Photonic Realization of a Quantum Finite Automaton

Total Page:16

File Type:pdf, Size:1020Kb

Photonic Realization of a Quantum Finite Automaton PHYSICAL REVIEW RESEARCH 2, 013089 (2020) Photonic realization of a quantum finite automaton Carlo Mereghetti ,1 Beatrice Palano ,2 Simone Cialdi ,1,3 Valeria Vento ,1 Matteo G. A. Paris ,1,3 and Stefano Olivares 1,3,* 1Dipartimento di Fisica “Aldo Pontremoli,” Università degli Studi di Milano, via Celoria 16, 20133 Milano, Italy 2Dipartimento di Informatica “Giovanni Degli Antoni,” Università degli Studi di Milano, via Celoria 18, 20133 Milano, Italy 3INFN Sezione di Milano, via Celoria 16, 20133 Milano, Italy (Received 23 July 2019; published 28 January 2020) We describe a physical implementation of a quantum finite automaton that recognizes a well-known family of periodic languages. The realization exploits the polarization degree of freedom of single photons and their manipulation through linear optical elements. We use techniques of confidence amplification to reduce the acceptance error probability of the automaton. It is worth remarking that the quantum finite automaton we physically realize is not only interesting per se but it turns out to be a crucial building block in many quantum finite automaton design frameworks theoretically settled in the literature. DOI: 10.1103/PhysRevResearch.2.013089 I. INTRODUCTION has proved to be an extremely complex task, it is also rea- sonable to keep quantum components as small as possible. Quantum computing is a prolific research area, halfway Small-size quantum devices are modeled by quantum finite between physics and computer science [1–5]. Most likely, its automata, a theoretical model for quantum machines with origins may be dated back to the 1970s, when some work on finite memory. quantum information began to appear (see, e.g., Refs. [6,7]). Indeed, in current implementations of quantum computing, In the early 1980s, Feynman suggested that the computational the preparation and initialization of qubits in superposition power of quantum mechanical processes might be beyond that and/or entangled states is often challenging, making worth- of traditional computation models [8]. A similar idea was while the study of quantum computation with restricted mem- put forth by Manin [9]. Almost at the same time, Benioff ory, which requires less demanding resources, as in the case proved that such processes are at least as powerful as Turing of the quantum finite automata. machines [10]. In 1985, Deutsch proposed the notion of a The simplest and most promising from a physical realiza- quantum Turing machine as a physically realizable model for tion viewpoint model of a quantum finite automaton is the a quantum computer [11]. so-called measure-once quantum finite automaton [18–21]. The first impressive result witnessing “quantum power” Such a model also served as a basis for defining several was Shor’s algorithm for integer factorization, which could variants of quantum finite automata introduced and studied in run in polynomial time on a quantum computer [12]. It should plenty of contributions (see, e.g., Refs. [22–28]). Becasue it be stressed that no classical polynomial time factoring algo- is the only model considered in the present paper, from now rithm is currently known. On this fact, the security of many on for the sake of brevity we will simply write “quantum current cryptographic protocols, e.g., Rivest-Shamir-Adleman finite automaton” instead of “measure-once quantum finite (RSA) and Diffie-Hellman, actually relies. Relevant progress automaton.” was made by Grover, who proposed a quantum algorithm for The “hardware” of a (one-way) quantum finite automaton searching an item in an√ unsorted database containing n items, is that of a classical finite automaton. Thus, we have an which runs in time O( n)[13]. input tape scanned by a one-way input head moving one These and other theoretical advances naturally drove much position forward at each move, plus a finite basis state control. attention to efforts on the physical realization of quantum Some basis states are designated as accepting states. At any computational devices (see, e.g., Refs. [14–17]). While we given time during the computation, the state of the quantum can hardly expect to see a full-featured quantum computer in finite automaton is represented by a complex linear combina- the near future, it might be reasonable to envision classical tion of classical basis states, called a superposition. At each computing devices incorporating quantum components. Since step, a unitary transformation associated with the currently the physical realization of quantum computational systems scanned input symbol makes the automaton evolve to the next superposition. Superposition dynamics can transfer the complexity of the problem from a large number of sequential *stefano.olivares@fisica.unimi.it steps to a large number of coherently superposed quantum states. At the end of input processing, the automaton is Published by the American Physical Society under the terms of the observed in its final superposition. This operation makes the Creative Commons Attribution 4.0 International license. Further superposition collapse to a particular (classical) basis state distribution of this work must maintain attribution to the author(s) with a certain probability. The probability that the automaton and the published article’s title, journal citation, and DOI. accepts the input word is given by the probability of observing 2643-1564/2020/2(1)/013089(15) 013089-1 Published by the American Physical Society CARLO MEREGHETTI et al. PHYSICAL REVIEW RESEARCH 2, 013089 (2020) (collapsing into) an accepting basis state. Quantum finite a benchmark upon which to test the descriptional power of automata exhibit both advantages and disadvantages with classical and quantum finite automata, namely the language k respect to their classical (e.g., deterministic or probabilistic) Lm ={a | k ∈ N and k mod m = 0} for any given m > 0. counterparts. Basically, quantum superposition offers some We provide a theoretical definition of a quantum finite au- computational advantages on probabilistic superposition. On tomaton A accepting Lm with isolated cut point and two the other hand, quantum dynamics must be reversible, and this basis states, whereas any classical automaton for Lm requires requirement may impose severe computational limitations to a number of states which grows with m. finite memory devices. As a matter of fact, it is sometimes The photonic implementation of the quantum finite au- impossible to simulate classical finite automata by quantum tomaton A with two basis states is then discussed in Sec. IV. finite automata. In fact, as we will discuss in Sec. II D, isolated There, we start reviewing the standard quantum formalism cut point quantum finite automata recognize a proper subclass used to describe the polarization state of the single photon, of regular languages [18,20,21]. its dynamics, and the link with the formalism used in the Although weaker from a computational power point of previous sections. Then, we explain the working principle of view, quantum finite automata may greatly outperform clas- the photonic implementation of the quantum finite automaton sical ones when descriptional power is at stake. In the realm and propose a discrimination strategy to reduce the acceptance of descriptional complexity [29], models of computation are error probability. Section V describes the experimental appa- compared on the basis of their size. In the case of finite state ratus and reports the results we obtained. Finally, we close the machines, a commonly assumed size measure is the number paper with Sec. VI, where we draw some concluding remarks of finite control states. Most likely, the first contribution and the outlook for our work. explicitly studying the descriptional power of quantum versus classical finite automata is Ref. [30], where an extremely succinct quantum finite automaton is provided, accepting the II. PRELIMINARIES k unary language Lm ={a | k ∈ N and k mod m = 0} for any given m > 0. The construction in Ref. [30]usesasabasic(and A. Formal languages and classical finite automata sole) module a quantum finite automaton A for Lm with 2 ba- Formal language theory studies languages from a math- sis states, whose acceptance reliability is then enhanced within ematical point of view, providing formal tools and methods a suitable modular building framework where traditional com- to analyze language properties. Strictly connected with au- positions (i.e., direct products and sums) of quantum systems tomata theory, the discipline dates back to the 1950s, and are performed. Actually, many (if not all) contributions in the it was originally developed to provide a theoretical basis for literature aiming to design small size quantum finite automata natural language processing. It was soon realized that this the- for several tasks (see, e.g., Refs. [25,31–38]) use the module ory was relevant to the artificial languages (e.g., programming A as a crucial building block. In this sense, the language Lm languages) that had originated in computer science. Since its and the module A turn out to be “paradigmatic” as tools to birth, formal language theory has become established as one build and test size-efficient quantum finite automata. Hence, of the most prominent area in theoretical computer science. Its a physical realization of the module A might be well worth results have huge impacts in numerous fields, including prac- investigating. tical computer science, cryptography and security, discrete In this paper, we put forward a physical implementation of mathematics and combinatorics, graph theory, mathemati- quantum finite automata based on the polarization degree of cal logic, nature-inspired (e.g., quantum, biological, genetic) freedom of single photons and able to recognize a family of computational models, physics, and system theory. periodic languages. More precisely, because of above stressed The reader may find a lot of excellent textbooks where centrality in quantum finite automaton design frameworks, thoughtful presentations of formal language and automata we focus on the physical implementation of the quantum theory and their applications are presented (see, e.g., finite automaton A for the language Lm.
Recommended publications
  • Quantum Computer: Quantum Model and Reality
    Quantum Computer: Quantum Model and Reality Vasil Penchev, [email protected] Bulgarian Academy of Sciences: Institute of Philosophy and Sociology: Dept. of Logical Systems and Models Abstract. Any computer can create a model of reality. The hypothesis that quantum computer can generate such a model designated as quantum, which coincides with the modeled reality, is discussed. Its reasons are the theorems about the absence of “hidden variables” in quantum mechanics. The quantum modeling requires the axiom of choice. The following conclusions are deduced from the hypothesis. A quantum model unlike a classical model can coincide with reality. Reality can be interpreted as a quantum computer. The physical processes represent computations of the quantum computer. Quantum information is the real fundament of the world. The conception of quantum computer unifies physics and mathematics and thus the material and the ideal world. Quantum computer is a non-Turing machine in principle. Any quantum computing can be interpreted as an infinite classical computational process of a Turing machine. Quantum computer introduces the notion of “actually infinite computational process”. The discussed hypothesis is consistent with all quantum mechanics. The conclusions address a form of neo-Pythagoreanism: Unifying the mathematical and physical, quantum computer is situated in an intermediate domain of their mutual transformations. Key words: model, quantum computer, reality, Turing machine Eight questions: There are a few most essential questions about the philosophical interpretation of quantum computer. They refer to the fundamental problems in ontology and epistemology rather than philosophy of science or that of information and computation only. The contemporary development of quantum mechanics and the theory of quantum information generate them.
    [Show full text]
  • Quantum Algorithms 1
    Quantum Algorithms 1 Computer scientists usually find conventional expositions of quantum computation difficult, since a lot of new concepts have to be learned to- gether to make sense of it all. In this course, we take a different approach, starting from a point where every computer science student is comfortable, and introducing the new concepts one by one into the familiar framework. We hope it will be much easier this way. So let's start with deterministic finite automata! Chapter 1 Finite automata 1.1 Deterministic model You already know the stuff in Sipser's book. Note that the transitions of a DFA can be represented as 0-1 matrices, the states can be traced with vectors, and the execution on an input string boils down to multiplying this vector with the corresponding sequence of those matrices. 1.2 Probabilistic model We define real-time1 probabilistic finite automata (rtPFAs) by generalizing the matrix definition of rtDFAs to column stochastic transition matrices. Consider a transition graph representation for a moment. It is as if compu- tation flows through many arrows (associated with the same input symbol) parallelly in each step. Under this \zero-error" regime (exact computation) rtPFAs are identical to rtDFAs: Since none of these computational paths can arrive at an incorrect response at the end, tracing any single path is suffi- cient for seeing what the machine will do. So we convert each rtPFA matrix (which have to contain at least one nonzero entry in each column) to a rtDFA matrix with a 1 in just the position corresponding to the topmost nonzero entry of the rtPFA in that column.
    [Show full text]
  • Restricted Versions of the Two-Local Hamiltonian Problem
    The Pennsylvania State University The Graduate School Eberly College of Science RESTRICTED VERSIONS OF THE TWO-LOCAL HAMILTONIAN PROBLEM A Dissertation in Physics by Sandeep Narayanaswami c 2013 Sandeep Narayanaswami Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy August 2013 The dissertation of Sandeep Narayanaswami was reviewed and approved* by the following: Sean Hallgren Associate Professor of Computer Science and Engineering Dissertation Adviser, Co-Chair of Committee Nitin Samarth Professor of Physics Head of the Department of Physics Co-Chair of Committee David S Weiss Professor of Physics Jason Morton Assistant Professor of Mathematics *Signatures are on file in the Graduate School. Abstract The Hamiltonian of a physical system is its energy operator and determines its dynamics. Un- derstanding the properties of the ground state is crucial to understanding the system. The Local Hamiltonian problem, being an extension of the classical Satisfiability problem, is thus a very well-motivated and natural problem, from both physics and computer science perspectives. In this dissertation, we seek to understand special cases of the Local Hamiltonian problem in terms of algorithms and computational complexity. iii Contents List of Tables vii List of Tables vii Acknowledgments ix 1 Introduction 1 2 Background 6 2.1 Classical Complexity . .6 2.2 Quantum Computation . .9 2.3 Generalizations of SAT . 11 2.3.1 The Ising model . 13 2.3.2 QMA-complete Local Hamiltonians . 13 2.3.3 Projection Hamiltonians, or Quantum k-SAT . 14 2.3.4 Commuting Local Hamiltonians . 14 2.3.5 Other special cases . 15 2.3.6 Approximation Algorithms and Heuristics .
    [Show full text]
  • STRONGLY UNIVERSAL QUANTUM TURING MACHINES and INVARIANCE of KOLMOGOROV COMPLEXITY (AUGUST 11, 2007) 2 Such That the Aforementioned Halting Conditions Are Satisfied
    STRONGLY UNIVERSAL QUANTUM TURING MACHINES AND INVARIANCE OF KOLMOGOROV COMPLEXITY (AUGUST 11, 2007) 1 Strongly Universal Quantum Turing Machines and Invariance of Kolmogorov Complexity Markus M¨uller Abstract—We show that there exists a universal quantum Tur- For a compact presentation of the results by Bernstein ing machine (UQTM) that can simulate every other QTM until and Vazirani, see the book by Gruska [4]. Additional rele- the other QTM has halted and then halt itself with probability one. vant literature includes Ozawa and Nishimura [5], who gave This extends work by Bernstein and Vazirani who have shown that there is a UQTM that can simulate every other QTM for necessary and sufficient conditions that a QTM’s transition an arbitrary, but preassigned number of time steps. function results in unitary time evolution. Benioff [6] has As a corollary to this result, we give a rigorous proof that worked out a slightly different definition which is based on quantum Kolmogorov complexity as defined by Berthiaume et a local Hamiltonian instead of a local transition amplitude. al. is invariant, i.e. depends on the choice of the UQTM only up to an additive constant. Our proof is based on a new mathematical framework for A. Quantum Turing Machines and their Halting Conditions QTMs, including a thorough analysis of their halting behaviour. Our discussion will rely on the definition by Bernstein and We introduce the notion of mutually orthogonal halting spaces and show that the information encoded in an input qubit string Vazirani. We describe their model in detail in Subsection II-B.
    [Show full text]
  • On the Simulation of Quantum Turing Machines
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Theoretical Computer Science 304 (2003) 103–128 www.elsevier.com/locate/tcs On the simulation ofquantum turing machines Marco Carpentieri Universita di Salerno, 84081 Baronissi (SA), Italy Received 20 March 2002; received in revised form 11 December 2002; accepted 12 December 2002 Communicated by G. Ausiello Abstract In this article we shall review several basic deÿnitions and results regarding quantum compu- tation. In particular, after deÿning Quantum Turing Machines and networks the paper contains an exposition on continued fractions and on errors in quantum networks. The topic of simulation ofQuantum Turing Machines by means ofobvious computation is introduced. We give a full discussion ofthe simulation ofmultitape Quantum Turing Machines in a slight generalization of the class introduced by Bernstein and Vazirani. As main result we show that the Fisher-Pippenger technique can be used to give an O(tlogt) simulation ofa multi-tape Quantum Turing Machine by another belonging to the extended Bernstein and Vazirani class. This result, even ifregarding a slightly restricted class ofQuantum Turing Machines improves the simulation results currently known in the literature. c 2003 Published by Elsevier B.V. 1. Introduction Even ifthe present technology does consent realizing only very simple devices based on the principles ofquantum mechanics, many authors considered to be worth it ask- ing whether a theoretical model ofquantum computation could o:er any substantial beneÿts over the correspondent theoretical model based on the assumptions ofclas- sical physics. Recently, this question has received considerable attention because of the growing beliefthat quantum mechanical processes might be able to performcom- putation that traditional computing machines can only perform ine;ciently.
    [Show full text]
  • A Quantum Computer Foundation for the Standard Model and Superstring Theories*
    A Quantum Computer Foundation for the Standard Model and SuperString Theories* By Stephen Blaha** * Excerpted from the book Cosmos and Consciousness by Stephen Blaha (1stBooks Library, Bloomington, IN, 2000) available from amazon.com and bn.com. ** Associate of the Harvard University Physics Department. ABSTRACT 1. SuperString Theory can naturally be based on a Quantum Computer foundation. This provides a totally new view of SuperString Theory. 2. The Standard Model of elementary particles can be viewed as defining a Quantum Computer Grammar and language. 3. A Quantum Computer can be represented in part as a second-quantized Fermi field. 4. A Quantum Computer in a certain limit naturally forms a Superspace upon which Supersymmetry rotations can be defined – a Continuum Quantum Computer. 5. A representation of Quantum Computers exists that is similar to Turing Machines - a Quantum Turing Machine. As part of this development we define various types of Quantum Grammars. 6. High level Quantum Computer languages are described for the first time. New linguistic views of the most fundamental theories of Physics, the Standard Model and SuperString Theory are described. In these new linguistic representations particles become literally symbols or letters, and particle interactions become grammar rules. This view is NOT the same as the often-expressed view that Mathematics is the language of Physics. The linguistic representation is a specific new mathematical construct. We show how to create a SuperString Quantum Computer that naturally provides a framework for SuperStrings in general and heterotic SuperStrings in particular. There are also a number of new developments relating to Quantum Computers and Quantum Turing Machines that are of interest to Computer Science.
    [Show full text]
  • Automata Modeling for Cognitive Interference in Users' Relevance
    Quantum Informatics for Cognitive, Social, and Semantic Processes: Papers from the AAAI Fall Symposium (FS-10-08) Automata Modeling for Cognitive Interference in Users’ Relevance Judgment Peng Zhang1, Dawei Song1, Yuexian Hou1,2, Jun Wang1, Peter Bruza3 1School of Computing, The Robert Gordon University, UK. 2School of Computer Sci. & Tec., Tianjin University, China. 3Queensland University of Technology, Australia Email: [email protected] Abstract This paper is a step further along the direction of inves- tigating the quantum-like interference in a central IR pro- Quantum theory has recently been employed to further ad- cess - user’s relevance judgment, where users are involved vance the theory of information retrieval (IR). A challenging to judge the relevance degree of documents with respect to research topic is to investigate the so called quantum-like in- a given query. In this process, users’ relevance judgment terference in users’ relevance judgment process, where users are involved to judge the relevance degree of each document for the current document is often interfered by the judgment with respect to a given query. In this process, users’ relevance for previously seen documents, as a result of cognitive in- judgment for the current document is often interfered by the terference. A typical scenario is that, after finding a more judgment for previous documents, due to the interference on relevant document, a user may lower the relevance degree users’ cognitive status. Research from cognitive science has of a previously judged document. For example, when a user demonstrated some initial evidence of quantum-like cogni- judges whether a document d0 about “the theory of relativ- tive interference in human decision making, which underpins ity” is relevant to the query “Albert Einstein”, the user might the user’s relevance judgment process.
    [Show full text]
  • Quantum Computing : a Gentle Introduction / Eleanor Rieffel and Wolfgang Polak
    QUANTUM COMPUTING A Gentle Introduction Eleanor Rieffel and Wolfgang Polak The MIT Press Cambridge, Massachusetts London, England ©2011 Massachusetts Institute of Technology All rights reserved. No part of this book may be reproduced in any form by any electronic or mechanical means (including photocopying, recording, or information storage and retrieval) without permission in writing from the publisher. For information about special quantity discounts, please email [email protected] This book was set in Syntax and Times Roman by Westchester Book Group. Printed and bound in the United States of America. Library of Congress Cataloging-in-Publication Data Rieffel, Eleanor, 1965– Quantum computing : a gentle introduction / Eleanor Rieffel and Wolfgang Polak. p. cm.—(Scientific and engineering computation) Includes bibliographical references and index. ISBN 978-0-262-01506-6 (hardcover : alk. paper) 1. Quantum computers. 2. Quantum theory. I. Polak, Wolfgang, 1950– II. Title. QA76.889.R54 2011 004.1—dc22 2010022682 10987654321 Contents Preface xi 1 Introduction 1 I QUANTUM BUILDING BLOCKS 7 2 Single-Qubit Quantum Systems 9 2.1 The Quantum Mechanics of Photon Polarization 9 2.1.1 A Simple Experiment 10 2.1.2 A Quantum Explanation 11 2.2 Single Quantum Bits 13 2.3 Single-Qubit Measurement 16 2.4 A Quantum Key Distribution Protocol 18 2.5 The State Space of a Single-Qubit System 21 2.5.1 Relative Phases versus Global Phases 21 2.5.2 Geometric Views of the State Space of a Single Qubit 23 2.5.3 Comments on General Quantum State Spaces
    [Show full text]
  • Computational Power of Observed Quantum Turing Machines
    Computational Power of Observed Quantum Turing Machines Simon Perdrix PPS, Universit´eParis Diderot & LFCS, University of Edinburgh New Worlds of Computation, January 2009 Quantum Computing Basics State space in a classical world of computation: countable A. inaquantumworld: Hilbertspace CA ket map . : A CA | i → s.t. x , x A is an orthonormal basis of CA {| i ∈ } Arbitrary states Φ = αx x | i x A X∈ 2 s.t. x A αx =1 ∈ | | P Quantum Computing Basics bra map . : A L(CA, C) h | → s.t. x, y A, ∀ ∈ 1 if x = y y x = “ Kronecker ” h | | i (0 otherwise v,t A, v t : CA CA: ∀ ∈ | ih | → v if t = x ( v t ) x = v ( t x )= | i “ v t t v ” | ih | | i | i h | | i (0 otherwise | ih |≈ 7→ Evolution of isolated systems: Linear map U L(CA, CA) ∈ U = ux,y y x | ih | x,y A X∈ which is an isometry (U †U = I). Observation Let Φ = αx x | i x A X∈ (Full) measurement in standard basis: 2 The probability to observe a A is αa . ∈ | | If a A is observed, the state becomes Φa = a . ∈ | i Partial measurement in standard basis: Let K = Kλ, λ Λ be a partition of A. { ∈ } 2 The probability to observe λ Λ is pλ = a Kλ αa ∈ ∈ | | If λ Λ is observed, the state becomes P ∈ 1 1 Φλ = PλΦ = αa a √pλ √pλ | i a Kλ X∈ where Pλ = a Kλ a a . ∈ | ih | P Observation Let Φ = αx x | i x A X∈ (Full) measurement in standard basis: 2 The probability to observe a A is αa .
    [Show full text]
  • Probabilistic and Quantum Finite Automata with Postselection
    Probabilistic and quantum finite automata with ⋆ ⋆⋆ postselection ’ Abuzer Yakaryılmaz and A. C. Cem Say Bo˘gazi¸ci University, Department of Computer Engineering, Bebek 34342 Istanbul,˙ Turkey abuzer,[email protected] June 26, 2018 Abstract. We prove that endowing a real-time probabilistic or quantum computer with the ability of postselection increases its computational power. For this purpose, we provide a new model of finite automata with postselection, and compare it with the model of L¯ace et al. We examine the related language classes, and also establish separations between the classical and quantum versions, and between the zero-error vs. bounded- error modes of recognition in this model. 1 Introduction The notion of postselection as a mode of computation was introduced by Aaronson [1]. Postselection is the (unrealistic) capability of discarding all branches of a computation in which a specific event does not occur, and focusing on the surviving branches for the final decision about the membership of the input string in the recognized language. Aaronson examined PostBQP, the class of languages recognized with bounded error by polynomial-time quantum computers with postselection, and showed it to be identical to the well-known classical complexity class PP. It is, arXiv:1102.0666v1 [cs.CC] 3 Feb 2011 however, still an open question whether postselection adds anything to the power of polynomial-time computation, since we do not even know whether P, the class of languages recognized by classical computers with zero error in polynomial time, equals PP or not. In this paper, we prove that postselection is useful for real-time computers with a constant space bound, that is, finite automata.
    [Show full text]
  • Quantum Finite Automata and Their Simulations
    Quantum Finite Automata and Their Simulations Gustaw Lippa Krzysztof Makie la Marcin Kuta [email protected] Department of Computer Science, AGH University of Science and Technology, Krak´ow, Poland Krak´owQuantum Informatics Seminar (KQIS) 13 October 2020 Outline Motivation Quantum finite automata Library for simulating quantum finite automata Existing libraries Java Formal Languages and Automata Package (JFLAP) Quirk Quantum++ Q# Qiskit ProjectQ Probabilistic automata Probabilistic Finite Automaton (PFA) Quantum automata Measure-Once Quantum Finite Automaton (MO-QFA) Measure-Many Quantum Finite Automaton (MM-QFA) General Quantum Finite Automaton (GQFA) Types of Finite Automata Classical automata Deterministic Finite Automaton (DFA) Nondeterministic Finite Automaton (NFA) Alternating Finite Automaton (AFA) Quantum automata Measure-Once Quantum Finite Automaton (MO-QFA) Measure-Many Quantum Finite Automaton (MM-QFA) General Quantum Finite Automaton (GQFA) Types of Finite Automata Classical automata Deterministic Finite Automaton (DFA) Nondeterministic Finite Automaton (NFA) Alternating Finite Automaton (AFA) Probabilistic automata Probabilistic Finite Automaton (PFA) Types of Finite Automata Classical automata Deterministic Finite Automaton (DFA) Nondeterministic Finite Automaton (NFA) Alternating Finite Automaton (AFA) Probabilistic automata Probabilistic Finite Automaton (PFA) Quantum automata Measure-Once Quantum Finite Automaton (MO-QFA) Measure-Many Quantum Finite Automaton (MM-QFA) General Quantum Finite Automaton (GQFA) Deterministic
    [Show full text]
  • Quantum Computational Complexity Theory Is to Un- Derstand the Implications of Quantum Physics to Computational Complexity Theory
    Quantum Computational Complexity John Watrous Institute for Quantum Computing and School of Computer Science University of Waterloo, Waterloo, Ontario, Canada. Article outline I. Definition of the subject and its importance II. Introduction III. The quantum circuit model IV. Polynomial-time quantum computations V. Quantum proofs VI. Quantum interactive proof systems VII. Other selected notions in quantum complexity VIII. Future directions IX. References Glossary Quantum circuit. A quantum circuit is an acyclic network of quantum gates connected by wires: the gates represent quantum operations and the wires represent the qubits on which these operations are performed. The quantum circuit model is the most commonly studied model of quantum computation. Quantum complexity class. A quantum complexity class is a collection of computational problems that are solvable by a cho- sen quantum computational model that obeys certain resource constraints. For example, BQP is the quantum complexity class of all decision problems that can be solved in polynomial time by a arXiv:0804.3401v1 [quant-ph] 21 Apr 2008 quantum computer. Quantum proof. A quantum proof is a quantum state that plays the role of a witness or certificate to a quan- tum computer that runs a verification procedure. The quantum complexity class QMA is defined by this notion: it includes all decision problems whose yes-instances are efficiently verifiable by means of quantum proofs. Quantum interactive proof system. A quantum interactive proof system is an interaction between a verifier and one or more provers, involving the processing and exchange of quantum information, whereby the provers attempt to convince the verifier of the answer to some computational problem.
    [Show full text]