Checklist of Bryozoa on the Coasts of Turkey

Total Page:16

File Type:pdf, Size:1020Kb

Checklist of Bryozoa on the Coasts of Turkey Turkish Journal of Zoology Turk J Zool (2014) 38: http://journals.tubitak.gov.tr/zoology/ © TÜBİTAK Research Article doi:10.3906/zoo-1405-85 Checklist of Bryozoa on the coasts of Turkey Ferah KOÇAK*, Sinem AYDIN ÖNEN Institute of Marine Sciences and Technology, Dokuz Eylül University, İzmir, Turkey Received: 30.05.2014 Accepted: 28.08.2014 Published Online: 00.00.2014 Printed: 00.00.2014 Abstract: The phylum Bryozoa includes a total of 185 species reported from the Turkish coasts of the Levantine Sea, the Aegean Sea, the Sea of Marmara, and the Black Sea. The class Gymnolaemata is represented by 159 species, followed by the class Stenolaemata (26 species). While the Aegean Sea had the highest species richness (139 species), the lowest bryozoan diversity (8 species) was reported from the Black Sea coast of Turkey. Only 2 alien species, Celleporaria brunnea and Rhynchozoon larreyi, were recorded from the Turkish coasts. Key words: Bryozoa, checklist, Turkish coasts 1. Introduction diversity of bryozoans, which is followed by semicave Bryozoans predominantly occur in marine habitats. They biocoenosis, seagrass meadows (particularly Posidonia are sessile and colonial animals and cover an important oceanica), and photophilic algal biocoenosis (Novosel, part of the hard substrate in coastal environments. The 2005). In a Posidonia oceanica meadow, the scale of leaf phylum Bryozoa has 2 classes and 3 orders in the sea. The variability showed significant variation for encrusting and class Stenolaemata includes the order Cyclostomatida and erect bryozoans, while geographic area differences were the class Gymnolaemata has 2 orders, Ctenostomatida and found to be important for encrusting bryozoans (Pardi et Cheilostomatida. The noncalcified bryozoans are placed in al., 2006). the order Ctenostomatida, whereas the calcified species are Bryozoan diversity in the Mediterranean comprises placed in the orders Cheilostomatida and Cyclostomatida. approximately 10% of 5000 extant bryozoan species The species richness of bryozoans in the Mediterranean recorded worldwide. In the Mediterranean Sea, Red Sea Sea is closely related with environmental components of the migrants were recorded in the Levantine Sea, while the studied localities. The lack of recruitment of propagules, Atlantic-originated species are found especially in the homothermy at 13 °C, high salinity, and oligotrophy might Alboran Sea (Harmelin and d’Hondt, 1993; Bianchi and be considered as limiting factors for deep-water bryozoan Morri, 2000). Moreover, 31 out of the 986 alien species species richness noted below 200 m in the Mediterranean introduced to the Mediterranean Sea are bryozoan (Harmelin and d’Hondt, 1993). Bryozoan communities species. The number of nonindigenous bryozoan species are mainly influenced by habitat and substratum types was significantly greater in the eastern Mediterranean Sea (Lombardi et al., 2008; Ben Ismail et al., 2012). Amini and 22 species were introduced to the area by different et al. (2004) found relationships between the bryozoan pathways, such as shipping and the Suez Canal. However, associations and water depth, water energy, sedimentation 7 species that were found in both western and central parts rate, and substrate type. of the Mediterranean might have been introduced through The marine biota of the Mediterranean is composed fouling (Zenetos et al., 2012). of species belonging to several biogeographic categories The first knowledge on marine bryozoan fauna of (Bianchi and Morri, 2000). Bryozoan fauna in the the Turkish seas was given by Forbes (1844). In that Mediterranean Sea possess different biogeographic study, 8 depth ranges extending from 3.66 to 213.36 m distributions, expanding to the Pacific Ocean, Atlantic were distinguished according to their characteristics of Ocean, Indian Ocean, and Red Sea, while some of them the sea floor. In the community, as described by Forbes are endemic for the Mediterranean. Among surveyed (1844), Cellaria ceremioides and Myriapora truncata were biocoenosis, coralligenous habitats harbored the largest determined as the characteristic species of region IV * Correspondence: [email protected] 1 KOÇAK and AYDIN ÖNEN / Turk J Zool (27–64 m) and V (64–100 m), respectively. The taxonomic temporal aspects of fouling communities developed on validity of the former species is currently uncertain. The panels were analyzed in terms of physicochemical variables cyclostome genera, such as Idmonea and Alecto, were in different marinas located on the Aegean coast (Koçak et recorded from the deepest region (VIII) and extended al., 1999; Koçak, 2008). The settlement of bryozoan species to 421 m. Colombo (1885) identifiedFlustra truncata, was investigated considering environmental changes in Retepora cellulosa, and Flustra carbasea in the dredged the marinas. In the inner part of İzmir Bay, morphological, material samples collected from the Dardanelles. In the ecological, and zoogeographical characteristics of an alien Sea of Marmara and the Bosphorus, bryozoan species were bryozoan species, Celleporaria brunnea, were discussed by identified with other faunal components by Ostroumoff Koçak (2007). (1894). In another study conducted by Ostroumoff (1896), The aim of this study is to elucidate recent taxonomic plankton and benthic samples were taken from more than and biogeographic knowledge of bryozoan species 60 stations during the ‘Selanik’ expedition to the Sea of recorded from the Turkish coasts. Marmara and Bosphorus, and 49 bryozoan species were determined from different depths and biotopes. Marion 2. Materials and methods (1898) reported 3 bryozoan species, Retepora cellulosa, For preparing the actual checklist of the Turkish bryozoans, Myriozoum truncatum, and Porella cervicornis, obtained all relevant faunal investigations were considered. Species- in the dredged material collected to the north of the Sultan specific data obtained from these works were used to Castle at a depth of 65 m. Description and ecological construct a distributional map (in a grid system, 15 × 15 peculiarities of bryozoan species appearing in faunal km in dimension) of the bryozoan species along the coasts assemblages collected from the Bosphorus and near the of Turkey. In the checklist, the valid names of the species Prince Islands in the Sea of Marmara were given for the are given according to the World Register of Marine Species first time by Demir (1952–1954). The preliminary study (WoRMS, http://www.marinespecies.org) and Integrated conducted by Geldiay and Kocataş (1972) on benthic Taxonomic Information System (ITIS, http://www.itis. organisms of İzmir Bay included 3 bryozoan species, gov) and some monographs and papers (Harmelin, 1976; namely Retepora cellulosa, Membranipora membranacea, d’Hondt, 1983; Hayward and Ryland, 1985, 1998, 1999; and Amathia sp., which were abundantly found in Hayward and McKinney, 2002; Novosel et al., 2005). Uzunada, Tuzla, and Güzelbahçe, respectively. The description and illustration of the bryozoan 3. Results and discussion species collected in the Aegean Sea, Black Sea, and The bryozoan fauna of the Turkish coasts includes a total of Sea of Marmara was done by Ünsal (1975) and Ünsal 185 species. The class Gymnolaemata includes 159 species, and d’Hondt (1978–1979). In addition to species given of which 140 species belong to the order Cheilostomatida as a new record from Turkish coast, Cleidochasmidra and 19 species to the order Ctenostomatida. Moreover, canakkalense Ünsal and d’Hondt was described as a new the class Stenolaemata comprises 26 species. The status species (Ünsal and d’Hondt, 1978–1979). Balkıs (1992) of the Turkish marine fauna was previously given by studied macrobenthic species around Marmara Island Kocataş et al. (2000), who reported 2683 invertebrate and Cryptosula pallasiana was noted as a common species, species, of which 151 species belonged to Bryozoa. They whereas Aetea truncata, Scrupocellaria sp., and Crisia found the highest number of bryozoan species (131) from sp. were rare species. In 1992, the ‘Akdeniz Campaign’ the Aegean Sea. In the present study, the total number of was realized to increase knowledge of the eastern bryozoans obtained from the Aegean Sea has reached 139 Mediterranean fauna. Samples for qualitative study were species. The Sea of Marmara, the Levantine Sea, and the collected by SCUBA divers in a P. oceanica meadow near Black Sea have 89, 66, and 8 bryozoan species, respectively. Yenikaş at the 18–25 m depth range. Additionally, the The highest number of species belonging to orders knowledge of geographic distributions of 32 bryozoan Cheilostomatida, Ctenostomatida, and Cyclostomatida species were given. Previously unrecorded species Aetea was reported from the Aegean Sea. The total number of lepadiformis, Pentapora ottomulleriana, Fenestrulina species and their distributions among orders show that joannae, and Microporella umbracula and one new Indo- the highest species richness was followed by the Sea of Pacific species, Schedocleidochasma porcellaniformis, were Marmara and Levantine Sea. However, in the Black Sea, noted for the eastern Mediterranean Sea (Nicoletti et only Cheilostomatida species were recorded (Figure 1). al., 1995). After a period of time, S. porcellaniformis was The localities with hard substrates had the highest renamed as Plesiocleidochasma mediterraneum (Chimenz species richness (63 species), while the soft substrates were Gusso and Soule, 2003). During the same expedition, a characterized by 23 species. Furthermore, 19
Recommended publications
  • Ciona Intestinalis (Linnaeus, 1767) in an Invading Population from Placentia Bay Newfoundland and Labrador
    Recruitment patterns and post-metamorphic attachment by the solitary ascidian, Ciona intestinalis (Linnaeus, 1767) in an invading population from Placentia Bay Newfoundland and Labrador By ©Vanessa N. Reid A thesis submitted to the School of Graduate Studies in partial fulfillment of the requirements of the degree of MASTER OF SCIENCE AQUACULTURE MEMORIAL UNIVERSITY OF NEWFOUNDLAND JANUARY 2017 ST. JOHN’S NEWFOUNDLAND AND LABRADOR CANADA ABSTRACT Ciona intestinalis (Linneaus, 1767) is a non-indigenous species discovered in Newfoundland (NL) in 2012. It is a bio-fouler with potential to cause environmental distress and economic strain for the aquaculture industry. Key in management of this species is site-specific knowledge of life history and ecology. This study defines the environmental tolerances, recruitment patterns, habitat preferences, and attachment behaviours of C. intestinalis in Newfoundland. Over two years of field work, settlement plates and surveys were used to determine recruitment patterns, which were correlated with environmental data. The recruitment season extended from mid June to late November. Laboratory experiments defined the growth rate and attachment behaviours of Ciona intestinalis. I found mean growth rates of 10.8% length·d-1. The ability for C. intestinalis to undergo metamorphosis before substrate attachment, forming a feeding planktonic juvenile, thus increasing dispersal time was also found. These planktonic juveniles were then able to attach to available substrates post-metamorphosis. ii TABLE OF CONTENTS
    [Show full text]
  • New and Little-Known Cheilostomatous Bryozoa from the South and Southeastern Brazilian Continental Shelf and Slope
    Zootaxa 2722: 1–53 (2010) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2010 · Magnolia Press ISSN 1175-5334 (online edition) New and little-known cheilostomatous Bryozoa from the south and southeastern Brazilian continental shelf and slope LEANDRO M. VIEIRA1, DENNIS P. GORDON2, FACELUCIA B.C. SOUZA3 & MARIA ANGÉLICA HADDAD4 1Departamento de Zoologia, Instituto de Biociências, Universidade de São Paulo; Centro de Biologia Marinha, Universidade de São Paulo. 11600–000, São Sebastião, São Paulo, Brazil. E-mail: [email protected] 2National Institute of Water & Atmospheric Research (NIWA). Private Bag 14901, Kilbirnie, Wellington, New Zealand. E-mail: [email protected] 3Centro de Pesquisa e Pós-Graduação em Geofísica e Geologia do Instituto de Geociências e Museu de Zoologia do Instituto de Biologia of the Universidade Federal da Bahia, Salvador, Bahia, Brazil. E-mail: [email protected] 4Laboratório de Estudos de Cnidaria e Bryozoa, Departamento de Zoologia, Setor de Ciências Biológicas, Universidade Federal do Paraná. Caixa Postal 19.020, Curitiba, Paraná, Brazil. E-mail: [email protected] Table of contents Abstract ............................................................................................................................................................................... 3 Introduction ......................................................................................................................................................................... 3 Material
    [Show full text]
  • Bryozoan Studies 2019
    BRYOZOAN STUDIES 2019 Edited by Patrick Wyse Jackson & Kamil Zágoršek Czech Geological Survey 1 BRYOZOAN STUDIES 2019 2 Dedication This volume is dedicated with deep gratitude to Paul Taylor. Throughout his career Paul has worked at the Natural History Museum, London which he joined soon after completing post-doctoral studies in Swansea which in turn followed his completion of a PhD in Durham. Paul’s research interests are polymatic within the sphere of bryozoology – he has studied fossil bryozoans from all of the geological periods, and modern bryozoans from all oceanic basins. His interests include taxonomy, biodiversity, skeletal structure, ecology, evolution, history to name a few subject areas; in fact there are probably none in bryozoology that have not been the subject of his many publications. His office in the Natural History Museum quickly became a magnet for visiting bryozoological colleagues whom he always welcomed: he has always been highly encouraging of the research efforts of others, quick to collaborate, and generous with advice and information. A long-standing member of the International Bryozoology Association, Paul presided over the conference held in Boone in 2007. 3 BRYOZOAN STUDIES 2019 Contents Kamil Zágoršek and Patrick N. Wyse Jackson Foreword ...................................................................................................................................................... 6 Caroline J. Buttler and Paul D. Taylor Review of symbioses between bryozoans and primary and secondary occupants of gastropod
    [Show full text]
  • Z ABSTRACTS Definitivi
    nd 2 With the patronage of Universià di Napoli Federico II and Centro Museale Stazione Zoologica —Centro Musei delle Scienze Naturali“ —Anton Dohrn“ Prof Lucia Simone, President Prof Giuseppe Nardi, Honorary President Prof Gabriele Carannante, Vice-President Prof Maria Rosaria Ghiara, Director of the Centro Museale —Musei delle Scienze Naturali“ Dr Francesco Toscano, Convenor and secretary-treasurer Front cover: Sertella sp. and Myriapora truncata Pallas 1766 © Guido Villani; fossil Sertella sp.via Marco Murru, Cagliari; Back Cover: Elettra posidoniae Gautier, 1957 and Schizoporella sp. © Guido Villani Università degli Studi di Napoli Federico II, Dipartimento di Scienze della Terra and Centro Musei delle Scienze Naturali, Naples, Italy Friday 2nd February 2007 3 nd 9.00 am REGISTRATION SESSION 1. Chair: Joanne S. Porter 9.30 am Marie Cécile Le Goff-Vitry: Shedding light on bryozoan larvae with in situ hybridization on whole larvae 9.50 am Anton Tsyganov: Molecular and morphological phylogeny of Gymnolemata and Stenolemata Bryozoa 10.10 am Vanessa Iuri and Francesco P. Patti: Electra posidoniae (Gautier, 1954) cryptic species revealed by morphological and molecular analysis 10.30 am Scott Tompsett: Phylogeography of the European Schizoporellidae: A combined morphological, molecular and paleontological approach 10.50 am Coffe/Tea break SESSION 2 Chair: Giampietro Braga 11.20 am Paul D. Taylor, Anatoliy B. Kudryavtsev and J. William Schopf: Calcite and aragonite distributions in the skeletons of bimineralic cheilostome bryozoans as revealed by Raman spectroscopy 11.40 am Andrej Ernst: Devonian Bryozoa of Europe: continuing research 12.00 am Björn Berning, Beate Bader, Piotr Kuklinski and Kevin Tilbrook: On Buffonellaria, some Escharinidae, and something completely different Università degli Studi di Napoli Federico II, Dipartimento di Scienze della Terra and Centro Musei delle Scienze Naturali, Naples, Italy Friday 2nd February 2007 4 12.20 am Jasmine S.
    [Show full text]
  • Pre-Cenomanian Cheilostome Bryozoa : Current State of Knowledge
    Title Pre-Cenomanian Cheilostome Bryozoa : Current State of Knowledge Author(s) Ostrovsky, Andrew N.; Taylor, Paul D.; Dick, Matthew H.; Mawatari, Shunsuke F. Edited by Hisatake Okada, Shunsuke F. Mawatari, Noriyuki Suzuki, Pitambar Gautam. ISBN: 978-4-9903990-0-9, 69- Citation 74 Issue Date 2008 Doc URL http://hdl.handle.net/2115/38439 Type proceedings Note International Symposium, "The Origin and Evolution of Natural Diversity". 1‒5 October 2007. Sapporo, Japan. File Information p69-74-origin08.pdf Instructions for use Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP Pre-Cenomanian Cheilostome Bryozoa: Current State of Knowledge Andrew N. Ostrovsky1,2, Paul D. Taylor3,*, Matthew H. Dick4 and Shunsuke F. Mawatari4,5 1Department of Invertebrate Zoology, Faculty of Biology and Soil Science, St. Petersburg State University, St. Petersburg, Russia 2Institut für Paläontologie, Geozentrum, Universität Wien, Wien, Austria 3Department of Palaeontology, Natural History Museum, London, UK 4COE for Neo-Science of Natural History, Faculty of Science, Hokkaido University, Sapporo, Japan 5Department of Natural History Sciences, Faculty of Science, Hokkaido University, Sapporo, Japan ABSTRACT This paper briefly summarizes published and new data on the occurrences of pre-Cenomanian cheilostome Bryozoa following their first appearance in the Late Jurassic. We tabulate all known taxa chronologically, summarize stratigraphical and geographical distributions, and comment on the main morphological innovations that appeared in pre-Cenomanian times. Most early cheilo- stomes are classified in the suborder Malacostegina. Early cheilostomes were morphologically simple and low in diversity, but were geographically widespread. These features can be explained by the possession of a long-living planktotrophic larval stage, as in Recent malacostegans.
    [Show full text]
  • Bryozoa of the Caspian Sea
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/339363855 Bryozoa of the Caspian Sea Article in Inland Water Biology · January 2020 DOI: 10.1134/S199508292001006X CITATIONS READS 0 90 1 author: Valentina Ivanovna Gontar Russian Academy of Sciences 58 PUBLICATIONS 101 CITATIONS SEE PROFILE Some of the authors of this publication are also working on these related projects: Freshwater Bryozoa View project Evolution of spreading of marine invertebrates in the Northern Hemisphere View project All content following this page was uploaded by Valentina Ivanovna Gontar on 19 February 2020. The user has requested enhancement of the downloaded file. ISSN 1995-0829, Inland Water Biology, 2020, Vol. 13, No. 1, pp. 1–13. © Pleiades Publishing, Ltd., 2020. Russian Text © The Author(s), 2020, published in Biologiya Vnutrennykh Vod, 2020, No. 1, pp. 3–16. AQUATIC FLORA AND FAUNA Bryozoa of the Caspian Sea V. I. Gontar* Institute of Zoology, Russian Academy of Sciences, St. Petersburg, Russia *e-mail: [email protected] Received April 24, 2017; revised September 18, 2018; accepted November 27, 2018 Abstract—Five bryozoan species of the class Gymnolaemata and a single Plumatella emarginata species of the class Phylactolaemata are found in the Caspian Sea. The class Gymnolaemata is represented by bryozoans of the orders Ctenostomatida (Amathia caspia, Paludicella articulata, and Victorella pavida) and Cheilostoma- tida (Conopeum grimmi and Lapidosella ostroumovi). Two species (Conopeum grimmi and Amatia caspia) are Caspian endemics. Lapidosella ostroumovi was identified in the Caspian Sea for the first time. The systematic position, illustrated morphological descriptions, and features of ecology of the species identified are pre- sented.
    [Show full text]
  • Cribrilina Mutabilisn. Sp., an Eelgrass-Associated Bryozoan (Gymnolaemata: Cheilostomata) with Large Variationin Title Zooid Morphology Related to Life History
    Cribrilina mutabilisn. sp., an Eelgrass-Associated Bryozoan (Gymnolaemata: Cheilostomata) with Large Variationin Title Zooid Morphology Related to Life History Author(s) Ito, Minako; Onishi, Takumi; Dick, Matthew H. Zoological Science, 32(5), 485-497 Citation https://doi.org/10.2108/zs150079 Issue Date 2015-10 Doc URL http://hdl.handle.net/2115/62926 Type article File Information ZS32-5 485-497.pdf Instructions for use Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP ZOOLOGICAL SCIENCE 32: 485–497 (2015) © 2015 Zoological Society of Japan Cribrilina mutabilis n. sp., an Eelgrass-Associated Bryozoan (Gymnolaemata: Cheilostomata) with Large Variation in Zooid Morphology Related to Life History Minako Ito1, Takumi Onishi2, and Matthew H. Dick2* 1Graduate School of Environmental Science, Hokkaido University, Aikappu 1, Akkeshi-cho, Akkeshi-gun 088-1113, Japan 2Department of Natural History Sciences, Faculty of Science, Hokkaido University, N10 W8, Sapporo 060-0810, Japan We describe the cribrimorph cheilostome bryozoan Cribrilina mutabilis n. sp., which we detected as an epibiont on eelgrass (Zostera marina) at Akkeshi, Hokkaido, northern Japan. This species shows three distinct zooid types during summer: the R (rib), I (intermediate), and S (shield) types. Evidence indicates that zooids commit to development as a given type, rather than transform from one type to another with age. Differences in the frontal spinocyst among the types appear to be mediated by a simple developmental mechanism, acceleration or retardation in the production of lateral costal fusions as the costae elongate during ontogeny. Colonies of all three types were identical, or nearly so, in partial nucleotide sequences of the mitochondrial COI gene (555–631 bp), suggesting that they represent a single species.
    [Show full text]
  • Ctenostomatous Bryozoa from São Paulo, Brazil, with Descriptions of Twelve New Species
    Zootaxa 3889 (4): 485–524 ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2014 Magnolia Press ISSN 1175-5334 (online edition) http://dx.doi.org/10.11646/zootaxa.3889.4.2 http://zoobank.org/urn:lsid:zoobank.org:pub:0256CD93-AE8A-475F-8EB7-2418DF510AC2 Ctenostomatous Bryozoa from São Paulo, Brazil, with descriptions of twelve new species LEANDRO M. VIEIRA1,2, ALVARO E. MIGOTTO2 & JUDITH E. WINSTON3 1Departamento de Zoologia, Centro de Ciências Biológicas, Universidade Federal de Pernambuco, Recife, PE 50670-901, Brazil. E-mail: [email protected] 2Centro de Biologia Marinha, Universidade de São Paulo, São Sebastião, SP 11600–000, Brazil. E-mail: [email protected] 3Smithsonian Marine Station, 701 Seaway Drive, Fort Pierce, FL 34949, USA. E-mail: [email protected] Abstract This paper describes 21 ctenostomatous bryozoans from the state of São Paulo, Brazil, based on specimens observed in vivo. A new family, Jebramellidae n. fam., is erected for a newly described genus and species, Jebramella angusta n. gen. et sp. Eleven other species are described as new: Alcyonidium exiguum n. sp., Alcyonidium pulvinatum n. sp., Alcyonidium torquatum n. sp., Alcyonidium vitreum n. sp., Bowerbankia ernsti n. sp., Bowerbankia evelinae n. sp., Bow- erbankia mobilis n. sp., Nolella elizae n. sp., Panolicella brasiliensis n. sp., Sundanella rosea n. sp., Victorella araceae n. sp. Taxonomic and ecological notes are also included for nine previously described species: Aeverrillia setigera (Hincks, 1887), Alcyonidium hauffi Marcus, 1939, Alcyonidium polypylum Marcus, 1941, Anguinella palmata van Beneden, 1845, Arachnoidella evelinae (Marcus, 1937), Bantariella firmata (Marcus, 1938) n. comb., Nolella sawayai Marcus, 1938, Nolella stipata Gosse, 1855 and Zoobotryon verticillatum (delle Chiaje, 1822).
    [Show full text]
  • Michabayermscthesis1995 Origi
    University of St Andrews Full metadata for this thesis is available in St Andrews Research Repository at: http://research-repository.st-andrews.ac.uk/ This thesis is protected by original copyright Genotypic Variation of Polypide Regression, Growth Rate and Colony Form in the Marine Bryozoan Electra pilosa (L.) by Micha Bayer Submitted for the Degree of a Master of Science (by Research) at the University of St. Andrews School of Biological and Medical Sciences June 1994 For my parents Page ii Declaration a) I, Micha Bayer, hereby certify that this thesis has been composed by myself, that it is a record of my own work, and that it has not been accepted in partial or complete fulfilment of any other degree or professional qualification. Signed b) In submitting this thesis to the University of St. Andrews I understand that I am giving permission for it to be made available for use in accordance with the regulations of the University Library for the time being in force, subject to any copyright vested in the work not being affected thereby. I also understand that the title and abstract will be published, and that a copy of the work may be made and supplied to any bona fide library or research worker. Page iii Acknowledgements First of all, I owe thanks to my supervisor Dr. Chris Todd, for granting me the opportunity to do this degree in the first place, for his support over the past two years, for his well-placed catchphrases ("If science was easy, everybody could do it..."), for his invaluable expertise, and for getting me started with an organism like Electra pilosa which has turned out to be excellent fun.
    [Show full text]
  • (Bryozoa, Cheilostomatida) from the Atlantic-Mediterranean Region
    European Journal of Taxonomy 536: 1–33 ISSN 2118-9773 https://doi.org/10.5852/ejt.2019.536 www.europeanjournaloftaxonomy.eu 2019 · Madurell T. et al. This work is licensed under a Creative Commons Attribution License (CC BY 4.0). Research article urn:lsid:zoobank.org:pub:EC4DDAED-11A3-45AB-B276-4ED9A301F9FE Revision of the Genus Schizoretepora (Bryozoa, Cheilostomatida) from the Atlantic-Mediterranean region Teresa MADURELL 1,*, Mary SPENCER JONES 2 & Mikel ZABALA 3 1 Institute of Marine Sciences (ICM-CSIC), Passeig Marítim de la Barceloneta 37-49, 08003 Barcelona, Catalonia. 2 Department of Life Sciences, Natural History Museum, Cromwell Road, London SW7 5BD, UK. 3 Department d’Ecologia, Universitat de Barcelona (UB), Diagonal 645, 08028 Barcelona, Catalonia. * Corresponding author: [email protected] 2 Email: [email protected] 3 Email: [email protected] 1 urn:lsid:zoobank.org:author:AB9762AB-55CD-4642-B411-BDBE45CA2082 2 urn:lsid:zoobank.org:author:0C8C2EBE-17E1-44DA-8FDB-DC35F615F95B 3 urn:lsid:zoobank.org:author:7E533CE7-92CA-4A17-8E41-5C37188D0CDA Abstract. We examined the type specimens and historical collections holding puzzling Atlantic and Mediterranean material belonging to the genus Schizoretepora Gregory, 1893. We performed a detailed study of the colonial characters and re-describe the resulting species and those that have rarely been found or have poor original descriptions. As a result of this revision, nine species are found in the northeast Atlantic and Mediterranean. Six of them are re-described and illustrated: S. aviculifera (Canu & Bassler, 1930), S. calveti d’Hondt, 1975, S. imperati (Busk, 1884), S. sp. nov.? (= S.
    [Show full text]
  • Recolonization of Freshwater Ecosystems Inferred from Phylogenetic Relationships Nikola KoletiC1, Maja Novosel2, Nives RajeviC2 & Damjan FranjeviC2
    Bryozoans are returning home: recolonization of freshwater ecosystems inferred from phylogenetic relationships Nikola Koletic1, Maja Novosel2, Nives Rajevic2 & Damjan Franjevic2 1Institute for Research and Development of Sustainable Ecosystems, Jagodno 100a, 10410 Velika Gorica, Croatia 2Department of Biology, Faculty of Science, University of Zagreb, Rooseveltov trg 6, 10000 Zagreb, Croatia Keywords Abstract COI, Gymnolaemata, ITS2, Phylactolaemata, rRNA genes. Bryozoans are aquatic invertebrates that inhabit all types of aquatic ecosystems. They are small animals that form large colonies by asexual budding. Colonies Correspondence can reach the size of several tens of centimeters, while individual units within a Damjan Franjevic, Department of Biology, colony are the size of a few millimeters. Each individual within a colony works Faculty of Science, University of Zagreb, as a separate zooid and is genetically identical to each other individual within Rooseveltov trg 6, 10000 Zagreb, Croatia. the same colony. Most freshwater species of bryozoans belong to the Phylacto- Tel: +385 1 48 77 757; Fax: +385 1 48 26 260; laemata class, while several species that tolerate brackish water belong to the E-mail: [email protected] Gymnolaemata class. Tissue samples for this study were collected in the rivers of Adriatic and Danube basin and in the wetland areas in the continental part Funding Information of Croatia (Europe). Freshwater and brackish taxons of bryozoans were geneti- This research was supported by Adris cally analyzed for the purpose of creating phylogenetic relationships between foundation project: “The genetic freshwater and brackish taxons of the Phylactolaemata and Gymnolaemata clas- identification of Croatian autochthonous ses and determining the role of brackish species in colonizing freshwater and species”.
    [Show full text]
  • Marlin Marine Information Network Information on the Species and Habitats Around the Coasts and Sea of the British Isles
    MarLIN Marine Information Network Information on the species and habitats around the coasts and sea of the British Isles Hornwrack (Flustra foliacea) MarLIN – Marine Life Information Network Biology and Sensitivity Key Information Review Dr Harvey Tyler-Walters & Susie Ballerstedt 2007-09-11 A report from: The Marine Life Information Network, Marine Biological Association of the United Kingdom. Please note. This MarESA report is a dated version of the online review. Please refer to the website for the most up-to-date version [https://www.marlin.ac.uk/species/detail/1609]. All terms and the MarESA methodology are outlined on the website (https://www.marlin.ac.uk) This review can be cited as: Tyler-Walters, H. & Ballerstedt, S., 2007. Flustra foliacea Hornwrack. In Tyler-Walters H. and Hiscock K. (eds) Marine Life Information Network: Biology and Sensitivity Key Information Reviews, [on-line]. Plymouth: Marine Biological Association of the United Kingdom. DOI https://dx.doi.org/10.17031/marlinsp.1609.2 The information (TEXT ONLY) provided by the Marine Life Information Network (MarLIN) is licensed under a Creative Commons Attribution-Non-Commercial-Share Alike 2.0 UK: England & Wales License. Note that images and other media featured on this page are each governed by their own terms and conditions and they may or may not be available for reuse. Permissions beyond the scope of this license are available here. Based on a work at www.marlin.ac.uk (page left blank) Date: 2007-09-11 Hornwrack (Flustra foliacea) - Marine Life Information Network See online review for distribution map Flustra foliacea. Distribution data supplied by the Ocean Photographer: Keith Hiscock Biogeographic Information System (OBIS).
    [Show full text]