A Mechanism for Neuronal Coincidence Revealed in the Crayfish Antennule

Total Page:16

File Type:pdf, Size:1020Kb

A Mechanism for Neuronal Coincidence Revealed in the Crayfish Antennule A mechanism for neuronal coincidence revealed in the crayfish antennule DeForest Mellon, Jr.* and Kate Christison-Lagay Department of Biology, University of Virginia, Charlottesville, VA 22903 Edited by John G. Hildebrand, University of Arizona, Tucson, AZ, and approved August 6, 2008 (received for review May 7, 2008) Startle reflexes employ specialized neuronal circuits and synaptic duction velocities. Similar conduction-velocity adjustment mech- features for rapid transmission of information from sense organs anisms for achieving interneuronal or effector synchrony are to responding muscles. Successful excitation of these pathways known from a few central and efferent pathways in vertebrates requires the coincidence of sensory input at central synaptic (13, 14) as well as in cephalopod molluscs (15). Our findings contacts with giant fiber targets. Here we describe a pathway could be of critical importance in other systems where synchro- feature in the crayfish tailflip reflex: A position-dependent linear nous arrival of spikes may be required from spatially dispersed gradation in sensory axonal conduction velocities that can ensure primary sensory neurons, such as afferents from cercal filiform the coincident arrival of impulses from near-field hydrodynamic hairs in cockroaches, or lateral line neuromasts or skeletal– sensilla along the crayfish antennules at their synaptic contacts muscle spindles in vertebrates. with central nervous elements that drive startle behavior. This The medial giant-fiber system in crayfish, which mediates provides a previously unexplored mechanism to ensure optimum backward tailflips in response to sudden stimulation of the responses to sudden threatening stimuli. Preliminary findings thorax, legs, or head, is not nearly as well-examined as the lateral indicate that axons supplying distally located sensilla increase their giants, although it is thought that the synaptic organization of diameters at least ten-fold along the antennular flagella and raise afferent inputs to the medial giants is similar to that of the lateral the possibility that more modest, graduated, diameter changes in giants, and suddenness of stimulus onset is also critical for axons originating from progressively more proximal sensilla along evoking medial giant spikes (9, 16, 17). It seems reasonable to the antennule underlie the observed modifications in axonal con- hypothesize, therefore, that coincident arrival of afferent spikes duction velocity. at their synapses with the medial giants is as important as it is for lateral giant activation. In fact, the situation is even more critical crustacean ͉ sensory receptor ͉ startle reflex ͉ giant axons ͉ for the medial giants than for the lateral giants, whose distributed hydrodynamic sensilla afferent inputs to their synaptic targets in the several abdominal segmental ganglia comprise relatively short pathways; the two n prey–predator interactions, speed of responses to threaten- medial giants, by contrast, have only a single input and spike- Iing stimuli can mean the difference between capture and generating region—in the brain—and they receive afferents escape; thus, animals across phyletic boundaries have evolved from widely differing distances along the thoracic and head startle reflexes for rapid responses to approaching threats. The appendages via several different neuronal pathways (16). We neurophysiological substrates of startle behaviors include inter- have identified a small population of highly sensitive, bidirec- neuron axons of very large diameters that conduct impulses tional hydrodynamic receptor sensilla on the antennules (first rapidly to excite relevant efferent pathways (1–5) and electrical antennae) in the crayfish P. clarkii that potentially drives the synapses in the sensory-afferent pathways that trigger the inter- medial giant fibers, and whose dramatically calibrated axonal neurons and, in some systems, the motor neurons involved in the conduction properties must assure simultaneity of arrival in behavior (6). One of the startle behaviors that has been most spikes generated in the sensillar array. This constitutes a neu- intensively studied is a tailflip reflex initiated by one of the two ronal coincidence mechanism that should subserve precisely the sets of these high-speed interneurons—the lateral giant fi- sort of afferent synchrony requirement so critical for both the bers—in the ventral nerve cord of crayfish (7–12). Rectifying lateral giant and the medial giant pathways. electrical synapses between sensory-afferent terminals and the lateral giant fibers and between large tactile interneurons and Results the lateral giants, passes current directly into these paired axons Feathered sensilla are prominent near-field hydrodynamic sen- and, when several afferent terminals fire simultaneously, they sors on the crayfish abdomen (18, 19) and undoubtedly largely sum effectively to produce enhanced excitatory postsynaptic comprise the afferent limb of the lateral giant startle reflex. potentials in their targets (11). Furthermore, nonrectifying Morphologically similar standing feathered sensilla occur electrical interconnections among the afferent terminals exist sparsely distributed along the ventro-lateral aspects of the lateral whereby active terminals can directly recruit inactive terminals antennular flagellum and the ventro-medial aspects of the to provide additional depolarization to the lateral giants (12). medial flagellum (Fig. 1A). Their numbers range from 6–10 Coincidence of arrival of afferent input is crucial to these individual sensilla on each flagellum (mean ϭ 8, Ϯ0.6; n ϭ 11), processes and, thus, to initiate the startle response mediated by and they are most numerous along the basal 50% of the flagellar the lateral giants. What is not understood, however, is the neural axis (Fig. 1C). Like feathered sensilla described on the tailfan mechanism that explains the synchronous arrival at central (18) and earlier on the cephalothorax (20), each antennular synapses of sensory-afferent impulses from varying distances, a sensillum is supplied by two sensory neurons that have opposite problem that is especially critical for the other giant-fiber system in the crayfish, the medial giants, because of the long distances traversed by sensory spikes to their target synapses in the brain. Author contributions: D.M. designed research; D.M. and K.C.-L. performed research; D.M. Here we report that a population of hydrodynamic receptor and K.C.-L. analyzed data; and D.M. wrote the paper. sensilla on the antennules of the crayfish Procambarus clarkii The authors declare no conflict of interest. potentially drives the medial giant system to initiate startle This article is a PNAS Direct Submission. behavior and achieves simultaneity of impulse delivery through *To whom correspondence should be addressed. Email: [email protected]. graded, position-dependent variations in the sensory-axon con- © 2008 by The National Academy of Sciences of the USA 14626–14631 ͉ PNAS ͉ September 23, 2008 ͉ vol. 105 ͉ no. 38 www.pnas.org͞cgi͞doi͞10.1073͞pnas.0804385105 Downloaded by guest on September 24, 2021 Fig. 1. Physical properties and response characteristics of standing feathered sensilla. (A) Head of Procambarus clarkii, indicating (arrows) both flagella of the right-hand antennule (Attribution: see ref. 30). (B) Scanning electron micrograph of a standing feathered sensillum on the lateral flagellum of P. clarkii. Other types of sensilla are in the background and foreground. (Scale bar, 100 ␮m.) (C) Distribution of standing feathered sensilla on 11 different lateral and medial flagella along their normalized lengths. (D) Upper and lower traces are extracellularly recorded electrical responses of neuronal pairs to sinusoidal mechanical stimulation of two feathered sensilla. Probe excursions were 200 ␮m peak-to-peak and generated differential responses to bidirectional movements parallel to the flagellar axis, with occasional electrical summations. (E) Polar plots of responses from a pair of neurons associated with one feathered sensillum to ramp deflections of the sensillum tip of 100 ␮m in extent. Response overlap near the least preferred stimulus direction is partially because of minute, unavoidable, mechanical vibrations of the probe and the high sensitivity of the associated neurons. (F) Relationship between spike frequency and stimulus-probe velocity of NEUROSCIENCE 42 sensory neurons associated with feathered sensilla on the lateral and medial flagella. Data points represent mean spiking frequency Ϯ1 SE. At higher velocities, response magnitude begins to saturate. The curve best fit by the data is a first-order exponential, y ϭ 112–107eϪx/832. directional preferences in their respective sensitivity to displace- latency of the medial giant electrical response was 12.59 msec ments. Typical electrophysiological recordings from two stand- (range: 6.96–17.32 msec, n ϭ 18), well within the range of ing feathered sensilla are shown in Fig. 1B to sinusoidal tip latencies for medial giant activation measured previously (16) displacements of 200 ␮m at a frequency of 1 Hz. The polar plots following sudden taps to the second antennae or the head. To shown in Fig. 1E indicate the mean, normalized spiking response determine whether the difference in response latencies—2.73 of a pair of neurons associated with a feathered sensillum to msec—obtained by the two stimulus methods might be because unidirectional 100-␮m tip excursions applied parallel to the of conduction time of the afferents within
Recommended publications
  • Of the Lateral Giant Escape Neurons in Crayfish Sensory Activation And
    Sensory Activation and Receptive Field Organization of the Lateral Giant Escape Neurons in Crayfish Yen-Chyi Liu and Jens Herberholz J Neurophysiol 104:675-684, 2010. First published 26 May 2010; doi:10.1152/jn.00391.2010 You might find this additional info useful... This article cites 57 articles, 31 of which can be accessed free at: http://jn.physiology.org/content/104/2/675.full.html#ref-list-1 Updated information and services including high resolution figures, can be found at: http://jn.physiology.org/content/104/2/675.full.html Additional material and information about Journal of Neurophysiology can be found at: http://www.the-aps.org/publications/jn This infomation is current as of February 10, 2012. Downloaded from jn.physiology.org on February 10, 2012 Journal of Neurophysiology publishes original articles on the function of the nervous system. It is published 12 times a year (monthly) by the American Physiological Society, 9650 Rockville Pike, Bethesda MD 20814-3991. Copyright © 2010 by the American Physiological Society. ISSN: 0022-3077, ESSN: 1522-1598. Visit our website at http://www.the-aps.org/. J Neurophysiol 104: 675–684, 2010. First published May 26, 2010; doi:10.1152/jn.00391.2010. Sensory Activation and Receptive Field Organization of the Lateral Giant Escape Neurons in Crayfish Yen-Chyi Liu1 and Jens Herberholz1,2 1Department of Psychology, 2Neuroscience and Cognitive Science Program, University of Maryland, College Park, Maryland Submitted 28 April 2010; accepted in final form 26 May 2010 Liu YC, Herberholz J. Sensory activation and receptive field 1999; Herberholz 2007; Krasne and Edwards 2002a; Wine and organization of the lateral giant escape neurons in crayfish.
    [Show full text]
  • The Giant Interneuron Pathways and Escape Reflexes of the Aquatic Oligochaete, Branchiura Sowerbyi Mark Joseph Zoran Iowa State University
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1987 The giant interneuron pathways and escape reflexes of the aquatic oligochaete, Branchiura sowerbyi Mark Joseph Zoran Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Zoology Commons Recommended Citation Zoran, Mark Joseph, "The giant interneuron pathways and escape reflexes of the aquatic oligochaete, Branchiura sowerbyi " (1987). Retrospective Theses and Dissertations. 8604. https://lib.dr.iastate.edu/rtd/8604 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. INFORMATION TO USERS While the most advanced technology has been used to photograph and reproduce this manuscript, the quality of the reproduction is heavily dependent upon the quality of the material submitted. For example: • Manuscript pages may have indistinct print. In such cases, the best available copy has been filmed. • Manuscripts may not always be complete. In such cases, a note will indicate that it is not possible to obtain missing pages. • Copyrighted material may have been removed from the manuscript. In such cases, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, and charts) are photographed by sectioning the original, beginning at the upper left-hand corner and continuing from left to right in equal sections with small overlaps. Each oversize page is also filmed as one exposure and is available, for an additional charge, as a standard 35mm slide or as a 17"x 23" black and white photographic print.
    [Show full text]
  • Crayfish Escape Behavior and Central Synapses. I. Neural Circuit Exciting Lateral Giant Fiber
    Crayfish Escape Behavior and Central Synapses. I. Neural Circuit Exciting Lateral Giant Fiber ROBERT S. ZUCKER Department of Biological Sciences and Program in the Neurological Sciences, Staraford IJnkersity, Stanford, California 94305 CRAYFISH ARE SOUGHT as food by fish, birds, havior thus habituates to infrequently amphibia, and mammals, as well as man repeatecl stimuli. However, since prolonged (54, p. 460). They commonly escape these stimulation of the lateral giant at frequen- predators by darting backward and away cies up to 1 Hz results in the continued from an enemy on contact, or as the preda- appearance of tail flicks (38, 41), the re- tor approaches. This maneuver is accom- sponse lability must be located in the plished by a sudden flexion of the tail, pathways afferent to the giant- fiber, or in exerting a thrust backward and sometimes that neuron itself. upward against the aquatic medium. A sin- In 1960, Kao (25) recorded slow depolar- gle tail flexion, commonly called a tail flip izing potentials in the lateral giant axon to or flick, often suffices; a more prolonged shocks clelivered to afferent roots. The po- mode of escape, swimming, consists of a tentials could elicit spikes, and were there- periodic sequence of abdominal flexions fore excitatory postsynaptic potentials and extensions. (EPSPs). Krasne (40) showed that on repeti- In 1947, Wiersma (67) showed that stimu- tion of a stimulus these EPSPs waned with lation of any single lateral or medial giant a time course similar to behavioral habitu- fiber of the nerve cord lecl to a ra&l ab- ation. This discovery represented an impor- clominal flexion.
    [Show full text]
  • Habituation and Inhibition of the Crayfish Lateral Giant Fibre Escape Response Jeffrey J
    Jf. exp. Biol. (1975). &». 771-783 'ith 8 figures inted in Great Britain HABITUATION AND INHIBITION OF THE CRAYFISH LATERAL GIANT FIBRE ESCAPE RESPONSE JEFFREY J. WINE Department of Psychology, Stanford University FRANKLIN B. KRASNE AND LIMING CHEN Department of Psychology, University of California, Los Angeles {Received 10 December 1974) SUMMARY 1. Decrement of the lateral giant fibre escape response was studied in intact, restrained, crayfish and in those with the ventral nerve cord transected at the thoracic-abdominal level. 2. Taps (delivered at rates of 1 per 5 min to the abdomen) depressed responsiveness to about 50% of its initial value in 10 trials, for both intact and operated animals. 3. With additional stimulation, responsiveness dropped to near zero for both groups. Recovery was negligible 2 h later, but nearly complete after an additional 24 h rest. 4. Protection against response decrement in this situation was obtained by directly activating the cord giant fibres 30 msec prior to the tactile stimulus. The directly-elicited giant fibre spikes which follow the tactile stimulus do not influence the course of response decrement. 5. The results establish the decrement as centrally mediated habituation, and minimize the role of receptor alterations or descending neuronal influences in the behavioural change. 6. A comparison is made between the properties of habituation and the homosynaptic depression of afferent to interneurone synapses that is pre- sumed to be the physiological mechanism of habituation in this situation. INTRODUCTION Crayfish escape behaviour includes a rapid abdominal flexion mediated by a large pair of command interneurones (the lateral giant fibres, or LGs), which are triggered by phasic tactile input to the abdomen (Wine & Krasne, 1972).
    [Show full text]
  • Voyages Through Weight Space: Network Models of an Escape Reflex in the Leech
    Chapter XI Voyages through Weight Space: Network Models of an Escape Reflex in the Leech SHAWNR. LOCKERYAND TERRENCEJ. SWNOWSKI Co~~iputrirronalNeurobiolog\ Dlborutona Salk Insrrrure for B~olog~colStudies. La Jolla. Californ~a, and The Howard hug he^ Medical ln;r~rure I. Introduction Whether the interest is in discovering the neural basis of behavior or in reverse engineering the nervous system to weal its secrets of computation and control, '1, modeling and simulation play a central role in the process of discovery. Many inter- esting behaviors are subserved by large, nonlinear, and highly interconnected ieural networks that are too complicated to grasp intuitively. Modeling of cqmifex net- works could be used to gain.insight into their biological counterparts. However, such models typically contain many free parameters that cannot be set by the available physiological or anatomical data. One approach to these diGulties is to choose val- ues for these parameters using an optimization algorithq constrained by biological data. This chapter illustrates several different applications of one such algorithm called backpropagation (Rumelhart et al., 1986), a widely used gradient descent technique, to the well-defined neural circuit of the local bending reflex of the leech. After introductory remarks on optimization in network modeling, we review our use of optimized network models to demonstrate the plausibility of distributed process- ing in the local reflex. We next show how varying the assumptions of the modelkd to unexpected local bending networks involving dedicated rather than distributed processing mechanisms. A final section demonsbate~,theuse of optimization to study how the memory for nonassociative conditioning can be stored in distributed Biological Neural Networks 251 Copyrighi @ 1993 by Academic Rers, lnc.
    [Show full text]
  • Sensitization of the Crayfish Lateral Giant Escape Reaction
    The Journal of Neuroscience April 1966, 6(4): 1013-1020 Sensitization of the Crayfish Lateral Giant Escape Reaction Franklin B. Krasne and David L. Glanzmanl Department of Psychology and Brain Research Institute, University of California, Los Angeles, California !30024 Most behavioral reactions that habituate can also be dishabit- leased by sensory neuron spikes by virtue of producing a per- uated by strong stimuli. In the best studied cases, dishabituation sistent decrease in the K+ currents that repolarize the terminal seems to be the result of an independent “sensitization” of the after a spike (Kandel and Schwartz, 1982; Klein et al., 1980). behavioral reaction that compensates for habituation without Recently, evidence has been obtained suggesting that identical necessarily abolishing it. Crayfish lateral giant (LG) neuron- effects, in exaggerated form, mediate classical conditioning of mediated escape reactions are one of the most fully analyzed the reflex (Carew et al., 198 1, 1983; Hawkins et al., 1983; Wal- behavioral reactions that are prone to habituation; however, sen- ters and Byrne, 1983). This possibility gives new importance to sitization/dishabituation of LG escape has not previously been the phenomenon of sensitization and generates a need to de- reported. termine the extent to which the findings regarding locus and Here, the effect of strong AC shocks to head or abdomen on mechanism of sensitization as well as those connecting sensi- the ability of 0.1 msec “test” shocks to sensory roots inner- tization to classical conditioning have generality. vating the tailfan to elicit an LG escape response was examined. A system that holds particular promise for probing the gen- Following single AC shocks, test shock threshold for eliciting erality of the findings from Aplysia is the lateral giant fiber (LG) LG escape reliably fell 5-80% and recovered over 15 min to 1 mediated escapereaction of the crayfish.
    [Show full text]
  • RESEARCH ARTICLE Atypical Properties of Release and Short-Term Depression at a Specialized Nicotinic Synapse in the Mauthner Cell Network
    1560 The Journal of Experimental Biology 214, 1560-1570 © 2011. Published by The Company of Biologists Ltd doi:10.1242/jeb.053702 RESEARCH ARTICLE Atypical properties of release and short-term depression at a specialized nicotinic synapse in the Mauthner cell network Simon Gelman*, Charlotte L. Grove and Donald S. Faber Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine of Yeshiva University, Bronx, NY 10461, USA *Author for correspondence ([email protected]) Accepted 20 January 2011 SUMMARY Many synapses exhibit temporally complex forms of activity-dependent short-term synaptic plasticity. The diversity of these phenomena reflects the evolutionary specialization of synapses within networks. We examined the properties of transmission and plasticity, in vivo, at an identified, specialized axo-axonic nicotinic synapse between the goldfish Mauthner cell and one of its targets, the cranial relay neuron (CRN), using intracellular paired recordings and low frequency (0.33–2Hz) train stimulations. Depression of successive excitatory postsynaptic potentials (EPSPs), which dominates short-term plasticity, had two components. A fast component reduced the amplitude of EPSP2, to less than 50% of EPSP1. A slow component produced an additional 10–30% of amplitude reduction and developed with a time constant of tens of seconds. The latencies of the later 2+ depressed responses were ~0.1ms longer than that of EPSP1, suggesting a reduced release probability. The Ca chelators EGTA and BAPTA, injected presynaptically, reduced all EPSPs and slowed development of the second component of depression. Interestingly, spike broadening, produced by injecting K+ channel blockers, reduced release, but accelerated the kinetics of the slow component.
    [Show full text]
  • Dopamine Modulates the Lateral Giant Neuron and Serotonergic Facilitation in Crayfish Joshua Scott Itlot W [email protected]
    Marshall University Marshall Digital Scholar Theses, Dissertations and Capstones 1-1-2010 Dopamine Modulates the Lateral Giant Neuron and Serotonergic Facilitation in Crayfish Joshua Scott itloT w [email protected] Follow this and additional works at: http://mds.marshall.edu/etd Part of the Aquaculture and Fisheries Commons, Marine Biology Commons, and the Terrestrial and Aquatic Ecology Commons Recommended Citation Titlow, Joshua Scott, "Dopamine Modulates the Lateral Giant Neuron and Serotonergic Facilitation in Crayfish" (2010). Theses, Dissertations and Capstones. Paper 282. This Thesis is brought to you for free and open access by Marshall Digital Scholar. It has been accepted for inclusion in Theses, Dissertations and Capstones by an authorized administrator of Marshall Digital Scholar. For more information, please contact [email protected]. DOPAMINE MODULATES THE LATERAL GIANT NEURON AND SEROTONERGIC FACILITATION IN CRAYFISH Thesis submitted to the Graduate College of Marshall University In partial fulfillment of the requirements for the degree of Master of Science Biological Science By Joshua Scott Titlow, B.S. Approved by Brian L. Antonsen, Ph.D., Committee Chairperson Elmer M. Price, Ph.D., Committee member Eric R. Blough, Ph.D., Committee member Marshall University December 2010 ACKNOWLEDGMENTS This thesis could not have been written without the expertise and guidance of Dr. Brian Antonsen. Thank you for giving me an opportunity in your lab and teaching me how to be a scientist. I am grateful to Dr. Nadja Spitzer for editing this manuscript and being a second mentor. I thank Dr. Eric Blough for his comments on the paper and professional advice, and Dr. Elmer Price for encouragement and thought-provoking conversations.
    [Show full text]
  • Crayfish Escape Behavior and Central Synapses. II. Physiological Mechanisms Underlying Behavioral Habituation
    Crayfish Escape Behavior and Central Synapses. II. Physiological Mechanisms Underlying Behavioral Habituation ROBERT S. ZUCKER Department of Biological Sciences and Program in the Neurological Sciences, Stanford Unillersity, Stanford, California 94305 THE PREVIOUS PAPER (58) OLlth’led thC. CirCUit 33, 36), so the labilities in the circuit effer- responsible for exciting the lateral giant ent from the lateral giant cannot contribute neuron and initiating single tail flips in importantly to habituation of escape be- response to phasic mechanical stimuli to the havior. tail of crayfish. It was shown that the exci- In this paper, various possible sources of tation of some tactile interneurons by tac- lability in the afferent limb of the circuit tile afferents antifacilitates extensively at are explored. It appears that only presynap- low repetition rates. This phenomenon tic depression in the afferent to interneuron must be presumed to contribute to the synapse can account for the habituation. habituation of the response. It is not clear, Furthermore, there is a quantitative corre- however, that this is the only phenomenon spondence between the properties of the in- responsible for generating lability in the terneuronal excitatory postsynaptic poten- behavior. Receptor fatigue, variable proper- tial (EPSP), the nature of the circuit, and ties of the excitable membranes of the lat- the properties of the behavior. eral giant or the tactile interneurons, or labile properties of the circuit efferent to METHODS the giant are additional possibilities. One other point of lability has in fact been Crayfish (Procambarus clarkii) were main- tained and prepared for experiments as de- found. The strength of transmission at the scribed in the previous paper (58).
    [Show full text]
  • Fish Sentience: a Hypothesis Worth Pursuing
    Burgos, José E. (2017) Fish sentience: A hypothesis worth pursuing. Animal Sentience 13(12) DOI: 10.51291/2377-7478.1253 This article has appeared in the journal Animal Sentience, a peer-reviewed journal on animal cognition and feeling. It has been made open access, free for all, by WellBeing International and deposited in the WBI Studies Repository. For more information, please contact [email protected]. Animal Sentience 2017.056: Burgos on Woodruff on Fish Feel Fish sentience: A hypothesis worth pursuing Commentary on Woodruff on Fish Feel José E. Burgos University of Guadalajara Abstract: Woodruff’s case for fish sentience is intriguing. Though far from ready for final acceptance, it is worth pursuing. The case is philosophically uncontroversial under functionalism and reductive materialism. It is also highly heuristic, as it raises interesting issues for further investigation, such as the neural causation of behavior, the role of Mauthner cells in conditioned avoidance, and whether operant conditioning is constitutive of fish sentience. Keywords: fish, sentience, pursuit, acceptance, Mauthner cells, neural causation of behavior, C- start reflex, Pavlovian conditioning, operant conditioning, functionalism, reductive materialism José E. Burgos, Professor in the Center for Behavioral Studies and Investigations, University of Guadalajara, does research on neural network modelling of learning and philosophy of psychology. He is editor of Behavior and Philosophy. www.ceic.cucba.udg.mx/Investigacion/personal- investigador?id=4 Woodruff (2017) makes a case for the hypothesis (a term he repeatedly uses, to the benefit of his case) that certain fish (the Actinopterygii class, which includes the Teleostei infraclass and forms over 90% of living fish) could have phenomenal consciousness (subjective qualitative experiences), or “sentience” for short.
    [Show full text]
  • Non-Invasive Recording of Giant Nerve Fiber Action Potentials from Freely Moving Oligochaetes
    Chapter 2 Non-invasive Recording of Giant Nerve Fiber Action Potentials from Freely Moving Oligochaetes Charlie Drewes Department of Zoology and Genetics Iowa State University Ames, Iowa 50011 (515) 294-8061 [email protected] Charlie received his B.A. from Augustana College (South Dakota) and Ph.D. from Michigan State University. He is currently a Professor of Zoology and Genetics at Iowa State University. His research training and interests are in the areas of invertebrate neurophysiology and comparative physiology. He and his research students have extensively investigated the neurobiology of escape reflex behaviors in freshwater and terrestrial oligochaetes. On campus, Charlie teaches courses in neurophysiology, invertebrate biology, and bioethics. During summers, he instructs at Iowa Lakeside Laboratory where he leads workshops in freshwater biology for middle school, high school, and community college biology teachers. Throughout the year he is heavily involved in developing and sharing hands-on activities for biology education at all levels. Reprinted From: Drewes, C. 1999. Non-invasive recording of giant nerve fiber action potentials from freely moving oligochaetes. Pages 45-62, in Tested studies for laboratory teaching, Volume 20 (S. J. Karcher, Editor). Proceedings of the 20th Workshop/Conference of the Association for Biology Laboratory Education (ABLE), 399 pages. - Copyright policy: http://www.zoo.utoronto.ca/able/volumes/copyright.htm Although the laboratory exercises in ABLE proceedings volumes have been tested and due consideration has been given to safety, individuals performing these exercises must assume all responsibility for risk. The Association for Biology Laboratory Education (ABLE) disclaims any liability with regards to safety in connection with the use of the exercises in its proceedings volumes.
    [Show full text]
  • Mechanisms That Underlie Experience-Dependent Assembly of Neural Circuits
    Mechanisms that underlie experience-dependent assembly of neural circuits by Ann Marie Macara A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Molecular, Cellular, and Developmental Biology) in the University of Michigan 2016 Doctoral Committee: Associate Professor Bing Ye, Co-Chair Professor Kenneth M. Cadigan, Co-Chair Associate Professor Catherine A. Collins Professor John Y. Kuwada Professor Suzanne Moenter DEDICATION To all my animals, past and present. ii ACKNOWLEDGEMENTS This dissertation was made possible through the collaborations between many people. I would first like to thank my research advisor, Dr. Bing Ye, for allowing me the opportunity to continue my PhD training in his laboratory at the Life Sciences Institute in the University of Michigan. Under his instruction, my research has been elevated to greater levels. I would like to thank my co-advisor, Dr. Ken Cadigan, for all of his support and advice on not only my research but also providing me with valuable insights into navigating graduate school. I would also like to thank my teaching mentor Dr. Tim McKay whose enthusiasm for teaching has greatly influenced my career path. You never really know where you will find a mentor, and I found mine in the Reptiles and Amphibian Division at the University of Michigan Museum of Zoology. Gregory Schneider has been my colleague, friend and advocate; I would like to thank him for all of his help over the past 3 years. I would also like to thank my committee members Drs. Cathy Collins and John Kuwada, who recently joined my committee and Dr.
    [Show full text]