of Gravity Sergei M. Kopeikin Department of Physics and Astronomy, University of Missouri-Columbia, Columbia, Missouri 65211, USA [email protected] Experimental discovery of the gravitomagnetic fields generated by translational and/or rotational currents of matter is one of primary goals of modern gravitational physics. The rotational (intrinsic) gravitomagnetic field of the Earth is currently measured by the Gravity Probe B. The present paper makes use of a parametrized post-Newtonian (PN) expansion of the Einstein equations to demonstrate how the extrinsic gravitomag- netic field generated by the translational current of matter can be measured by observing the relativistic time delay caused by a moving gravitational lens. We prove that mea- suring the extrinsic gravitomagnetic field is equivalent to testing relativistic effect of the aberration of gravity caused by the Lorentz transformation of the gravitational field. We unfold that the recent Jovian deflection experiment is a null-type experiment testing the Lorentz invariance of the gravitational field (aberration of gravity), thus, confirming existence of the extrinsic gravitomagnetic field associated with orbital motion of Jupiter with accuracy 20%. We comment on erroneous interpretations of the Jovian deflection experiment given by a number of researchers who are not familiar with modern VLBI technique and subtleties of JPL ephemeris. We propose to measure the aberration of gravity effect more accurately by observing gravitational deflection of light by the Sun and processing VLBI observations in the geocentric frame with respect to which the Sun arXiv:gr-qc/0507001v3 16 Oct 2005 is moving with velocity ∼ 30 km/s.
    [Show full text]
  • Black Holes and Gravitational Waves in Models of Minicharged Dark Matter
    Home Search Collections Journals About Contact us My IOPscience Black holes and gravitational waves in models of minicharged dark matter This content has been downloaded from IOPscience. Please scroll down to see the full text. JCAP05(2016)054 (http://iopscience.iop.org/1475-7516/2016/05/054) View the table of contents for this issue, or go to the journal homepage for more Download details: IP Address: 62.210.105.116 This content was downloaded on 28/06/2016 at 17:13 Please note that terms and conditions apply. ournal of Cosmology and Astroparticle Physics JAn IOP and SISSA journal Black holes and gravitational waves in models of minicharged dark matter JCAP05(2016)054 Vitor Cardoso,a;b Caio F.B. Macedo,a Paolo Pania;c and Valeria Ferraric aCENTRA, Departamento de F´ısica,Instituto Superior T´ecnico| IST, Universidade de Lisboa | UL, Avenida Rovisco Pais 1, 1049 Lisboa, Portugal bPerimeter Institute for Theoretical Physics, 31 Caroline Street North Waterloo, Ontario N2L 2Y5, Canada cDipartimento di Fisica, \Sapienza" Universit`adi Roma and Sezione INFN Roma1, Piazzale A. Moro 5, 00185, Roma, Italy E-mail: [email protected], [email protected], [email protected], [email protected] Received April 29, 2016 Revised May 16, 2016 Accepted May 17, 2016 Published May 23, 2016 Abstract. In viable models of minicharged dark matter, astrophysical black holes might be charged under a hidden U(1) symmetry and are formally described by the same Kerr- Newman solution of Einstein-Maxwell theory. These objects are unique probes of minicharged dark matter and dark photons.
    [Show full text]
  • Gravitoelectromagnetism, Solar System Tests, and Weak-Field Solutions in F (T, B) Gravity with Observational Constraints
    universe Article Gravitoelectromagnetism, Solar System Tests, and Weak-Field Solutions in f (T, B) Gravity with Observational Constraints Gabriel Farrugia 1,2,*, Jackson Levi Said 1,2 and Andrew Finch 2 1 Institute of Space Sciences and Astronomy, University of Malta, Msida MSD 2080, Malta; [email protected] 2 Department of Physics, University of Malta, Msida MSD 2080, Malta; andrew.fi[email protected] * Correspondence: [email protected] Received: 14 December 2019; Accepted: 14 February 2020; Published: 18 February 2020 Abstract: Gravitomagnetism characterizes phenomena in the weak-field limit within the context of rotating systems. These are mainly manifested in the geodetic and Lense-Thirring effects. The geodetic effect describes the precession of the spin of a gyroscope in orbit about a massive static central object, while the Lense-Thirring effect expresses the analogous effect for the precession of the orbit about a rotating source. In this work, we explore these effects in the framework of Teleparallel Gravity and investigate how these effects may impact recent and future missions. We find that teleparallel theories of gravity may have an important impact on these effects which may constrain potential models within these theories. Keywords: gravitoelectromagnetism; geodetic; Lense-Thirring; teleparallel; f (T, B) gravity 1. Introduction General relativity (GR) has passed numerous observational tests since its inception just over a century ago, confirming its predictive power. The detection of gravitational waves in 2015 [1] agreed with the strong field predictions of GR, as does its solar system behavior [2]. However, GR requires a large portion of dark matter to explain the dynamics of galaxies [3,4] and even greater contributions from dark energy to produce current observations of cosmology [5].
    [Show full text]