A Secreted Isoform of Erbb3 Promotes Osteonectin Expression in Bone and Enhances the Invasiveness of Prostate Cancer Cells
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
P53 and PTEN Expression Contribute to the Inhibition of EGFR Downstream Signaling Pathway by Cetuximab
Cancer Gene Therapy (2009) 16, 498–507 r 2009 Nature Publishing Group All rights reserved 0929-1903/09 $32.00 www.nature.com/cgt ORIGINAL ARTICLE P53 and PTEN expression contribute to the inhibition of EGFR downstream signaling pathway by cetuximab S Bouali1, A-S Chre´tien1, C Ramacci1, M Rouyer1, S Marchal2, T Galenne3, P Juin3, P Becuwe4 and J-L Merlin1 1Centre Alexis Vautrin, Unite´ de Biologie des Tumeurs, EA ‘‘Predicther’’ Nancy Universite´, Vandœuvre-le`s- Nancy cedex, France; 2Centre Alexis Vautrin, CRAN UMR 7039 CNRS-UHP-INPL, Vandœuvre-le`s-Nancy cedex, France; 3INSERM U601, CHU de Nantes, Institut de Biologie, Nantes, France and 4Laboratoire de Biologie Cellulaire, Faculte´ des Sciences, EA ‘‘Predicther’’ Nancy Universite´, Vandœuvre-le`s-Nancy, France Cetuximab (Erbitux) is an anti-epidermal growth factor receptor (EGFR) monoclonal antibody whose activity is related to the inhibition of EGFR downstream signaling pathways. P53 and phosphatase and tensin homologue deleted on chromosome 10 (PTEN) have been reported to control the functionality of PI3K/AKT signaling. In this study we evaluated whether reintroducing P53 using non-viral gene transfer enhances PTEN-mediated inhibition of PI3K/AKT signaling by cetuximab in PC3 prostate adenocarcinoma cell line bearing p53 and pten mutations. Signaling phosphoproteins expression was analyzed using Bio-Plex phosphoprotein array and western blot. Apoptosis induction was evaluated from BAX expression, caspase-3 activation and DNA fragmentation analyses. The results presented show that p53 and pten gene transfer additionally mediated cell growth inhibition and apoptosis induction by restoral of signaling functionality, which enabled the control of PI3K/AKT and MAPKinase signaling pathways by cetuximab in PC3 cells. -
Supplementary Table 1: Adhesion Genes Data Set
Supplementary Table 1: Adhesion genes data set PROBE Entrez Gene ID Celera Gene ID Gene_Symbol Gene_Name 160832 1 hCG201364.3 A1BG alpha-1-B glycoprotein 223658 1 hCG201364.3 A1BG alpha-1-B glycoprotein 212988 102 hCG40040.3 ADAM10 ADAM metallopeptidase domain 10 133411 4185 hCG28232.2 ADAM11 ADAM metallopeptidase domain 11 110695 8038 hCG40937.4 ADAM12 ADAM metallopeptidase domain 12 (meltrin alpha) 195222 8038 hCG40937.4 ADAM12 ADAM metallopeptidase domain 12 (meltrin alpha) 165344 8751 hCG20021.3 ADAM15 ADAM metallopeptidase domain 15 (metargidin) 189065 6868 null ADAM17 ADAM metallopeptidase domain 17 (tumor necrosis factor, alpha, converting enzyme) 108119 8728 hCG15398.4 ADAM19 ADAM metallopeptidase domain 19 (meltrin beta) 117763 8748 hCG20675.3 ADAM20 ADAM metallopeptidase domain 20 126448 8747 hCG1785634.2 ADAM21 ADAM metallopeptidase domain 21 208981 8747 hCG1785634.2|hCG2042897 ADAM21 ADAM metallopeptidase domain 21 180903 53616 hCG17212.4 ADAM22 ADAM metallopeptidase domain 22 177272 8745 hCG1811623.1 ADAM23 ADAM metallopeptidase domain 23 102384 10863 hCG1818505.1 ADAM28 ADAM metallopeptidase domain 28 119968 11086 hCG1786734.2 ADAM29 ADAM metallopeptidase domain 29 205542 11085 hCG1997196.1 ADAM30 ADAM metallopeptidase domain 30 148417 80332 hCG39255.4 ADAM33 ADAM metallopeptidase domain 33 140492 8756 hCG1789002.2 ADAM7 ADAM metallopeptidase domain 7 122603 101 hCG1816947.1 ADAM8 ADAM metallopeptidase domain 8 183965 8754 hCG1996391 ADAM9 ADAM metallopeptidase domain 9 (meltrin gamma) 129974 27299 hCG15447.3 ADAMDEC1 ADAM-like, -
Dietary Protein Restriction Rapidly Reduces Transforming Growth Factor
Proc. Natl. Acad. Sci. USA Vol. 88, pp. 9765-9769, November 1991 Medical Sciences Dietary protein restriction rapidly reduces transforming growth factor p1 expression in experimental glomerulonephritis (extraceliular matrix/transforming growth factor 8/glomerulonephritis) SEIYA OKUDA*, TAKAMICHI NAKAMURA*, TATSUO YAMAMOTO*, ERKKI RUOSLAHTIt, AND WAYNE A. BORDER*t *Division of Nephrology, University of Utah School of Medicine, Salt Lake City, UT 84132; and tCancer Research Center, La Jolla Cancer Research Foundation, La Jolla, CA 92037 Communicated by Eugene Roberts, August 19, 1991 (receivedfor review April 29, 1991) ABSTRACT Dietary protein restriction has been shown to TGF-/31 on both cell types is to regulate the synthesis of two slow the rate of loss of kidney function in humans with chondroitin/dermatan sulfate proteoglycans, biglycan and progressive glomerulosclerosis due to glomerulonephritis or decorin, both of which can bind TGF-P1 (23). In an experi- diabetes mellitus. A central feature of glomerulosclerosis is the mental model ofglomerulonephritis in the rat, we have found pathological accumulation of extracellular matrix within the a close association between elevated expression of the diseased glomeruli. Transforming growth factor j1 (TGF-.81) TGF-131 gene and the development of glomerulonephritis is known to have widespread regulatory effects on extracellular (10). Seven days after glomerular injury, at the time of matrix and has been implicated as a major cause of increased significant extracellular matrix accumulation, the glomeruli extracellular matrix synthesis and buildup of pathological showed a 5-fold increase in TGF-f31 mRNA and a nearly matrix within glomeruli in experimental glomerulonephritis. 50-fold increase in production ofbiglycan and decorin. -
Supplementary Materials
Supplementary Materials Figure S1. Bioinformatics evaluation of dystrophin isoform Dp427 and its central position in the molecular pathogenesis of X-linked muscular dystrophy. In order to generate a protein interaction map with known and predicted protein associations that include direct physical and indirect functional protein linkages, the bioinformatics STRING database [1,2] was used to analyse mass spectrometrically-identified proteins with a changed abundance in mdx-4cv skeletal muscles (Tables 1 and 2). S2 Figure S2. Focus of the bioinformatics evaluation of dystrophin isoform Dp427 and its central position in the molecular pathogenesis of X-linked muscular dystrophy. Shown is the middle part of the interaction map of altered muscle-associated proteins from mdx-4cv hind limb muscles, focusing on the central position of the dystrophin protein Dp427 (marked in yellow). In order to generate a protein interaction map with known and predicted protein associations that include direct physical and indirect functional protein linkages, the bioinformatics STRING database [1,2] was used to analyse mass spectrometrically-identified proteins with a changed abundance in mdx-4cv skeletal muscles (Tables 1 and 2). S3 Table S1. List of identified proteins that exhibit a significantly altered concentration in crude mdx-4cv hind limb muscle preparations as revealed by label-free LC-MS/MS analysis. This table contains the statistical q-values of the proteins listed in Tables 1 and 2. Accession Peptide Max Fold Highest Mean Description q Value Number -
Indirect Antitumor Effects of Bisphosphonates on Prostatic Lncap Cells Co-Cultured with Bone Cells
ANTICANCER RESEARCH 29: 1089-1094 (2009) Indirect Antitumor Effects of Bisphosphonates on Prostatic LNCaP Cells Co-cultured with Bone Cells TOMOAKI TANAKA, HIDENORI KAWASHIMA, KEIKO OHNISHI, KENTARO MATSUMURA, RIKIO YOSHIMURA, MASAHIDE MATSUYAMA, KATSUYUKI KURATSUKURI and TATSUYA NAKATANI Department of Urology, Osaka City University Graduate School of Medicine, Osaka 545-8585, Japan Abstract. Bisphosphonates are strong inhibitors of effectively inhibit bone absorption are available for osteoclastic bone resorption in both benign and malignant reducing the risk of skeletal complications in bone bone diseases. The nitrogen-containing bisphosphonates metastases of prostate cancer as well as those of other solid (N-BPs) have strong cytotoxicity via inhibition of protein tumors characterized by osteoclastic lesions. prenylation in the mevalonate pathway, and also demonstrate Bisphosphonates are potent inhibitors of osteoclast activity direct cytostatic and proapoptotic effects on prostate cancer and survival, thereby reducing osteoclast-mediated bone cells. We confirmed the usefulness of a co-culture system absorption (1, 4-6). The chemical structure of bisphosphonates comprised of prostatic LNCaP cells, ST2 cells (mouse- contributes to their mechanism of action: Non-nitrogen- derived osteoblasts) and MLC-6 cells (mouse-derived containing compounds (e.g. etidronate, clodronate) are osteoclasts) in vitro. N-BPs (pamidronate and zoledronic metabolized to cytotoxic analogues of ATP (7), while newer acid) inhibited both androgen receptor transactivation and nitrogen-containing bisphosphonates (N-BPs; pamidronate, tumor cell proliferation by suppressing the activities of both ibandronate, zoledronic acid) have strong cytotoxic effects on osteoclasts and osteoblasts with low-dose exposure. This cells via inhibition of protein prenylation in the mevalonate indirect inhibition of prostate cancer cells via bone cells pathway (8, 9). -
Prostate Cancer Stromal Cells and Lncap Cells Coordinately Activate
Endocrine-Related Cancer (2009) 16 1139–1155 Prostate cancer stromal cells and LNCaP cells coordinately activate the androgen receptor through synthesis of testosterone and dihydrotestosterone from dehydroepiandrosterone Atsushi Mizokami, Eitetsu Koh, Kouji Izumi, Kazutaka Narimoto, Masashi Takeda, Seijiro Honma1, Jinlu Dai 2, Evan T Keller 2 and Mikio Namiki Department of Integrative Cancer Therapy and Urology, Kanazawa University Graduate School of Medical Sciences, 13-1 Takaramachi, Kanazawa City 920-8640, Japan 1Teikoku Hormone MFG. Co., 1604 Shimosakunobe, Takatsu-ku, Kawasaki, Kanagawa 213, Japan 2Departments of Urology and Pathology, University of Michigan, Ann Arbor, Michigan, USA (Correspondence should be addressed to A Mizokami; Email: [email protected]) Abstract One of the mechanisms through which advanced prostate cancer (PCa) usually relapses after androgen deprivation therapy (ADT) is the adaptation to residual androgens in PCa tissue. It has been observed that androgen biosynthesis in PCa tissue plays an important role in this adaptation. In the present study, we investigated how stromal cells affect adrenal androgen dehydroepian- drosterone (DHEA) metabolism in androgen-sensitive PCa LNCaP cells. DHEA alone had little effect on prostate-specific antigen (PSA) promoter activity and the proliferation of LNCaP cells. However, the addition of prostate stromal cells or PCa-derived stromal cells (PCaSC) increased DHEA-induced PSA promoter activity via androgen receptor activation in the LNCaP cells. Moreover, PCaSC stimulated the proliferation of LNCaP cells under physiological concentrations of DHEA. Biosynthesis of testosterone or dihydrotestosterone from DHEA in stromal cells and LNCaP cells was involved in this stimulation of LNCaP cell proliferation. Androgen biosynthesis from DHEA depended upon the activity of various steroidogenic enzymes present in stromal cells. -
Cell Line Lncap'
ICANCER RESEARCH58. 76-83. January 1. 1998J Caspase-7 Is Activated during Lovastatin-induced Apoptosis of the Prostate Cancer Cell Line LNCaP' Marco Marcelli,2 Glenn R. Cunningham, S. Joe Haidacher, Sebastian J. Padayatty, Lydia Sturgis, Carolina Kagan, and Larry Denner Departments of Medicine (M. M.. G. R. C., S. J. H.. S. f. P.1 and Cell Biology [M. M., G. R. C.], Veterans Affairs Medical Center and Baylor College of Medicine, Department of Cell Biology (L S., C K., L DI, Texas Biotechnology C'orporation, Houston, Texas 77030 ABSTRACT androgen-dependent and androgen-independent cells even before therapy (4). The initial response following androgen ablation is The goals of this work were to establish a reproducible and effective thought to be due to the induction of apoptosis of androgen-dependent model of apoptosis in a cell line derived from advanced prostate cancer prostate cancer cells (5). Because androgen-independent cells are and to study the role of the caspase family of proteases in mediating insensitive to androgen ablation, they remain alive even in the absence apoptosis in this system. The study involved the use of the prostate cancer cell line LNCaP. Apoptosis was induced using the hydroxymethyl glutaryl of androgens (6). Hence, after the initial response to androgen ablation CoA reductase inhibitor, lovastatin, and was evaluated by agarose gel due to the death of androgen-dependent cells, the tumor progresses to electrophoresis of genomic DNA, morphological criteria, and terminal an androgen-independent state, and the patient is no longer curable deoxynucleotidyl traasferase-mediated nick end labeling. Caspases were (7). -
On the Biological Properties of Prostate Cancer Cells by Modulation of Inflammatory and Steroidogenesis Pathway Genes
International Journal of Molecular Sciences Article The Impact of Ang-(1-9) and Ang-(3-7) on the Biological Properties of Prostate Cancer Cells by Modulation of Inflammatory and Steroidogenesis Pathway Genes Kamila Domi ´nska 1,* , Karolina Kowalska 2 , Kinga Anna Urbanek 2 , Dominika Ewa Habrowska-Górczy ´nska 2 , Tomasz Och˛edalski 1 and Agnieszka Wanda Piastowska Ciesielska 2 1 Department of Comparative Endocrinology, Medical University of Lodz, Zeligowskiego 7/9, 90-752 Lodz, Poland; [email protected] 2 Department of Cell Cultures and Genomic Analysis, Medical University of Lodz, Zeligowskiego 7/9, 90-752 Lodz, Poland; [email protected] (K.K.); [email protected] (K.A.U.); [email protected] (D.E.H.-G.); [email protected] (A.W.P.C.) * Correspondence: [email protected] Received: 12 July 2020; Accepted: 26 August 2020; Published: 28 August 2020 Abstract: The local renin–angiotensin system (RAS) plays an important role in the pathophysiology of the prostate, including cancer development and progression. The Ang-(1-9) and Ang-(3-7) are the less known active peptides of RAS. This study examines the influence of these two peptide hormones on the metabolic activity, proliferation and migration of prostate cancer cells. Significant changes in MTT dye reduction were observed depending on the type of angiotensin and its concentration as well as time of incubation. Ang-(1-9) did not regulate the 2D cell division of either prostate cancer lines however, it reduced the size of LNCaP colonies formed in soft agar, maybe through down-regulation of the HIF1a gene. -
Active Estrogen Synthesis and Its Function in Prostate Cancer-Derived Stromal Cells
ANTICANCER RESEARCH 35: 221-228 (2015) Active Estrogen Synthesis and its Function in Prostate Cancer-derived Stromal Cells KAZUAKI MACHIOKA1, ATSUSHI MIZOKAMI1, YURI YAMAGUCHI2, KOUJI IZUMI1, SHINICHI HAYASHI3 and MIKIO NAMIKI1 1Department of Integrative Cancer Therapy and Urology, Kanazawa University Graduate School of Medical Sciences, Ishikawa, Japan; 2Division of Breast Surgery, Saitama Cancer Center, Saitama, Japan; 3Department of Molecular and Functional Dynamics, Graduate School of Medicine, Tohoku University, Sendai, Japan Abstract. Background: It remains unclear whether estrogen Castration-naïve prostate cancer (PCa) develops into is produced in prostate cancer (PCa) and how it functions in castration-resistant prostate cancer (CRPC) during androgen PCa. Materials and Methods: To examine the production of deprivation therapy (ADT) by various mechanisms. estrogen in PCa cells, the concentration of estrogen in the Especially, the androgen receptor (AR) signaling axis plays a medium in which LNCaP cells and PCa-derived stromal cells key role in this specific development. PCa cells mainly adapt (PCaSC) were co-cultured, was measured by liquid themselves to the environment of lower androgen chromatography-mass spectrometry/mass spectrometry (LC- concentrations and change into androgen-hypersensitive cells MS/MS), while aromatase (CYP19) mRNA expression was or androgen-independent cells. Androgens of adrenal origin confirmed by real-time polymerase chain reaction (RT-PCR) and their metabolites synthesized in the microenvironment in methods. To verify whether estrogen is synthesized from an intracrine/paracrine fashion act on surviving PCa cells and testosterone in PCaSC functions, PCaSC were co-cultured secrete prostate specific antigen (PSA). Therefore, new with breast cancer MCF-7-E10 cells, which were stably- recently developed medicines, abiraterone acetate that transfected with ERE-GFP, in the presence of testosterone. -
Cell Adhesion and Chemotaxis in Prostate Cancer Metastasis to Bone: a Minireview
Prostate Cancer and Prostatic Diseases (2000) 3, 6±12 ß 2000 Macmillan Publishers Ltd All rights reserved 1365±7852/00 $15.00 www.nature.com/pcan Review Cell adhesion and chemotaxis in prostate cancer metastasis to bone: a minireview CR Cooper1* & KJ Pienta1 1University of Michigan Comprehensive Cancer Center, Department of Internal Medicine, Ann Arbor, MI 48109, USA Bone metastasis is a common phenomenon in patients with advanced prostate cancer. The molecular and cellular mechanisms involved in this process are not well understood. Past reviews on this subject primarily focused on prostate tumor growth in the bone marrow and the effects this growth has on bone homeostasis (ie osteoblastic and osteolytic). Cell chemotaxis and adhesion are also important for site-speci®c metastasis. In this review we have focused on chemotactic and cell adhesion molecules potentially involved in prostate cancer metastasis to bone. In addition, recently developed animal models for prostate cancer metastasis to bone are discussed. Prostate Cancer and Prostatic Diseases (2000) 3, 6±12. Keywords: cell adhesion molecules; cytokines; human bone marrow endothelial cells; chemoattractants; prostate cancer cells Introduction cells.7 The inactivation of parathyroid hormone-related protein (PTH-rp) by prostate-speci®c antigen may pro- Prostate cancer bone metastasis is a major clinical prob- mote the osteoblastic reaction seen in prostate cancer lem and is commonly associated with intractable pain, patients. Yoneda has proposed that the minor osteolytic pathological -
A Novel Anti-Androgen, Compound 30, Suppresses Castration-Resistant and MDV3100-Resistant Prostate Cancer Growth in Vitro and in Vivo
Author Manuscript Published OnlineFirst on March 14, 2013; DOI: 10.1158/1535-7163.MCT-12-0798 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. A novel anti-androgen, Compound 30, suppresses castration-resistant and MDV3100-resistant prostate cancer growth in vitro and in vivo Hidetoshi Kuruma1, Hiroaki Matsumoto1, Masaki Shiota1, Jennifer Bishop, Francois Lamoureux1, Christian Thomas1, David Briere2, Gerrit Los2, Martin Gleave1, Andrea Fanjul2 and Amina Zoubeidi1 1The Vancouver Prostate Centre, 2660 Oak Street, Vancouver, BC, Canada, V6H 3Z6 2Pfizer Oncology Research Unit, Worldwide Research & Development, 10646 Science Center Drive, San Diego, California, United States, 92121. Running Title: Efficacy of Compound 30 in MDV3100-resistant prostate cancer Key words: Castration-resistant prostate cancer, anti-androgen, MDV3100, Compound 30, androgen receptor, MR49F Financial support: Pfizer Global Research & Development (United States) and the Prostate Cancer Foundation USA (A. Zoubeidi) Corresponding author: Amina Zoubeidi, Ph.D. The Vancouver Prostate Centre, Department of Urologic Science University of British Columbia: 2660 Oak Street, Vancouver, BC, V6H 3Z6, Canada. [email protected] Disclosure: A. Fanjul, D. Briere and G. Los are employee of Pfizer. The other authors disclosed no potential conflicts of interest. Manuscript Type: Chemical (Small Molecule) Discovery and Clinical Development Total number of figures: 5 Word Count: 4,937 1 Downloaded from mct.aacrjournals.org on September 29, 2021. © 2013 American Association for Cancer Research. Author Manuscript Published OnlineFirst on March 14, 2013; DOI: 10.1158/1535-7163.MCT-12-0798 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. -
Repression of Cell Proliferation and Androgen Receptor Activity in Prostate Cancer Cells by 2’-Hydroxyflavanone
ANTICANCER RESEARCH 33: 4453-4462 (2013) Repression of Cell Proliferation and Androgen Receptor Activity in Prostate Cancer Cells by 2’-Hydroxyflavanone MITSUO OFUDE1, ATSUSHI MIZOKAMI1, MISAKO KUMAKI1, KOUJI IZUMI1, HIROYUKI KONAKA1, YOSHIFUMI KADONO1, YASUHIDE KITAGAWA1, MINKYOUNG SHIN1, JIAN ZHANG2, EVAN T. KELLER3 and MIKIO NAMIKI1 1Department of Integrative Cancer Therapy and Urology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Ishikawa, Japan; 2Center for Translational Medical Research, Guangxi Medical University, Guangxi, P.R. China; 3Department of Urology, School of Medicine, University of Michigan, Ann Arbor, MI, U.S.A. Abstract. Background: Prevention of the development of line hormonal therapy using medical castration, such as castration-resistant from hormone-naïve prostate cancer is luteinizing hormone releasing hormone (LH-RH) agonists, an important issue in maintaining the quality of life of the LH-RH antagonist, and antiandrogen for advanced PCa. patients. We explored the effect of 2’-hydroxyflavanone on After an initial response to ADT, however, PCa eventually proliferation and androgen responsiveness using prostate loses responsiveness to ADT and progresses into what is cancer cell lines. Materials and Methods: To investigate the termed castration-resistant PCa (CRPC). effect of 2’-hydroxyflavanone on proliferation, prostate The AR axis also plays an important part in the process cancer cells were treated with 2’-hydroxyflavanone. when hormone- sensitive PCa become CRPC. Although Androgen-responsiveness in LNCaP cells was confirmed by serum testosterone decreases to less than 5% before starting luciferase assay after transfection of luciferase reporter ADT, PCa adapts to low serum testosterone level by several driven by prostate specific antigen promoter. To detect mechanisms.