A New Analysis of Iterative Refinement and Its Application to Accurate Solution of Ill-Conditioned Sparse Linear Systems Carson

Total Page:16

File Type:pdf, Size:1020Kb

A New Analysis of Iterative Refinement and Its Application to Accurate Solution of Ill-Conditioned Sparse Linear Systems Carson A New Analysis of Iterative Refinement and its Application to Accurate Solution of Ill-Conditioned Sparse Linear Systems Carson, Erin and Higham, Nicholas J. 2017 MIMS EPrint: 2017.12 Manchester Institute for Mathematical Sciences School of Mathematics The University of Manchester Reports available from: http://eprints.maths.manchester.ac.uk/ And by contacting: The MIMS Secretary School of Mathematics The University of Manchester Manchester, M13 9PL, UK ISSN 1749-9097 A NEW ANALYSIS OF ITERATIVE REFINEMENT AND ITS APPLICATION TO ACCURATE SOLUTION OF ILL-CONDITIONED SPARSE LINEAR SYSTEMS∗ ERIN CARSONy AND NICHOLAS J. HIGHAMz Abstract. Iterative refinement is a long-standing technique for improving the accuracy of a computed solution to a nonsingular linear system Ax = b obtained via LU factorization. It makes use of residuals computed in extra precision, typically at twice the working precision, and existing results guarantee convergence if the matrix A has condition number safely less than the reciprocal of the unit roundoff, u. We identify a mechanism that allows iterative refinement to produce solutions with normwise relative error of order u to systems with condition numbers of order u−1 or larger, provided that the update equation is solved with a relative error sufficiently less than 1. A new rounding error analysis is given and its implications are analyzed. Building on the analysis, we develop a GMRES-based iterative refinement method (GMRES-IR) that makes use of the computed LU factors as preconditioners. GMRES-IR exploits the fact that even if A is extremely ill conditioned the LU factors contain enough information that preconditioning can greatly reduce the condition number of A. Our rounding error analysis and numerical experiments show that GMRES-IR can succeed where standard refinement fails, and that it can provide accurate solutions to systems with condition numbers of order u−1 and greater. Indeed in our experiments with such matrices|both random and from the University of Florida Sparse Matrix Collection|GMRES-IR yields a normwise relative error of order u in at most 3 steps in every case. 1. Introduction. Ill-conditioned linear systems Ax = b arise in a wide variety of science and engineering applications, ranging from geomechanical problems [11] to computational number theory [4]. When A is ill conditioned the solution x to Ax = b is extremely sensitive to changes in A and b. Indeed, when the condition number κ(A) = kAkkA−1k is of order u−1, where u is the unit roundoff, we cannot expect any accurate digits in a solution computed by standard techniques. This poses an obstacle in applications where an accurate solution is required, of which there is a growing number [3], [13], [21], [22], [32]. Iterative refinement (Algorithm 1.1) is frequently used to obtain an accurate so- lution to a linear system Ax = b. Typically, one computes an initial approximate solution xb using Gaussian elimination (GE), saving the factorization A = LU. Here and throughout, to simplify the notation we assume that A is a nonsingular matrix for which any required row or column interchanges have been carried out in advance (that is, \A ≡ P AQ", where P and Q are appropriate permutation matrices). After 1 2 computing the residual r = b − Axb in higher precision u, where typically u = u , one reuses L and U to solve the system Ad = r, rewritten as LUd = r, by substi- tution. The original approximate solution is then refined by adding the corrective term, xb xb + d. This process is repeated until a desired backward or forward error criterion is satisfied. If A is very ill conditioned however, the iterative refinement process may not ∗Version of March 27, 2017. Funding: The work of the second author was supported by Math- Works, European Research Council Advanced Grant MATFUN (267526), and Engineering and Phys- ical Sciences Research Council grant EP/I01912X/1. The opinions and views expressed in this pub- lication are those of the authors, and not necessarily those of the funding bodies. yCourant Institute of Mathematical Sciences, New York University, New York, NY. (er- [email protected], http://math.nyu.edu/~erinc). zSchool of Mathematics, The University of Manchester, Manchester, M13 9PL, UK ([email protected], http://www.maths.manchester.ac.uk/~higham). 1We are not concerned here with iterative refinement in fixed precision, which can also benefit accuracy, though to a lesser extent [15, Chap. 12], [33]. 1 Algorithm 1.1 Iterative Refinement Input: n × n matrix A; right-hand side b; maximum number of refinement steps imax. Output: Approximate solution xb to Ax = b. 1: Compute LU factorization A = LU. 2: Solve Ax0 = b by substitution. 3: for i = 0 : imax − 1 do 4: Compute ri = b − Axi in precision u; store in precision u. 5: Solve Adi = ri. 6: Compute xi+1 = xi + di. 7: if converged then return xi+1, quit, end if 8: end for 9: % Iteration has not converged. invhilb 1020 1015 1010 κ Ub −1Lb−1A 105 ∞( ) 1 + κ∞(A)u 100 10 15 20 25 randsvd 105 104 103 102 b −1 b−1 κ∞(U L A) 1 10 1 + κ∞(A)u 100 10 15 20 25 −1 −1 Fig. 1.1. Comparison of κ1(Ub Lb A) and 1+κ1(A)u for a computed LU factorization with partial pivoting, for matrices of dimension shown on the x-axis. These matrices are very ill condi- 13 35 tioned with κ1(A) ranging from 10 to 10 . Computations were in double precision arithmetic. Top: inverse Hilbert matrix. Bottom: matrices generated as gallery('randsvd',n,10^(n+5)) in MATLAB. converge, and indeed all existing results on the convergence of iterative refinement require A to be safely less than u−1. Nevertheless, despite the ill conditioning of A, there is still useful information contained in the LU factors and their inverses (perhaps implicitly applied). It has been observed that if Lb and Ub are the computed factors of A from LU factorization with partial pivoting then κ(Lb−1AUb−1) ≈ 1 + κ(A)u even for κ(A) u−1, where Lb−1AUb−1 is computed by substitution; for discussion and further experiments see [24], [28], [29]. This approximation can also be made in the case where left-preconditioned is used, that is, κ(Ub−1Lb−1A) ≈ 1 + κ(A)u. The experimental results shown in Figure 1.1 illustrate the quality of this approximation. The results in Figure 1.1 lead us to question the conventional wisdom that iterative refinement cannot work in the regime where κ(A) > u−1. If the LU factors contain useful information in that regime, can iterative refinement be made to work there 2 too? We will give a new rounding error analysis that identifies a mechanism by which iterative refinement can indeed work when κ(A) > u−1, provided that we can solve the equations for the updates on line5 of Algorithm 1.1 with some relative accuracy. We will then use the analysis to develop an implementation of Algorithm 1.1 that enables accurate solution of sparse, very ill conditioned systems. We use the generalized minimal residual (GMRES) method [31] preconditioned by the computed LU factors to solve for the corrections. We refer to this method as GMRES-based iterative refinement (GMRES-IR). −1 We show that in the case where the condition number κ1(A) is around u , our approach can obtain a solution xb to Ax = b for which the forward error kxb−xk1=kxk1 is of order u. Extra precision (assumed to be with a unit roundoff of u2) need only be used in computing the residual, in the triangular solves involved in applying the preconditioner, and in matrix-vector multiplication with A. An advantage of our approach is that it can succeed when standard iterative re- finement (using the LU factors to solve Ad = r) fails or is, in the words of Ma et al. [22], \on the brink of failure". Ma et al. [22] need to solve linear programming prob- lems arising in a biological application and their attempts to use iterative refinement in the underlying linear system solutions were only partially successful. GMRES-IR offers the potential for better results in this application. We note that there is growing interest in using lower precisions such as single or even half precision in climate and weather modeling [27] and machine learning [12], but this brings an increased likelihood that the problems encountered will be very ill conditioned relative to the working precision. Our work, which is applicable for any u, could be especially relevant in these contexts. In Section2 we present the new rounding error analysis and investigate its impli- cations. In Section3 we explain how we use preconditioned GMRES within iterative refinement and give, using the results of Section2, theoretical justification that this GMRES-based iterative refinement can yield an error of the order of u even in cases −1 where κ1(A) ≥ u . Since we are primarily concerned with sparse linear systems, we discuss in Section 3.1 various choices of pivoting strategy and how these affect the nu- merical behavior. In Section4 we discuss other, related work on iterative refinement. Numerical experiments presented in Section5 confirm our theoretical analysis. Our numerical experiments motivate a two-stage iterative refinement approach, which we briefly discuss in Section 5.3, that first attempts the less expensive standard iterative refinement and switches to a GMRES-IR stage in the case of slow convergence or divergence. 2. Error analysis of iterative refinement. The most general rounding error analysis of iterative refinement is that of Higham [15, Sec. 12.1], which appeared first in [14].
Recommended publications
  • Superlu Users' Guide
    SuperLU Users' Guide Xiaoye S. Li1 James W. Demmel2 John R. Gilbert3 Laura Grigori4 Meiyue Shao5 Ichitaro Yamazaki6 September 1999 Last update: August 2011 1Lawrence Berkeley National Lab, MS 50F-1650, 1 Cyclotron Rd, Berkeley, CA 94720. ([email protected]). This work was supported in part by the Director, Office of Advanced Scientific Computing Research of the U.S. Department of Energy under Contract No. D-AC02-05CH11231. 2Computer Science Division, University of California, Berkeley, CA 94720. ([email protected]). The research of Demmel and Li was supported in part by NSF grant ASC{9313958, DOE grant DE{FG03{ 94ER25219, UT Subcontract No. ORA4466 from ARPA Contract No. DAAL03{91{C0047, DOE grant DE{ FG03{94ER25206, and NSF Infrastructure grants CDA{8722788 and CDA{9401156. 3Department of Computer Science, University of California, Santa Barbara, CA 93106. ([email protected]). The research of this author was supported in part by the Institute for Mathematics and Its Applications at the University of Minnesota and in part by DARPA Contract No. DABT63-95-C0087. Copyright c 1994-1997 by Xerox Corporation. All rights reserved. 4INRIA Saclay-Ile de France, Laboratoire de Recherche en Informatique, Universite Paris-Sud 11. ([email protected]) 5Department of Computing Science and HPC2N, Ume˚a University, SE-901 87, Ume˚a, Sweden. ([email protected]) 6Innovative Computing Laboratory, Department of Electrical Engineering and Computer Science, The University of Tennessee. ([email protected]). The research of this author was supported in part by the Director, Office of Advanced Scientific Computing Research of the U.S.
    [Show full text]
  • Solving Systems of Linear Equations on the CELL Processor Using Cholesky Factorization – LAPACK Working Note 184
    Solving Systems of Linear Equations on the CELL Processor Using Cholesky Factorization – LAPACK Working Note 184 Jakub Kurzak1, Alfredo Buttari1, Jack Dongarra1,2 1Department of Computer Science, University Tennessee, Knoxville, Tennessee 37996 2Computer Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, 37831 May 10, 2007 ABSTRACT: The STI CELL processor introduces 1 Motivation pioneering solutions in processor architecture. At the same time it presents new challenges for the devel- In numerical computing, there is a fundamental per- opment of numerical algorithms. One is effective ex- formance advantage of using single precision float- ploitation of the differential between the speed of sin- ing point data format over double precision data for- gle and double precision arithmetic; the other is effi- mat, due to more compact representation, thanks to cient parallelization between the short vector SIMD which, twice the number of single precision data ele- cores. In this work, the first challenge is addressed ments can be stored at each stage of the memory hi- by utilizing a mixed-precision algorithm for the solu- erarchy. Short vector SIMD processing provides yet tion of a dense symmetric positive definite system of more potential for performance gains from using sin- linear equations, which delivers double precision ac- gle precision arithmetic over double precision. Since curacy, while performing the bulk of the work in sin- the goal is to process the entire vector in a single gle precision. The second challenge is approached by operation, the computation throughput can be dou- introducing much finer granularity of parallelization bled when the data representation is halved.
    [Show full text]
  • Error Bounds from Extra-Precise Iterative Refinement
    Error Bounds from Extra-Precise Iterative Refinement JAMES DEMMEL, YOZO HIDA, and WILLIAM KAHAN University of California, Berkeley XIAOYES.LI Lawrence Berkeley National Laboratory SONIL MUKHERJEE Oracle and E. JASON RIEDY University of California, Berkeley We present the design and testing of an algorithm for iterative refinement of the solution of linear equations where the residual is computed with extra precision. This algorithm was originally proposed in 1948 and analyzed in the 1960s as a means to compute very accurate solutions to all but the most ill-conditioned linear systems. However, two obstacles have until now prevented its adoption in standard subroutine libraries like LAPACK: (1) There was no standard way to access the higher precision arithmetic needed to compute residuals, and (2) it was unclear how to compute a reliable error bound for the computed solution. The completion of the new BLAS Technical Forum Standard has essentially removed the first obstacle. To overcome the second obstacle, we show how the application of iterative refinement can be used to compute an error bound in any norm at small cost and use this to compute both an error bound in the usual infinity norm, and a componentwise relative error bound. This research was supported in part by the NSF Cooperative Agreement No. ACI-9619020; NSF Grant Nos. ACI-9813362 and CCF-0444486; the DOE Grant Nos. DE-FG03-94ER25219, DE-FC03- 98ER25351, and DE-FC02-01ER25478; and the National Science Foundation Graduate Research Fellowship. The authors wish to acknowledge the contribution from Intel Corporation, Hewlett- Packard Corporation, IBM Corporation, and the National Science Foundation grant EIA-0303575 in making hardware and software available for the CITRIS Cluster which was used in producing these research results.
    [Show full text]
  • Three-Precision GMRES-Based Iterative Refinement for Least Squares Problems Carson, Erin and Higham, Nicholas J. and Pranesh, Sr
    Three-Precision GMRES-Based Iterative Refinement for Least Squares Problems Carson, Erin and Higham, Nicholas J. and Pranesh, Srikara 2020 MIMS EPrint: 2020.5 Manchester Institute for Mathematical Sciences School of Mathematics The University of Manchester Reports available from: http://eprints.maths.manchester.ac.uk/ And by contacting: The MIMS Secretary School of Mathematics The University of Manchester Manchester, M13 9PL, UK ISSN 1749-9097 THREE-PRECISION GMRES-BASED ITERATIVE REFINEMENT FOR LEAST SQUARES PROBLEMS∗ ERIN CARSONy , NICHOLAS J. HIGHAMz , AND SRIKARA PRANESHz Abstract. The standard iterative refinement procedure for improving an approximate solution m×n to the least squares problem minx kb − Axk2, where A 2 R with m ≥ n has full rank, is based on solving the (m + n) × (m + n) augmented system with the aid of a QR factorization. In order to exploit multiprecision arithmetic, iterative refinement can be formulated to use three precisions, but the resulting algorithm converges only for a limited range of problems. We build an iterative refinement algorithm called GMRES-LSIR, analogous to the GMRES-IR algorithm developed for linear systems [SIAM J. Sci. Comput., 40 (2019), pp. A817-A847], that solves the augmented system using GMRES preconditioned by a matrix based on the computed QR factors. We explore two left preconditioners; the first has full off-diagonal blocks and the second is block diagonal and can be applied in either left-sided or split form. We prove that for a wide range of problems the first preconditioner yields backward and forward errors for the augmented system of order the working precision under suitable assumptions on the precisions and the problem conditioning.
    [Show full text]
  • Using Mixed Precision in Numerical Computations to Speedup Linear Algebra Solvers
    Using Mixed Precision in Numerical Computations to Speedup Linear Algebra Solvers Jack Dongarra, UTK/ORNL/U Manchester Azzam Haidar, Nvidia Nick Higham, U of Manchester Stan Tomov, UTK Slides can be found: http://bit.ly/icerm-05-2020-dongarra 5/7/20 1 Background • My interest in mixed precision began with my dissertation … § Improving the Accuracy of Computed Matrix Eigenvalues • Compute the eigenvalues and eigenvectors in low precision then improve selected values/vectors to higher precision for O(n2) ops using the the matrix decomposition § Extended to singular values, 1983 2 § Algorithm in TOMS 710, 1992 IBM’s Cell Processor - 2004 • 9 Cores § Power PC at 3.2 GHz § 8 SPEs • 204.8 Gflop/s peak! $600 § The catch is that this is for 32 bit fl pt; (Single Precision SP) § 64 bit fl pt peak at 14.6 Gflop/s • 14 times slower that SP; factor of 2 because of DP and 7 because of latency issues The SPEs were fully IEEE-754 compliant in double precision. In single precision, they only implement round-towards-zero, denormalized numbers are flushed to zero and NaNs are treated like normal numbers. Mixed Precision Idea Goes Something Like This… • Exploit 32 bit floating point as much as possible. § Especially for the bulk of the computation • Correct or update the solution with selective use of 64 bit floating point to provide a refined results • Intuitively: § Compute a 32 bit result, § Calculate a correction to 32 bit result using selected higher precision and, § Perform the update of the 32 bit results with the correction using high precision.
    [Show full text]
  • A Survey of Recent Developments in Parallel Implementations of Gaussian Elimination
    CONCURRENCY AND COMPUTATION: PRACTICE AND EXPERIENCE Concurrency Computat.: Pract. Exper. 2015; 27:1292–1309 Published online 2 June 2014 in Wiley Online Library (wileyonlinelibrary.com). DOI: 10.1002/cpe.3306 A survey of recent developments in parallel implementations of Gaussian elimination Simplice Donfack1, Jack Dongarra1, Mathieu Faverge2, Mark Gates1, Jakub Kurzak1,*,†, Piotr Luszczek1 and Ichitaro Yamazaki1 1EECS Department, University of Tennessee, Knoxville, TN, USA 2IPB ENSEIRB-Matmeca, Inria Bordeaux Sud-Ouest, Bordeaux, France SUMMARY Gaussian elimination is a canonical linear algebra procedure for solving linear systems of equations. In the last few years, the algorithm has received a lot of attention in an attempt to improve its parallel performance. This article surveys recent developments in parallel implementations of Gaussian elimination for shared memory architecture. Five different flavors are investigated. Three of them are based on different strategies for pivoting: partial pivoting, incremental pivoting, and tournament pivoting. The fourth one replaces pivoting with the Partial Random Butterfly Transformation, and finally, an implementation without pivoting is used as a performance baseline. The technique of iterative refinement is applied to recover numerical accuracy when necessary. All parallel implementations are produced using dynamic, superscalar, runtime scheduling and tile matrix layout. Results on two multisocket multicore systems are presented. Performance and numerical accuracy is analyzed. Copyright © 2014 John Wiley & Sons, Ltd. Received 15 July 2013; Revised 26 April 2014; Accepted 2 May 2014 KEY WORDS: Gaussian elimination; LU factorization; parallel; shared memory; multicore 1. INTRODUCTION Gaussian elimination has a long history that can be traced back some 2000 years [1]. Today, dense systems of linear equations have become a critical cornerstone for some of the most compute intensive applications.
    [Show full text]
  • Multiprecision Algorithms 2 / 95 Lecture 1
    MultiprecisionResearch Matters Algorithms FebruaryNick 25, Higham 2009 School of Mathematics The UniversityNick Higham of Manchester Director of Research http://www.maths.manchester.ac.uk/~higham/School of Mathematics @nhigham, nickhigham.wordpress.com Mathematical Modelling, Numerical Analysis and Scientific Computing, Kácov, Czech Republic May 27-June 1, 2018. 1 / 6 Outline Multiprecision arithmetic: floating point arithmetic supporting multiple, possibly arbitrary, precisions. Applications of & support for low precision. Applications of & support for high precision. How to exploit different precisions to achieve faster algs with higher accuracy. Focus on iterative refinement for Ax = b, matrix logarithm. Download these slides from http://bit.ly/kacov18 Nick Higham Multiprecision Algorithms 2 / 95 Lecture 1 Floating-point arithmetic. Hardware landscape. Low precision arithmetic. Nick Higham Multiprecision Algorithms 3 / 95 Floating point numbers are not equally spaced. If β = 2, t = 3, emin = −1, and emax = 3: 0 0.5 1.0 2.0 3.0 4.0 5.0 6.0 7.0 Floating Point Number System Floating point number system F ⊂ R: y = ±m × βe−t ; 0 ≤ m ≤ βt − 1: Base β (β = 2 in practice), precision t, exponent range emin ≤ e ≤ emax. Assume normalized: m ≥ βt−1. Nick Higham Multiprecision Algorithms 5 / 95 Floating Point Number System Floating point number system F ⊂ R: y = ±m × βe−t ; 0 ≤ m ≤ βt − 1: Base β (β = 2 in practice), precision t, exponent range emin ≤ e ≤ emax. Assume normalized: m ≥ βt−1. Floating point numbers are not equally spaced. If β = 2, t = 3, emin = −1, and emax = 3: 0 0.5 1.0 2.0 3.0 4.0 5.0 6.0 7.0 Nick Higham Multiprecision Algorithms 5 / 95 Subnormal Numbers 0 6= y 2 F is normalized if m ≥ βt−1.
    [Show full text]
  • Mixed Precision Iterative Refinement
    Mixed Precision Iterative Refinement Techniques for the Solution of Dense Linear Systems Alfredo Buttari1, Jack Dongarra1,3,4, Julie Langou1, Julien Langou2, Piotr Luszczek1, and Jakub Kurzak1 1Department of Electrical Engineering and Computer Science, University Tennessee, Knoxville, Tennessee 2Department of Mathematical Sciences, University of Colorado at Denver and Health Sciences Center, Denver, Colorado 3Oak Ridge National Laboratory, Oak Ridge, Tennessee 4University of Manchester September 9, 2007 Abstract By using a combination of 32-bit and 64-bit floating point arithmetic, the per- formance of many dense and sparse linear algebra algorithms can be significantly enhanced while maintaining the 64-bit accuracy of the resulting solution. The ap- proach presented here can apply not only to conventional processors but also to exotic technologies such as Field Programmable Gate Arrays (FPGA), Graphical Processing Units (GPU), and the Cell BE processor. Results on modern processor architectures and the Cell BE are presented. Introduction In numerical computing, there is a fundamental performance advantage in using the single precision, floating point data format over the double precision one. Due to more compact representation, twice the number of single precision data elements can be stored at each level of the memory hierarchy including the register file, the set of caches, and the main memory. By the same token, handling single precision values consumes less bandwidth between different memory levels and decreases the number of cache and TLB misses. However, the data movement aspect affects mostly memory- intensive, bandwidth-bound applications, and historically has not drawn much attention to mixed precision algorithms. In the past, the situation looked differently for computationally intensive work- loads, where the load was on the floating point processing units rather than the mem- ory subsystem, and so the single precision data motion advantages were for the most part irrelevant.
    [Show full text]
  • Design, Implementation and Testing of Extended and Mixed Precision BLAS ∗
    Design, Implementation and Testing of Extended and Mixed Precision BLAS ∗ X. S. Li† J. W. Demmel‡ D. H. Bailey† G. Henry§ Y. Hida‡ J. Iskandar‡ W. Kahan‡ A. Kapur‡ M. C. Martin‡ T. Tung‡ D. J. Yoo‡ October 20, 2000 Abstract This paper describes the design rationale, a C implementation, and conformance testing of a subset of the new Standard for the BLAS (Basic Linear Algebra Subroutines): Extended and Mixed Precision BLAS. Permitting higher internal precision and mixed input/output types and precisions permits us to implement some algorithms that are simpler, more accurate, and some- times faster than possible without these features. The new BLAS are challenging to implement and test because there are many more subroutines than in the existing Standard, and because we must be able to assess whether a higher precision is used for internal computations than is used either for input or output variables. So we have developed an automated process of generating and systematically testing these routines. Our methodology is applicable to languages besides C. In particular, our algorithms used in the testing code would be very valuable to all the other BLAS implementors. Our extra precision routines achieve excellent performance—close to half of the machine peak Megaflop rate even for the Level 2 BLAS, when the data access is stride one. ∗This research was supported in part by the National Science Foundation Cooperative Agreement No. ACI- 9619020, NSF Grant No. ACI-9813362, the Department of Energy Grant Nos. DE-FG03-94ER25219 and DE- FC03-98ER25351, and gifts from the IBM Shared University Research Program, Sun Microsystems, and Intel.
    [Show full text]
  • Adaptive Dynamic Precision Iterative Refinement Jun Kyu Lee [email protected]
    University of Tennessee, Knoxville Trace: Tennessee Research and Creative Exchange Doctoral Dissertations Graduate School 8-2012 AIR: Adaptive Dynamic Precision Iterative Refinement Jun Kyu Lee [email protected] Recommended Citation Lee, Jun Kyu, "AIR: Adaptive Dynamic Precision Iterative Refinement. " PhD diss., University of Tennessee, 2012. https://trace.tennessee.edu/utk_graddiss/1446 This Dissertation is brought to you for free and open access by the Graduate School at Trace: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of Trace: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a dissertation written by Jun Kyu Lee entitled "AIR: Adaptive Dynamic Precision Iterative Refinement." I have examined the final electronic copy of this dissertation for form and content and recommend that it be accepted in partial fulfillment of the requirements for the degree of Doctor of Philosophy, with a major in Computer Engineering. Gregory D. Peterson, Major Professor We have read this dissertation and recommend its acceptance: Itamar Arel, Robert J. Hinde, Robert J. Harrison Accepted for the Council: Dixie L. Thompson Vice Provost and Dean of the Graduate School (Original signatures are on file with official student records.) To the Graduate Council: I am submitting herewith a dissertation written by JunKyu Lee entitled “AIR: Adaptive Dynamic Precision Iterative Refinement.” I have examined the final electronic copy of this dissertation for form and content and recommend that it be accepted in partial fulfillment of the requirements for the degree of Doctor of Philosophy, with a major in Computer Engineering.
    [Show full text]
  • PARDISO User Guide Version
    Parallel Sparse Direct And Multi-Recursive Iterative Linear Solvers PARDISO User Guide Version 7.2 (Updated December 28, 2020) Olaf Schenk and Klaus Gärtner Parallel Sparse Direct Solver PARDISO — User Guide Version 7.2 1 Since a lot of time and effort has gone into PARDISO version 7.2, please cite the following publications if you are using PARDISO for your own research: References [1] C. Alappat, A. Basermann, A. R. Bishop, H. Fehske, G. Hager, O. Schenk, J. Thies, G. Wellein. A Recursive Algebraic Coloring Technique for Hardware-Efficient Symmetric Sparse Matrix-Vector Multiplication. ACM Trans. Parallel Comput, Vol. 7, No. 3, Article 19, June 2020. [2] M. Bollhöfer, O. Schenk, R. Janalik, S. Hamm, and K. Gullapalli. State-of-The-Art Sparse Direct Solvers. Parallel Algorithms in Computational Science and Engineering, Modeling and Simulation in Science, Engineering and Technology. pp 3-33, Birkhäuser, 2020. [3] M. Bollhöfer, A. Eftekhari, S. Scheidegger, O. Schenk, Large-scale Sparse Inverse Covariance Matrix Estimation. SIAM Journal on Scientific Computing, 41(1), A380-A401, January 2019. Note: This document briefly describes the interface to the shared-memory and distributed-memory multiprocessing parallel direct and multi-recursive iterative solvers in PARDISO 7.21. A discussion of the algorithms used in PARDISO and more information on the solver can be found at http://www. pardiso-project.org 1Please note that this version is a significant extension compared to Intel’s MKL version and that these improvements and features are not available in Intel’s MKL 9.3 release or later releases. Parallel Sparse Direct Solver PARDISO — User Guide Version 7.2 2 Contents 1 Introduction 4 1.1 Supported Matrix Types .
    [Show full text]
  • Mixed-Precision Numerical Linear Algebra Algorithms: Integer Arithmetic Based LU Factorization and Iterative Refinement for Hermitian Eigenvalue Problem
    University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Doctoral Dissertations Graduate School 12-2020 Mixed-Precision Numerical Linear Algebra Algorithms: Integer Arithmetic Based LU Factorization and Iterative Refinement for Hermitian Eigenvalue Problem Yaohung Tsai [email protected] Follow this and additional works at: https://trace.tennessee.edu/utk_graddiss Part of the Numerical Analysis and Scientific Computing Commons Recommended Citation Tsai, Yaohung, "Mixed-Precision Numerical Linear Algebra Algorithms: Integer Arithmetic Based LU Factorization and Iterative Refinement for Hermitian Eigenvalue Problem. " PhD diss., University of Tennessee, 2020. https://trace.tennessee.edu/utk_graddiss/6094 This Dissertation is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a dissertation written by Yaohung Tsai entitled "Mixed-Precision Numerical Linear Algebra Algorithms: Integer Arithmetic Based LU Factorization and Iterative Refinement for Hermitian Eigenvalue Problem." I have examined the final electronic copy of this dissertation for form and content and recommend that it be accepted in partial fulfillment of the requirements for the degree of Doctor of Philosophy, with a major in Computer Science.
    [Show full text]