polymers Review Preparations, Properties, and Applications of Polyaniline and Polyaniline Thin Films—A Review Mahnoush Beygisangchin 1,2, Suraya Abdul Rashid 1,* , Suhaidi Shafie 2,3 , Amir Reza Sadrolhosseini 4,* and Hong Ngee Lim 2 1 Material Processing and Technology Laboratory, Institute of Advanced Technology, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
[email protected] 2 Functional Device Laboratory, Institute of Advanced Technology, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
[email protected] (S.S.);
[email protected] (H.N.L.) 3 Faculty of Engineering, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia 4 Magneto-Plasmonic Lab, Laser and Plasma Research Institute, Shahid Beheshti University, Tehran 1983969411, Iran * Correspondence:
[email protected] (S.A.R.);
[email protected] (A.R.S.); Tel.: +60-397-697-538 (S.A.R.) Abstract: Polyaniline (PANI) is a famous conductive polymer, and it has received tremendous consideration from researchers in the field of nanotechnology for the improvement of sensors, optoelectronic devices, and photonic devices. PANI is doped easily by different acids and dopants because of its easy synthesis and remarkable environmental stability. This review focuses on different preparation processes of PANI thin film by chemical and physical methods. Several features of PANI thin films, such as their magnetic, redox, and antioxidant, anti-corrosion, and electrical and sensing Citation: Beygisangchin, M.; Abdul properties, are discussed in this review. PANI is a highly conductive polymer. Given its unique Rashid, S.; Shafie, S.; Sadrolhosseini, properties, easy synthesis, low cost, and high environmental stability in various applications such A.R.; Lim, H.N. Preparations, as electronics, drugs, and anti-corrosion materials, it has attracted extensive attention.