The Astrophysical Journal, 819:28 (11pp), 2016 March 1 doi:10.3847/0004-637X/819/1/28 © 2016. The American Astronomical Society. All rights reserved. THE ANGLO-AUSTRALIAN PLANET SEARCH XXIV: THE FREQUENCY OF JUPITER ANALOGS Robert A. Wittenmyer1,2,3, R. P. Butler4, C. G. Tinney1,2, Jonathan Horner2,3, B. D. Carter3, D. J. Wright1,2, H. R. A. Jones5, J. Bailey1,2, and Simon J. O’Toole6 1 School of Physics, University of New South Wales, Sydney 2052, Australia;
[email protected] 2 Australian Centre for Astrobiology, University of New South Wales, Sydney 2052, Australia 3 Computational Engineering and Science Research Centre, University of Southern Queensland, Toowoomba, Queensland 4350, Australia 4 Department of Terrestrial Magnetism, Carnegie Institution of Washington, 5241 Broad Branch Road, NW, Washington, DC 20015-1305, USA 5 Centre for Astrophysics Research, University of Hertfordshire, College Lane, Hatfield, Herts AL10 9AB, UK 6 Australian Astronomical Observatory, P.O. Box 915, North Ryde, NSW 1670, Australia Received 2015 December 20; accepted 2016 January 20; published 2016 February 24 ABSTRACT We present updated simulations of the detectability of Jupiter analogs by the 17-year Anglo-Australian Planet Search. The occurrence rate of Jupiter-like planets that have remained near their formation locations beyond the ice line is a critical datum necessary to constrain the details of planet formation. It is also vital in our quest to fully understand how common (or rare) planetary systems like our own are in the Galaxy. From a sample of 202 solar- +2.8 type stars, and correcting for imperfect detectability on a star-by-star basis, we derive a frequency of 6.2-1.6% for giant planets in orbits from 3 to 7 au.