Analysis and Detection of Spying Browser Extensions

Total Page:16

File Type:pdf, Size:1020Kb

Analysis and Detection of Spying Browser Extensions I Spy with My Little Eye: Analysis and Detection of Spying Browser Extensions Anupama Aggarwal⇤, Bimal Viswanath†, Liang Zhang‡, Saravana Kumar§, Ayush Shah⇤ and Ponnurangam Kumaraguru⇤ ⇤IIIT - Delhi, India, email: [email protected], [email protected], [email protected] †UC Santa Barbara, email: [email protected] ‡Northeastern University, email: [email protected] §CEG, Guindy, India, email: [email protected] Abstract—In this work, we take a step towards understanding history) and sends the information to third-party domains, and defending against spying browser extensions. These are when its core functionality does not require such information extensions repurposed to capture online activities of a user communication (Section 3). Such information theft is a and communicate the collected sensitive information to a serious violation of user privacy. For example, a user’s third-party domain. We conduct an empirical study of such browsing history can contain URLs referencing private doc- extensions on the Chrome Web Store. First, we present an in- uments (e.g., Google docs) or the URL parameters can depth analysis of the spying behavior of these extensions. We reveal privacy sensitive activities performed by the user on observe that these extensions steal a variety of sensitive user a site (e.g., online e-commerce transactions, password based information, such as the complete browsing history (e.g., the authentication). Moreover, if private data is further sold or sequence of web traversals), online social network (OSN) access exchanged with cyber-criminals [4], it can be misused in tokens, IP address, and geolocation. Second, we investigate numerous ways. Left unchecked, users may be exposed to the potential for automatically detecting spying extensions by various risks, including identity theft [5], and financial loss. applying machine learning schemes. We show that using a Compared to other types of user tracking, spying by Recurrent Neural Network (RNN), the sequence of browser browser extensions deserves special attention. Unlike web API calls made by an extension can be a robust feature, pages, browser extensions persist through the entire browser life cycle, and can access in-depth user browsing activities outperforming hand-crafted features (used in prior work on across all websites. By making privileged API calls to the malicious extensions) to detect spying extensions. Our RNN browser, extensions can access the user’s browsing history, based detection scheme achieves a high precision (90.02%) and current open tabs, record keyboard inputs and more. On the recall (93.31%) in detecting spying extensions. other hand, third-party web trackers can only track users on Index Terms—spying browser extensions; information tracking sites where they are embedded by the publisher, and thus obtain a “limited” or fragmented view of a user’s entire browsing behavior. Also note that extensions are available on most popular browsers (e.g., Chrome, Safari, and Fire- 1. Introduction fox) and have 510 million cumulative installs in Chrome. Therefore, spying extension developers have a large user Many websites today rely on advertising to sustain their base that they can target. services. Online ad platforms have developed sophisticated Identifying spying behavior is challenging. Given an user tracking systems to capture user behavior across web- extension, automatically identifying the flow of sensitive sites in order to generate highly personalized ads. Several user information is a non-trivial task [6]. Moreover, we studies have been conducted to understand third-party user observe spying extensions that obfuscate user information tracking on the web, where a third-party entity (like social before sending it to remote servers, and those that switch media widget), embedded by the first-party site the user between spying and non-spying states during their life-time visits, can log the presence and other activities of the user (e.g., using remote Command-and-Control triggers). Such on that site [1] [2]. Unfortunately, user tracking has reached behavior further complicates the identification. to a state where even privileged software running on a user’s To bootstrap our analysis, we resort to expert manual browser is stealing user information [3]. In this work, we investigation of behavioral logs (traces of network, storage, take a step towards understanding and defending against this and browser API requests made by an extension) of ex- new type of privacy risk—browser extensions that spy on tensions to identify spying behavior (Section 3). To reduce user information. manual effort, we apply several heuristics to automatically A browser extension is an add-on software that enhances short-list a candidate set of possible spying extensions, functionality of the browser. We consider a spying extension among all the 43,521 extensions on the Chrome store. After as one which accesses user information (e.g., browsing manually investigating over 1,000 extensions in the candi- date set, we discover 218 spying extensions. This dataset extensions, most of the concepts apply to other browsers as provides an opportunity to better understand spying behavior well, for example, Firefox with WebExtensions [13]. and to build a defense scheme that can automatically detect Extension Architecture. Browser extensions are software spying extensions (ie without any manual effort). programs running on web browsers, providing extended We start by uncovering the modus operandi of spying browsing functionality to users. An extension consists of extensions and analyze their characteristics (Section 4). Spy- JavaScript, HTML, CSS, and other web resources that are ing extensions steal browsing history, social media access needed for rendering web pages. The main logic of an tokens, IP address and geolocation of users. Surprisingly, extension is usually placed in a background page where spying extensions are as popular (based on user base) and programs keep running during the entire browser session. have similar ratings as other extensions on the Chrome store. Many extensions also use content scripts that are programs We suspect that users are mostly unaware of the spying injected into a web page to gain access to the page resources. behavior as only 12 out of 218 extensions received reports Similar to web pages, extensions have access to all of any suspicious behavior from users. Web APIs, such as standard JavaScript API, XMLHttpRe- Next, we focus on automatically detecting spying exten- quest, and DOM. More importantly, Chrome extensions are sions. While a lot of prior work has focused on HoneyPages exposed to a set of privileged browser APIs, called the to trigger and catch malicious behavior by extensions [7], Chrome API. Based on the functionality, Chrome API is and information flow control based approaches [6] [8] [9]; bundled as various feature endpoints, such as web requests we take an alternate approach of leveraging recent advances (e.g., listening or tampering network requests), bookmarks, in machine learning (ML) for detection. Practicality and history, cookies, storage, and tabs. In order to gain access to effectiveness of ML-based defenses has encouraged the the Chrome API, extension developers have to specifically industry (e.g., Google) to also adopt such approaches to request permissions in the Manifest file. When installing an protect against malicious extensions [10]. extension, users have to decide to accept these permission As is the case with any ML-based defense, we start by requests or not. For example, the cookie permission in the first identifying a robust feature. Prior work on detecting Manifest file enables extensions to make API calls to read malicious extensions relies on extensive feature engineering cookies (cookie.get) and change cookies (cookie.set). With to craft a large number of features (e.g., features based on the necessary permissions, extensions can monitor all user extension meta-data, source code, and network, storage and activities in browser. It should be noted that other browsers, API requests) [10]. Surprisingly, our analysis reveals that Safari and Firefox also provide a similar privileged Browser most of the existing features are ineffective in detecting API to extensions [13] [14]. spying extensions (Section 5.2). Instead, browser API calls modeled as sequential data provides the highest predictive Chrome Web Store. The Chrome Web Store serves as a power, thus obviating the need for complex hand-crafted repository for all extensions and provides a low entry barrier features. We further discuss the benefits and robustness for developers to publish extensions. However, due to the aspects of using API call sequence for detection. rampant increase of malicious extensions, Chrome now asks However, browser API call sequences can contain com- for a one-time sign-up fee to publish extensions [15], and plex sequential patterns which makes traditional n-gram does not allow users to install extensions sourced outside based sequence classification approaches ineffective in our the Chrome Web Store ecosystem [16], unless a deliber- case. We observe that recent developments in a class of deep ate developer mode is enabled by the user. Additionally, neural networks called Recurrent Neural Networks (RNN) Google is known to constantly monitor the extension store are well suited for our scenario. We present an RNN based to identify malicious browser extensions [10]. Despite these detection scheme that is capable of learning sophisticated countermeasures, our findings show persistent presence of patterns in API call sequences [11]. An in-depth evalu- spying extensions on the Chrome Web Store. ation of our RNN based approach shows that it outper- forms traditional ML schemes and achieves a high precision 3. Data Collection (90.02%) and recall (93.31%) in detecting spying extensions (Section 5.4). Further, our RNN-based classifier additionally 3.1. Ground Truth Data of Spying Extensions identified 65 previously unknown spying extensions. Finally, we discuss deployment aspects of our approach. While our To conduct our study, we first need a large sample of spying scheme can be used in a centralized setting by analyzing extensions.
Recommended publications
  • The Web Never Forgets: Persistent Tracking Mechanisms in the Wild
    The Web Never Forgets: Persistent Tracking Mechanisms in the Wild Gunes Acar1, Christian Eubank2, Steven Englehardt2, Marc Juarez1 Arvind Narayanan2, Claudia Diaz1 1KU Leuven, ESAT/COSIC and iMinds, Leuven, Belgium {name.surname}@esat.kuleuven.be 2Princeton University {cge,ste,arvindn}@cs.princeton.edu ABSTRACT 1. INTRODUCTION We present the first large-scale studies of three advanced web tracking mechanisms — canvas fingerprinting, evercookies A 1999 New York Times article called cookies compre­ and use of “cookie syncing” in conjunction with evercookies. hensive privacy invaders and described them as “surveillance Canvas fingerprinting, a recently developed form of browser files that many marketers implant in the personal computers fingerprinting, has not previously been reported in the wild; of people.” Ten years later, the stealth and sophistication of our results show that over 5% of the top 100,000 websites tracking techniques had advanced to the point that Edward employ it. We then present the first automated study of Felten wrote “If You’re Going to Track Me, Please Use Cook­ evercookies and respawning and the discovery of a new ev­ ies” [18]. Indeed, online tracking has often been described ercookie vector, IndexedDB. Turning to cookie syncing, we as an “arms race” [47], and in this work we study the latest present novel techniques for detection and analysing ID flows advances in that race. and we quantify the amplification of privacy-intrusive track­ The tracking mechanisms we study are advanced in that ing practices due to cookie syncing. they are hard to control, hard to detect and resilient Our evaluation of the defensive techniques used by to blocking or removing.
    [Show full text]
  • The Internet and Web Tracking
    Grand Valley State University ScholarWorks@GVSU Technical Library School of Computing and Information Systems 2020 The Internet and Web Tracking Tim Zabawa Grand Valley State University Follow this and additional works at: https://scholarworks.gvsu.edu/cistechlib ScholarWorks Citation Zabawa, Tim, "The Internet and Web Tracking" (2020). Technical Library. 355. https://scholarworks.gvsu.edu/cistechlib/355 This Project is brought to you for free and open access by the School of Computing and Information Systems at ScholarWorks@GVSU. It has been accepted for inclusion in Technical Library by an authorized administrator of ScholarWorks@GVSU. For more information, please contact [email protected]. Tim Zabawa 12/17/20 Capstone Project Cover Page: 1. Introduction 2 2. How we are tracked online 2 2.1 Cookies 3 2.2 Browser Fingerprinting 4 2.3 Web Beacons 6 3. Defenses Against Web Tracking 6 3.1 Cookies 7 3.2 Browser Fingerprinting 8 3.3 Web Beacons 9 4. Technological Examples 10 5. Why consumer data is sought after 27 6. Conclusion 28 7. References 30 2 1. Introduction: Can you remember the last time you didn’t visit at least one website throughout your day? For most people, the common response might be “I cannot”. Surfing the web has become such a mainstay in our day to day lives that a lot of us have a hard time imagining a world without it. What seems like an endless trove of data is right at our fingertips. On the surface, using the Internet seems to be a one-sided exchange of information. We, as users, request data from companies and use it as we deem fit.
    [Show full text]
  • Improving Transparency Into Online Targeted Advertising
    AdReveal: Improving Transparency Into Online Targeted Advertising Bin Liu∗, Anmol Sheth‡, Udi Weinsberg‡, Jaideep Chandrashekar‡, Ramesh Govindan∗ ‡Technicolor ∗University of Southern California ABSTRACT tous and cover a large fraction of a user’s browsing behav- To address the pressing need to provide transparency into ior, enabling them to build comprehensive profiles of their the online targeted advertising ecosystem, we present AdRe- online interests. This widespread tracking of users and the veal, a practical measurement and analysis framework, that subsequent personalization of ads have received a great deal provides a first look at the prevalence of different ad target- of negative press; users associate adjectives such as creepy ing mechanisms. We design and implement a browser based and scary with the practice [18], primarily because they lack tool that provides detailed measurements of online display insight into how their data is being collected and used. ads, and develop analysis techniques to characterize the con- Our paper seeks to provide transparency into the targeted textual, behavioral and re-marketing based targeting mecha- advertising ecosystem, a capability that has not been ex- nisms used by advertisers. Our analysis is based on a large plored so far. We seek to enable end-users to reason about dataset consisting of measurements from 103K webpages why ads of a certain category are being displayed to them. and 139K display ads. Our results show that advertisers fre- Consider a user that repeatedly receives ads about cures for a quently target users based on their online interests; almost particularly private ailment. The user currently lacks a way half of the ad categories employ behavioral targeting.
    [Show full text]
  • Cookie Swap Party: Abusing First-Party Cookies for Web Tracking
    Cookie Swap Party: Abusing First-Party Cookies for Web Tracking Quan Chen Panagiotis Ilia [email protected] [email protected] North Carolina State University University of Illinois at Chicago Raleigh, USA Chicago, USA Michalis Polychronakis Alexandros Kapravelos [email protected] [email protected] Stony Brook University North Carolina State University Stony Brook, USA Raleigh, USA ABSTRACT 1 INTRODUCTION As a step towards protecting user privacy, most web browsers perform Most of the JavaScript (JS) [8] code on modern websites is provided some form of third-party HTTP cookie blocking or periodic deletion by external, third-party sources [18, 26, 31, 38]. Third-party JS li- by default, while users typically have the option to select even stricter braries execute in the context of the page that includes them and have blocking policies. As a result, web trackers have shifted their efforts access to the DOM interface of that page. In many scenarios it is to work around these restrictions and retain or even improve the extent preferable to allow third-party JS code to run in the context of the of their tracking capability. parent page. For example, in the case of analytics libraries, certain In this paper, we shed light into the increasingly used practice of re- user interaction metrics (e.g., mouse movements and clicks) cannot lying on first-party cookies that are set by third-party JavaScript code be obtained if JS code executes in a separate iframe. to implement user tracking and other potentially unwanted capabil- This cross-domain inclusion of third-party JS code poses security ities.
    [Show full text]
  • Track the Planet: a Web-Scale Analysis of How Online Behavioral Advertising Violates Social Norms
    University of Pennsylvania ScholarlyCommons Publicly Accessible Penn Dissertations 2017 Track The Planet: A Web-Scale Analysis Of How Online Behavioral Advertising Violates Social Norms Timothy Patrick Libert University of Pennsylvania, [email protected] Follow this and additional works at: https://repository.upenn.edu/edissertations Part of the Communication Commons, Computer Sciences Commons, and the Public Policy Commons Recommended Citation Libert, Timothy Patrick, "Track The Planet: A Web-Scale Analysis Of How Online Behavioral Advertising Violates Social Norms" (2017). Publicly Accessible Penn Dissertations. 2714. https://repository.upenn.edu/edissertations/2714 This paper is posted at ScholarlyCommons. https://repository.upenn.edu/edissertations/2714 For more information, please contact [email protected]. Track The Planet: A Web-Scale Analysis Of How Online Behavioral Advertising Violates Social Norms Abstract Various forms of media have long been supported by advertising as part of a broader social agreement in which the public gains access to monetarily free or subsidized content in exchange for paying attention to advertising. In print- and broadcast-oriented media distribution systems, advertisers relied on broad audience demographics of various publications and programs in order to target their offers to the appropriate groups of people. The shift to distributing media on the World Wide Web has vastly altered the underlying dynamic by which advertisements are targeted. Rather than rely on imprecise demographics, the online behavioral advertising (OBA) industry has developed a system by which individuals’ web browsing histories are covertly surveilled in order that their product preferences may be deduced from their online behavior. Due to a failure of regulation, Internet users have virtually no means to control such surveillance, and it contravenes a host of well-established social norms.
    [Show full text]
  • Web Tracking – a Literature Review on the State of Research
    Proceedings of the 51st Hawaii International Conference on System Sciences j 2018 Web Tracking – A Literature Review on the State of Research Tatiana Ermakova Benedict Bender University of Potsdam University of Potsdam [email protected] [email protected] Benjamin Fabian Kerstin Klimek HfT Leipzig University of Potsdam [email protected] [email protected] Abstract (Fabian et al., 2015; Bender et al., 2016). Hence, driven by a variety of enabling techniques (Besson et Web tracking seems to become ubiquitous in online al., 2014; Sanchez-Rola et al., 2016), web tracking has business and leads to increased privacy concerns of become ubiquitous on the Web (Roesner et al., 2012), users. This paper provides an overview over the across websites and even across devices (Brookman et current state of the art of web-tracking research, al., 2017). Besides targeted advertising (Sanchez-Rola aiming to reveal the relevance and methodologies of et al., 2016; Parra-Arnau, 2017), web tracking can be this research area and creates a foundation for future employed for personalization (Sanchez-Rola et al., work. In particular, this study addresses the following 2016; Mayer & Mitchell, 2012; Roesner et al., 2012), research questions: What methods are followed? What advanced web site analytics, social network integration results have been achieved so far? What are potential (Mayer & Mitchell, 2012; Roesner et al., 2012), and future research areas? For these goals, a structured website development (Fourie & Bothma, 2007). literature review based upon an established For online users, especially mature, well-off and methodological framework is conducted. The identified educated individuals, who constitute the most preferred articles are investigated with respect to the applied target group of web tracking (Peacock, 2015), the web research methodologies and the aspects of web tracking practices also imply higher privacy losses tracking they emphasize.
    [Show full text]
  • Online Tracking, Targeted Advertising and User Privacy - the Technical Part Privacy and Web 2.0 Seminar Summer Term 2011
    Online Tracking, Targeted Advertising and User Privacy - The Technical Part Privacy and Web 2.0 Seminar Summer Term 2011 Simon Sprankel sprankel[at]rbg.informatik.tu-darmstadt.de September 30th, 2011 This paper gives a short overview over the field of Online Tracking, Online Targeted Advertising (OTA) and the related privacy issues. Balachander Krishnamurthy rightly states that \there are at least three different angles through which one could approach the problem of reducing privacy leakage: technical, legislative and economic" [1]. This paper focuses on the technical part, whereas Nadine Tr¨uschler's paper mainly focuses on the legislative and economic part. Since she also gives a more detailed introduction in the topic of OTA, it is advantageous to read her paper first. 1 Introduction A short analysis of network traffic suffices in order to see that tracking of users over mul- tiple websites is an up-to-date topic and raises various privacy concerns. For instance studiVZ, one of the largest German Online Social Networks (OSNs), communicates ones profile ID to a big advertising company, Tradedoubler. Another example is a Facebook app called Kickmania, which communicates ones profile ID to another advertising com- pany [2]. Hence, these companies are able to identify the user via its public profile at the OSN. Data, which makes a person identifiable is called Personally Identifiable Infor- mation (PII). There are numerous other cases in which web applications delegate PII to advertising companies. With the growing use of online social networks, the problem has even become worse. It has been shown, that \it is possible for third-parties to link PII, which is leaked via OSNs, with user actions both within OSN sites and elsewhere on non-OSN sites" [2].
    [Show full text]
  • Web Tracking: Mechanisms, Implications, and Defenses Tomasz Bujlow, Member, IEEE, Valentín Carela-Español, Josep Solé-Pareta, and Pere Barlet-Ros
    ARXIV.ORG DIGITAL LIBRARY 1 Web Tracking: Mechanisms, Implications, and Defenses Tomasz Bujlow, Member, IEEE, Valentín Carela-Español, Josep Solé-Pareta, and Pere Barlet-Ros Abstract—This articles surveys the existing literature on the of ads [1], [2], price discrimination [3], [4], assessing our methods currently used by web services to track the user online as health and mental condition [5], [6], or assessing financial well as their purposes, implications, and possible user’s defenses. credibility [7]–[9]. Apart from that, the data can be accessed A significant majority of reviewed articles and web resources are from years 2012 – 2014. Privacy seems to be the Achilles’ by government agencies and identity thieves. Some affiliate heel of today’s web. Web services make continuous efforts to programs (e.g., pay-per-sale [10]) require tracking to follow obtain as much information as they can about the things we the user from the website where the advertisement is placed search, the sites we visit, the people with who we contact, to the website where the actual purchase is made [11]. and the products we buy. Tracking is usually performed for Personal information in the web can be voluntarily given commercial purposes. We present 5 main groups of methods used for user tracking, which are based on sessions, client by the user (e.g., by filling web forms) or it can be collected storage, client cache, fingerprinting, or yet other approaches. indirectly without their knowledge through the analysis of the A special focus is placed on mechanisms that use web caches, IP headers, HTTP requests, queries in search engines, or even operational caches, and fingerprinting, as they are usually very by using JavaScript and Flash programs embedded in web rich in terms of using various creative methodologies.
    [Show full text]
  • An Analytical Study of Web Tracking: in a Nutshell
    International Journal of Scientific & Engineering Research Volume 9, Issue 11, November-2018 1742 ISSN 2229-5518 An Analytical Study of Web Tracking: In a Nutshell AKM Bahalul Haque, Farhat Tasnim Progga, Md. Amdadul Bari Abstract— Privacy over the internet has become a significant concern nowadays as users are ubiquitously tracked on the web. While using the internet, each of our footprints can be seen using the proper tracking mechanism. The users can be tracked on the web based on the interpretation and measurement of user's data while browsing. These user data include session identifiers, cookies, HTML local storage. The web tracking can be used in both right and wrong ways. For medical issues, security reason and financial reasons web tracking can be beneficial one while on the other hand tracking someone intentionally or accidentally reeks the privacy of the user which can be used for advertising or identity theft. In this paper, various web tracking techniques are discussed and analyzed to show how the users are vulnerable on the web while accessing it. Index Terms— Web tracking, Privacy, Cookies, Fingerprinting, Security, Session, Anonymity —————————— —————————— 1 INTRODUCTION EB tracking is one of the most underrated words in this browser fingerprinting, etc. in the browser fingerprinting W world as only a handful of people related to infor- HTML and CSS fingerprinting techniques [2]. CSS mation technology especially the security and privacy fingerprinting works while comparing with different elements sectors know how it works. The first thing that comes to our of CSS in the browser. As we know that different web browser mind is what web tracking is actually and what it depicts.
    [Show full text]
  • A Comparative Measurement Study of Web Tracking on Mobile and Desktop Environments
    Proceedings on Privacy Enhancing Technologies ; 2020 (2):24–44 Zhiju Yang and Chuan Yue* A Comparative Measurement Study of Web Tracking on Mobile and Desktop Environments Abstract: Web measurement is a powerful approach to 1 Introduction studying various tracking practices that may compro- mise the privacy of millions of users. Researchers have Web tracking is frequently performed over the Internet built several measurement frameworks and performed by various trackers to collect the information of users’ a few studies to measure web tracking on the desk- browsing activities for various purposes including per- top environment. However, little is known about web sonalized advertisement, targeted attacks, and surveil- tracking on the mobile environment, and no tool is lance [12, 21, 32]. Traditionally, stateful HTTP cook- readily available for performing a comparative measure- ies are used as the dominant technique to track online ment study on mobile and desktop environments. In this users [27]. In recent years, advanced stateful tracking work, we built a framework called WTPatrol that allows techniques such as Flash cookies and advanced stateless us and other researchers to perform web tracking mea- tracking techniques such as browser or device finger- surement on both mobile and desktop environments. printing have also become very popular over the Inter- Using WTPatrol, we performed the first comparative net [1, 3, 24, 30]. User privacy has been keeping com- measurement study of web tracking on 23,310 websites promised by trackers that utilize these techniques. that have both mobile version and desktop version web- Web measurement is a powerful approach to study- pages. We conducted an in-depth comparison of the web ing online tracking practices and techniques.
    [Show full text]
  • Web Tracking and Current Countermeasures
    Bachelor thesis Computer Science Radboud University Web Tracking And Current Countermeasures Author: Supervisor/assessor: Willem Boumans Dr. Ir. Erik Poll S4337166 [email protected] April 5, 2017 Abstract Tracking users on the web is widespread nowadays. All kinds of techniques are employed to follow users on the internet. Not just cookies, but all sorts of other tracking and fingerprinting methods are used to do so. Many users delete their cookies frequently, use their browser's private mode or use certain browser plugins in order to reduce the extent to which they are tracked. Being tracked however can never be completely avoided. A number of tracking methods exist, that are very hard or nearly impossible to block. Most of these methods are results of the cat and mouse game between track- ing parties and privacy-conscious users. In this thesis, we will look into the way web browsers and privacy ex- tensions counter known tracking methods and the shortcomings they have. We found out that web browsers all apply similar techniques to block web trackers. The same is true for privacy enhancing browser extensions, which almost all rely on blacklists to block trackers. Currently, only Privacy Bad- ger uses a different approach, by using algorithms to identify trackers. In my eyes, this is a promising feature that could be better than blacklists. Contents 1 Introduction 3 2 Current tracking methods 6 2.1 Tracking techniques using data storage . .6 2.1.1 HTTP cookies . .6 2.1.2 Flash cookies . .8 2.1.3 Silverlight Isolated storage . .9 2.1.4 HTML5 Local storage and IndexedDB .
    [Show full text]
  • Google Data Collection —NEW—
    Digital Content Next January 2018 / DCN Distributed Content Revenue Benchmark Google Data Collection —NEW— August 2018 digitalcontentnext.org CONFIDENTIAL - DCN Participating Members Only 1 This research was conducted by Professor Douglas C. Schmidt, Professor of Computer Science at Vanderbilt University, and his team. DCN is grateful to support Professor Schmidt in distributing it. We offer it to the public with the permission of Professor Schmidt. Google Data Collection Professor Douglas C. Schmidt, Vanderbilt University August 15, 2018 I. EXECUTIVE SUMMARY 1. Google is the world’s largest digital advertising company.1 It also provides the #1 web browser,2 the #1 mobile platform,3 and the #1 search engine4 worldwide. Google’s video platform, email service, and map application have over 1 billion monthly active users each.5 Google utilizes the tremendous reach of its products to collect detailed information about people’s online and real-world behaviors, which it then uses to target them with paid advertising. Google’s revenues increase significantly as the targeting technology and data are refined. 2. Google collects user data in a variety of ways. The most obvious are “active,” with the user directly and consciously communicating information to Google, as for example by signing in to any of its widely used applications such as YouTube, Gmail, Search etc. Less obvious ways for Google to collect data are “passive” means, whereby an application is instrumented to gather information while it’s running, possibly without the user’s knowledge. Google’s passive data gathering methods arise from platforms (e.g. Android and Chrome), applications (e.g.
    [Show full text]