<<

AVAILABILITY, ECONOMICS, AND PRODUCTION POTENTIAL OF NORTH AMERICAN UNCONVENTIONAL SUPPLIES

Prepared for The INGAA Foundation, Inc. by:

ICF International 9300 Lee Highway Fairfax, VA 22031 USA

Authors: Harry Vidas and Bob Hugman

F-2008-03 Copyright ® 2008 by The INGAA Foundation, Inc. November 2008 Thispageintentionallyblank

2 TableofContents

TableofContents...... 3 1 ExecutiveSummary ...... 9 1.1 Introduction...... 9 1.2 ResourceDefinitions ...... 11 1.3 Objectives...... 13 1.4 MajorConclusionsofStudy...... 13 1.5 NorthAmericanNaturalGasProductionForecast...... 16 1.6 ReportFindingsbyCategoryofUnconventionalGas ...... 18 1.7 Conclusions ...... 23 2 Introduction...... 25 3 DataSources...... 29 4 NorthAmericanNaturalGasProduction,Reserves,andDrillingActivity...... 31 4.1 NaturalGasProductionTrends ...... 31 4.2 ProductionbyResourceType...... 33 4.3 NaturalGasReservesandReserveAdditions ...... 37 4.4 DrillingActivity–U.S.and...... 38 4.5 ExpectedFutureContributionfromUnconventionalNaturalGas ...... 40 4.6 ImplicationsofForecastforFutureDrilling,IndustryOutlays,andWaterUse ...... 46 4.7 UnconventionalNaturalGasProduction“Upside”...... 46 4.8 ComparisonofForecasttoEIAAnnualEnergyOutlook ...... 47 5 TightGas,Gas,andCoalbedResources...... 49 5.1 PublishedU.S.ResourceEstimates ...... 49 5.2 PublishedCanadianResourceEstimates...... 55 5.3 TechnologyAdvancesImpactingTightGas,CoalbedMethane,andShaleGas ...... 57 5.4 ComparisonofSelectedShalePlayAssessments...... 63 5.5 PreliminaryAssessmentofPotentialinFrontierShaleGasPlays...... 64 5.6 ComparisonofICFLower-48ShalePlayAssessmentswithPublishedAssessments ...... 68 5.7 NaturalGasCompositionandQuality ...... 70 6 RegionalTightGas,ShaleGas,andCoalbedMethaneProductionandActivity ...... 73 6.1 Introduction...... 73 6.2 CharacteristicsofMajorPlays ...... 73 6.3 ActivitySummariesandDiscussionofExistingandEmergingPlays...... 76 NorthAmericaPlayLevelProduction...... 76 Rockies ...... 76 Mid-Continent ...... 83 NorthandEast...... 87 TexasGulfCoast ...... 91 Southeast...... 93 AppalachianandMidwestBasinsandEasternCanada...... 98 Basin ...... 104 WesternCanada ...... 107

3 7 WellRecoveryandResourceDevelopmentCosts ...... 113 7.1 NationalUpstreamCosts...... 113 7.2 ResourceCostApproachandResults ...... 115 7.3 SensitivityofCoststoLeaseBonusandRoyaltyRates ...... 121 7.4 ResourceCostSummary...... 121 8 OtherCategoriesofUnconventionalGas ...... 123 8.1 OilShale–HorizontalDrilling(BakkenShaleandBarnettShaleOilLeg) ...... 123 8.2 OilShale–ThermalMethods...... 124 8.3 OffshoreandArcticNaturalGasHydrates...... 130 8.4 AbovegroundtoMethane...... 136 8.5 UndergroundCoal ...... 144 8.6 LandfillGas...... 151 8.7 BiologicMethane...... 157 Agricultural ...... 157 DigesterBiogas ...... 161 WastewaterTreatmentBiogas ...... 164 9 ClosingDiscussion...... 167

4 ListofTables Table1SummaryofReportFindings ...... 19 Table2U.S.Lower-48DryNaturalGasProductionandReserves...... 37 Table3UnconventionalWellCompletionActivityintheU.S...... 39 Table4CoalbedMethaneDrillinginWesternCanada ...... 40 Table5SummaryofNaturalGasProductionForecast ...... 45 Table6SummaryofPublishedU.S.UnconventionalNaturalGasResourceAssessments...... 50 Table7ICFNaturalGasResourceBase...... 51 Table8SummaryofLower-48TightGasAssessments...... 52 Table9SummaryofLower-48CoalbedMethaneAssessments ...... 53 Table10PublishedLower-48ShaleGasAssessments...... 55 Table11PublishedCanadianUnconventionalNaturalGasAssessments ...... 56 Table12WCSBShaleVerticalWellAssessmentforthe2003NationalCouncilStudy ..57 Table13ComparisonofRecentU.S.ShaleGasAssessments–SelectedPlays(NotIncluding RecentlyAnnouncedFrontierPlays)...... 64 Table14AnalysisofExistingandEmergingShaleFormationVolumesandGas-in-Place ...... 67 Table15ComparisonofCurrentICFandOtherPublishedLower-48ShaleAssessments ...... 69 Table16CharacteristicsofMajorShalePlays...... 74 Table17CharacteristicsofMajorCoalbedPlays ...... 75 Table18NorthAmericanBasinLevelUnconventionalNaturalGasProduction ...... 77 Table19RockiesUnconventionalNaturalGasProductionbyPlay...... 78 Table20Mid-ContinentUnconventionalNaturalGasProductionbyPlay...... 84 Table21NorthandEastTexasUnconventionalNaturalGasProductionbyPlay ...... 88 Table22NewarkEast(BarnettShale)AnnualNaturalGasandLiquidsProduction ...... 90 Table23TexasDistrict4UnconventionalNaturalGasProductionbyPlay ...... 92 Table24SoutheastUnconventionalNaturalGasProductionbyPlay...... 94 Table25AppalachianandMidwestUnconventionalNaturalGasProductionbyPlay...... 99 Table26PermianBasinUnconventionalNaturalGasProductionbyPlay...... 105 Table27WesternCanadaUnconventional(CBM)NaturalGasProduction...... 108 Table28SummaryofFindingandResourceCosts-AllL-48NaturalGasWells...... 119 Table29SummaryofFindingandResourceCosts-TightGas...... 119 Table30SummaryofFindingandResourceCosts-CoalbedMethane...... 120 Table31SummaryofFindingandResourceCosts-ShaleGas ...... 120 Table32SummaryofFindingandResourceCosts-Conventional...... 121 Table33U.S.OilShaleResources...... 125 Table34HypotheticalEconomicsofIn-SituProductionofGreenRiverOil...... 129 Table35CurrentUSGSAssessmentofU.S.NaturalGasHydrateResource ...... 131 Table36HypotheticalExamplesofGasHydrateEconomics...... 135 Table37CurrentandPlannedCoaltoMethanePlants ...... 139 Table38U.S.CoalResources(ShortTons)ConvertedtoMethaneonandEnergyBasiswith50% ConversionEfficiency...... 142 Table39CapitalCostsofSubstituteNaturalGasOptions(150MMcfdCapacity)...... 148 Table40Per-UnitCostsofSubstituteNaturalGasOptions...... 149 Table41ExistingLandfillGasEnergyTechnologyProjectswithProjectCounts(February2005)..155 Table42SummaryofRepresentativeLandfillCollectionandTreatmentCosts(Low-BtuGas) .....157 Table43AnaerobicDigestionMethaneGenerationbyAnimalType...... 160 Table44NumberofOperationsbyAnimal,FarmSize,andManureManagement...... 161

5 Table45EstimatedCostperHeadbyAnimalandDigesterType ...... 163 Table46AnaerobicDigestersCurrentlyOperatingintheUnitedStates ...... 164 ListofFigures Figure1Lower-48NaturalGasProductionForecast...... 16 Figure2ComparisonofForecasttoEIA2008AnnualEnergyOutlook...... 17 Figure3CanadaNaturalGasProductionForecast...... 18 Figure4ShaleGasBasinsoftheLower-48...... 27 Figure5U.S.DryNaturalGasProduction1940-2007...... 31 Figure6Lower-48MarketedNaturalGasProductionandUnconventionalPercentage...... 32 Figure7Lower-48UnconventionalNaturalGasProductionSince1970 ...... 33 Figure8Lower-48TightGasProductionbyRegion...... 34 Figure9Lower-48ShaleGasProductionbyRegion ...... 35 Figure10Lower-48CoalbedGasProductionbyRegion...... 36 Figure11U.S.DrillingActivitybyType ...... 38 Figure12ForecastofNorthAmericanNaturalGasProductionbyType...... 41 Figure13ForecastRockiesNaturalGasProduction ...... 42 Figure14ForecastMid-ContinentNaturalGasProduction ...... 42 Figure15ForecastGulfCoastandEastTexas/ArklaNaturalGasProduction ...... 43 Figure16ForecastEasternInteriorNaturalGasProduction...... 43 Figure17ForecastWesternCanadaNaturalGasProduction ...... 44 Figure18ComparisonofICFLower-48NaturalGasProductionForecastwithEIA'sAnnualEnergy Outlook ...... 47 Figure19ShaleFracturinginaHorizontalWellbore...... 59 Figure20StimulationofaVerticalTightSandWell...... 59 Figure21MapShowingWellSpacingforUnconventionalNaturalGasPlays ...... 62 Figure22ShaleGasBasinsoftheU.S...... 65 Figure23MapofHeatingContentofBarnettShaleGas...... 71 Figure24BarnettShaleThermalMaturation(VitriniteReflectance)...... 72 Figure25RockyMountainStateGasProductionTrends ...... 78 Figure26RockiesUnconventionalNaturalGasProductionSummary...... 79 Figure27Mid-ContinentStateNaturalGasProductionTrends...... 83 Figure28Mid-ContinentUnconventionalNaturalGasProductionSummary...... 84 Figure29NorthandEastTexasDistrictNaturalGasProductionTrends...... 88 Figure30NorthandEastTexasUnconventionalNaturalGasProductionSummary ...... 89 Figure31TexasGulfCoastDistrict4NaturalGasProduction...... 92 Figure32TexasGulfCoastUnconventionalNaturalGasProductionSummary...... 93 Figure33SoutheasternStateNaturalGasProductionTrends ...... 94 Figure34SoutheastUnconventionalNaturalGasProductionSummary ...... 95 Figure35MapofHaynesvilleShalePlay ...... 96 Figure36AppalachianandMidwestStateNaturalGasProductionTrends...... 98 Figure37AppalachianandMidwestUnconventionalNaturalGasProductionSummary...... 99 Figure38MapofMarcellusandHuronShale ...... 101 Figure39LocationofUticaShalePlay ...... 102 Figure40ShalePlaysinNewBrunswickandNovaScotia...... 103 Figure41PermianBasinDistrictNaturalGasProductionTrends ...... 104 Figure42PermianBasinUnconventionalNaturalGasProductionSummary...... 105 Figure43.WesternCanadaProvinceNaturalGasProduction...... 107

6 Figure44WesternCanadaUnconventionalNaturalGasProduction(CBMOnly)...... 108 Figure45MapofHornRiverBasin,BCShalePlay...... 109 Figure46LocationofMontneyShale,BritishColumbia...... 112 Figure47U.S.CarbonSteelPlatePrices ...... 114 Figure48U.S.DrillingRigDayRates ...... 114 Figure49Annual(ConventionalandUnconventional)Lower-48Non-AssociatedNaturalGas WellheadCostCurves ...... 115 Figure50AnnualLower-48TightGasWellheadCostCurves...... 116 Figure51AnnualLower-48CoalbedMethaneWellheadCostCurves ...... 117 Figure52AnnualLower-48ShaleGasWellheadCostCurves...... 117 Figure53AnnualLower-48ConventionalWellheadCostCurves ...... 118 Figure54ExtentofBakkenOilShalePlay...... 124 Figure55MapofU.S.OilShaleFormations...... 125 Figure56NaturalGasHydrateandConventionalU.S.NaturalGasResourcePyramids...... 131 Figure57GasHydratePressure-TemperatureEnvelope...... 133 Figure58FlowSchematicforDakotaGasification ...... 136 Figure59FlowSchematicofGreatPointEnergyGasificationProcess ...... 137 Figure60FlowSchematicofHCEHydro-gasificationProcess ...... 138 Figure61DistributionofU.S.CoalResources ...... 140 Figure62DistributionofCanadianCoalResources...... 141 Figure63ApproachUsedinUndergroundCoalGasificationwithVerticalWells ...... 145

7 Thispageintentionallyblank.

8 1 EXECUTIVESUMMARY

1.1 Introduction NorthAmericannaturalgasproductioninrecentdecadeshasbeencharacterizedbyanincreasing contributionfromunconventionalgas.Unconventionalgasisdifferentiatedfromconventionalgas onthebasisofthenatureofthegeologicreservoirsitisfoundwithinandthetypesoftechnologies requiredtoextractthegas. Conventionalnaturalgasdeposits haveawell-definedareal extent,thereservoirsareporousandpermeable,thegasisproducedeasilythroughawellbore,and reservoirsgenerallydonotrequirewellstimulationtoproduce. Unconventionalnaturalgas deposits areverydiverseanddifficulttocharacterizeoverall,butingeneralareoftenlowerin resourceconcentration,moredispersedoverlargeareas,andrequirewellstimulationorsome otherextractionorconversiontechnology.Theyalsoareoftenmoreexpensivetodevelopperunit ofenergy.

Researchandinvestmentintounconventionalgasresourceshasincreasedsignificantlyinrecent yearsduetothehigherpriceenvironmentfornaturalgas.Inseveralcases,thetechnologiesfor economicproductionhavealreadybeendeveloped,whileinothercases,theresourcesarestillin theresearchstage.

ThethreetypesofunconventionalnaturalgasthatcontributesignificantlytoU.S.naturalgas productiontodayaretightgas,coalbedmethane,andshalegas.(SeeSection1.2forresource definitions).Extremelylargegas-in-placevolumesarerepresentedbytheseresources,andtheU.S. hasproducedonlyafractionoftheirultimatepotential.

NorthAmericacontainslargequantitiesofunconventionalnaturalgas resourcesintheformof tightgas , coalbedmethane ,and shalegas .

WhileunconventionalnaturalgashasbeenasignificantcomponentofU.S.productionforalong time,itscontributionhasgrownrapidlyinrecentyears.Notabletrendsincludethegrowthin productionfromtightgasreservoirsintheRockiesandEastTexas,coalbedmethaneinWyoming andNewMexico,andshalegasinNorthTexasandtheMid-Continentregion.

9

ThemostsignificanttrendinU.S.naturalgasproductionistherapidrisein naturalgasproductionfromshaleformations.

ThegrowingproductionfromtheBarnettShaleintheFortWorthBasinofNorthTexasandthe morerecentstartupsoftheFayettevilleandWoodfordShaleplaysintheMid-Continentregion haveshownthegreatlyimprovedproductionpotentialofhorizontaldrillingandstimulation technologies.Manyoftheadvancesmadeinthesetechnologieshavecomejustwithinthepast decade.Thisyear,numerouscompanyannouncementshavebeenmadeaboutNorthAmerican horizontaldrillingshalegasplays.TheseincludetheHaynesvilleShaleinNorthern,the MarcellusandHuronShalesinAppalachia,thePearsallShaleinTexas,theUticaShaleinQuebec, andtheHornRiverBasinandMontneyShaleinBritishColumbia.Itappearscertainthatshalegas productionwillexpandincomingdecades,andproductionwillemergeinnewregionsintheU.S. andCanada.

ICFisforecastingthattightgas,coalbedmethane,andshalegaswillmakea majorcontributiontofutureNorthAmericangasproduction.TotalNorth Americannaturalgasproductionisforecasttoincreasefrom25Tcfin2007to almost29Tcfby2020.

Thisproductiongrowthwillbedrivenbyonshoreunconventionalgas.Theunconventional percentageofgasproductionisforecasttoincreasefrom42percentin2007to64percentin 2020.Althoughthisreportfocusesontheperiodthrough2020,ourmodelingindicatesthat unconventionalgasproductionwillcontinuetoincreasebeyond2020inbothvolumeand percentageterms.

Inaddition,otherformsofunconventionalgasalsoexist.Inmanycases,theseresourcesrepresent additionalhugequantitiesofgas-in-placethatcouldbetargetedforcommercialdevelopment.

Otherformsofunconventionalgaswillcontributeatamodestlevelthrough2020, includingabovegroundcoalgasification(withnineplantscurrentlyplanned,representing over400Bcfperyearofgasproduction),landfillgas(thepotentialfor800Bcfperyearof methaneby2020),andbiogas(tensofBcfby2020).

Thefall2008creditcrisis,stockmarketcollapse,andoilandgaspricedeclinemayleadto reductionsingasdrillingprogramsplannedbyproducers.However,thelong-termneedforenergy intheU.S.andCanadashouldbestrongenoughtosupportthefuturegasproductionlevelsshown inthisreport,albeitonapossiblyslowerpace.

10

1.2 ResourceDefinitions Naturalgasresourcesmaybeclassifiedas “conventional” or “unconventional.” Conventional naturalgasresources aredefinedhereasquantitiesofnaturalgasoroilthatoccurindiscreet accumulationsingenerallyhigherporosityandpermeabilityreservoirrocksandthataredeveloped andproducedusingstandarddrillingandcompletiontechnologies.Unconventionalnaturalgas resources aretypicallymuchlowerinresourceconcentration,aremoredispersed,andrequirewell stimulationorothertechnologiestoproduce.Theyaredividedhereintotwobroadcategories: (1) UnconventionalNaturalGasinLow-QualityReservoirs,and(2)UnconventionalNaturalor SyntheticGasProcessedfromaNon-GaseousState.

Thefirstcategoryofunconventionalgascontainsresourcesthatarecurrentlycontributing significantlytoU.S.gasproduction,althoughdevelopmentmethodsandtechnologiescontinueto evolve.Theseresourcesaredescribedasfollows:

UnconventionalNaturalGasinLow-QualityReservoirs Definition: Quantitiesofnaturalgasthatoccurincontinuous,widespread accumulationsinlowqualityreservoirrocks(includinglowpermeabilityortightgas, coalbedmethane,andshalegas),thatareproducedthroughwellboresbutrequire advancedtechnologiesorproceduresforeconomicproduction. TightGas isdefinedasnaturalgasfromgas-bearingorcarbonateswith an insitu permeability(flowratecapability)togasoflessthan0.1millidarcy.Many tightgassandshave insitu permeabilityaslowas0.001millidarcy.Wellsaretypically verticalordirectionalandrequireartificialstimulation. CoalbedMethane isdefinedasnaturalgasproducedfromcoalseams.Thecoalacts asboththesourceandreservoirforthemethane.Wellsaretypicallyverticalbutcan behorizontal.Somearewetandrequirewaterremovaltoproducethegas, whileothersaredry. ShaleGas isdefinedasnaturalgasfromshaleformations.Theshaleactsasboththe sourceandreservoirforthemethane.Oldershalegaswellswereverticalwhilemore recentwellsareprimarilyhorizontalwithartificialstimulation.Onlyshaleformations withcertaincharacteristicswillproducegas. ShaleOil withAssociatedGas isdefinedasassociatedgasfromoilshalein horizontaldrillingplayssuchastheBakkenintheWillistonBasin.Thegasisproduced throughboreholesalongwiththeoil.

11 Thesecondcategoryofunconventionalgasresourcescontainsresourcesthatareeither contributinglittleproductionbecauseofeconomicorotherfactors,arestillintheresearchstage, orarebeingevaluatedthroughpilotprojects.Theyrequiresomeprocesstoconvertorganicmatter intomethaneandothergaseousfuels.Theseresourcesaredescribedasfollows:

UnconventionalNaturalorSyntheticGasProcessedfroma Non-GaseousState Definition :Otherformsofhydrocarbonsthateitherdonotcurrentlyexistina gaseousstateamenabletoconventionalproductionmethods,orthatrequire advancedprocessesandapproachestoproduceafuel-gradehydrocarbongas. GasfromThermalOilShaleisdefinedasgasprocessedthroughthethermal distillationofinoilshale,suchastheGreenRiverFormationin, Utah,andWyoming. OffshoreandArcticGasHydratesaredefinedasice-likesolidsinwhichmethane istrappedinwatermoleculesinacage-likemolecularstructure.Theyarefoundin bothdeepwaterandarcticsettings. AbovegroundCoaltoMethane isdefinedastheconversionofcoaltomethane throughsurfaceprocessinginacoalgasificationplant. UndergroundCoaltoMethaneisdefinedastheconversionof in-situ or undergroundcoaltomethane. LandfillGasisdefinedasmethanegeneratedbythedecompositionoforganic wasteinadisposalfacilityorlandfill. BiologicMethaneisdefinedastheproductionofmethanethrough(1)agricultural biogas(theanaerobicdigestionofagriculturalbyproducts),(2)digesterbiogas(the anaerobicdigestionofmanure),and(3)wastewatertreatmentbiogas(methanefrom theanaerobicdigestionofwastewatersludge).

12

1.3 Objectives ThisstudyevaluatesthepotentialofNorthAmericanunconventionalnaturalgassources.Changes inbasinandregionproductionratesresultingfromtheemergenceofnewhighvolumegasplays couldhavealargeimpactontheNorthAmericannaturalgastransportationindustry. Objectivesofthestudyincludethefollowing: • DescriptionofthetypesofunconventionalgasthatmightberelevantforU.S.andCanada through2020 • Determinationofthelocationwheresuchgasmightbeproduced • Estimationofthesupplyvolumespotentiallyavailablefromeachtypeandlocation • Evaluationoftypicalprojectleadtimesandtimingforfutureresourcedevelopment • Discussionofgasqualityissues • Estimationoftheresourcecostofeachtypeofunconventionalgas • Discussionofconstraintsforresourcedevelopmentincludinglandaccess,environmental permitting,productiontechnologies,leadtimes,capitalcosts,andmarketenvironment. Thisstudydoesnotexaminetheinfrastructureneededtobringthisnewsupplytomarket. RequirednaturalgasinfrastructureisthesubjectofanotherreportICFwillpreparefortheINGAA Foundationin2009.

1.4 MajorConclusionsofStudy • Afteryearsofrelativelyconstantordecliningproduction,U.S.naturalgasproductionis increasing,duelargelytoincreasedunconventionalnaturalgasproduction.(Section4).

• Through2020,NorthAmericannaturalgasproductionwillcomeincreasinglyfromtight gas,coalbedmethane,andshalegasreservoirs.Unconventionalnaturalgasproductionwill increaseinboththeLower-48andCanada.(Section4).

• Asindustryhasmadealarge-scaleshifttowarddevelopmentofunconventionalnaturalgas, theunderlyingcostofU.S.naturalgasreserveadditionshasgoneup.Whilethisimplies thatlong-termpriceswillremainhigherthaninpreviousyears,thelargeresourcebase meansthatthereismoreassurancethatfuturedomesticnaturalgassupplieswillbe adequate.(Section7).

• 2008hasseentheemergenceofseveralnewshalegasplaysinboththeU.S.andCanada. Bothcountrieswillseelargeregionalproductionincreasesfromtheseplays.Thesesupply changesareexpectedtohavesignificantimplicationsforthegastransportationindustry,in termsofcapacitygrowthandde-bottlenecking.(Section6).

• AnupdatedresourcebaseofremainingnaturalgasresourcesintheU.S.andCanadais presentedhere.Thisresourcebaseincludespreliminaryestimatesfortheemergingshale

13 plays.TotalnaturalgasresourcesinNorthAmericaexceed2,300trillioncubicfeet(Tcf). Shaleresourcesalonewithinthisassessmenttotalover500Tcfofrecoverablenaturalgas. Toputthisinperspective,annualU.S.andCanadagasproductionin2007was approximately25Tcf.FortheLower-48,tightgasisassessedat174Tcf,coalbedmethane at65Tcf,andshalegasat385Tcf.(Table7,Section5).

• TheassessmentofshalegaspotentialintheU.S.andCanadaisaworkinprogressand thereisalongwaytogotounderstandremainingpotentialandimplicationsforfuture naturalgasproduction.Therapidadvanceofdrillingandcompletiontechnologyhas openedupplaysinanumberofdifferentbasinsthatwerenotpreviouslyconsideredto haveeconomicpotential.Thevolumesofgas-in-placeareextremelylarge,andasmall differenceintheestimatedpercentageofgas-in-placethatisrecoverablehasahugeimpact onestimatesofrecoverableresources.

• Lower-48naturalgasproductionisforecasttoincreasefrom19Tcfperyearin2007to23 Tcfperyearin2020.Duringthisperiod,thepercentageofLower-48unconventional naturalgaswillgrowfrom48%to69%oftotalLower-48production.(Section4).

• Canadiannaturalgasproductionisforecasttodeclineslightlyfrom6.6Tcfto5.7Tcfper yearby2020.However,thecontributionofunconventionalnaturalgasproductionwill increasefrom24%to43%ofnaturalgasproduction.(Section4).

• Thenaturalgasproductionforecastpresentedhereprojectshigherlevelsoffuturenatural gasproductionthanthatofthe2008EIAAnnualEnergyOutlook,whichforecastsonlya slightincreaseinLower-48gasproductionandrelativelyflatunconventionalgas production.TheforecastpresentedhereisforaLower-48productionlevelof23Tcfper yearby2020,incontrasttotheEIAforecastof18Tcf.(Section4).

• Environmentalandregulatoryissueswilllikelyimpactthedevelopmentofunconventional resources.Theseincludewellandenvironmentalpermittingandrelatedcosts,landaccess, wateruseanddisposal,andsurfacedisturbance.Wateruseanddisposalforfracturingof shalewellshasalreadyemergedasasignificantissue,although,todate,waterusehasnot significantlyrestricteddevelopmentinmostshaleareas.

• Toachievethegasproductionforecastpresentedhere,itwillbenecessarytodrillan averageofapproximately25,000unconventionalgaswellsperyearthrough2020.That equatesto300,000wells,representingadrillingandcompletioncostoutlayof$560billion. Toachievetheforecastresults,industrymusthavelandaccessfordrilling,areasonable permittingprocess,andadequatepricesanddemandfornaturalgas.Theforecast incorporatesassumptionsintheseareas,butthereareuncertaintiesinvolved.

• Ourforecastmayprovetobeconservative,especiallyforgasshales.Thisisbecausethesize oftherecoverableresourcebaseislargeenoughtosupporthigherlevelsofannual productionoverthelongtermifsuchproductionisdemandedbythemarket.Inaddition, itislikelythatourforecastforWesternCanadaisconservative,giventhelimitedavailable informationonnewshaleplaysinBritishColumbia.Also,severalemergingshaleplays, suchasthoseinthesoutheasternU.S.andtheRockyMountains,arenotincludedheredue tothescarcityofavailableinformation.(Section4).

14 • Thechemicalcompositionofnaturalgasfromunconventionalsourcesisanimportant considerationforthetransportationandprocessingindustry.Thereissignificantvariability ingascompositionamongunconventionalplays,evenwithinaspecificplay.Gas “wetness”ortheratioofheavierhydrocarbonstomethaneisanissueintheBarnettShale, requiringsignificantgasliquidsprocessing.Thereisagenerallackofpublicgas compositiondataformajorunconventionalgasplays.(Section5).

• TheavailableresourcebaseforabovegroundcoalgasificationisinthethousandsofTcf. Largescaleplantshavethemostfavorableeconomics,generallyinarangeof$7to$9per millionBtu(MMBtu).Significantenvironmentalissuesincludeminingissuesand greenhousegasemissions.Greenhousegaslegislationrequiringcarbonsequestrationor thepaymentforgreenhousegasallowancescouldresultinsignificantcostincreases.Nine abovegroundgasificationplantsareplannedintheU.S.andCanada,representing400Bcf peryearofgasproduction.(Section8).

• Undergroundcoalgasification(UCG)isatechnologytoconvertenergyinundergroundcoal togas.TheavailableresourcebaseforNorthAmericaisinthethousandsofTcf.Large scaleprojectsmayhaveeconomicsintherangeof$5to$6perMMBtu.Costscouldbe muchhigher,dependingontheneedforwatertreatmentorsitemitigation.Here,too, greenhousegaslegislationcouldresultinsignificantcostincreases.(Section8).

• About150Bcfperyearoflandfillmethanewascapturedandusedin2004.Methane production(captureanduse)potentialfromlandfilloperationsisestimatedat800Bcfper yearby2020.Thisisbasedonanaveragemethanecomponentofrawlandfillgasof50 percent.

• Withregardtogasfromoilshalethermalprocesses,biogas,andarcticandoffshoregas hydrates,noneoftheseisexpectedtohaveamajorcontributionthrough2020,although significanttechnologygainshavebeenmadeinrecentyears.Gashydratesarethesubject ofalargefederalandinternationalresearcheffort.(Section8).

15

1.5 NorthAmericanNaturalGasProductionForecast Figure1 summarizestheICFLower-48naturalgasproductionforecast,brokenoutinto conventionalandnon-conventionalcategories.Itillustratestheexpecteddeclineinnaturalgas productionfromconventional(highpermeability)reservoirs.(Notethatoffshoreshelfand deepwaterproductionareincludedwithconventionalgas).Increasingannualproductionthrough 2020isshowntobedrivenbybothtightgasandshalegas.Tightgasremainsthedominant categoryofunconventionalgasthroughtheforecast,despitealargeincreaseinshalegas. Coalbedmethanewillgrowonlymoderatelyduringthistimeframe.Bothtightgasandshalegas productionareexpectedtocontinuetoincreasebeyond2020.In2007,unconventionalnatural gasproductionrepresented48percentofLower-48naturalgasproduction.By2020,itisforecast tobe69percentoftheLower-48total.

Itshouldbenotedthattheforecastpresentedhereassumesthattheoffshoremoratoriathatwere inplacethroughmid-2008remainineffect.Thus,thereisnoproductionfromnewareasofthe AtlanticorPacificoffshoreortheoff-limitspartoftheEasternGulfofMexico. Figure1Lower-48NaturalGasProductionForecast

Lower-48

25

20 2020 Unconventional 15.9 Tcf 2007 Unconventional 69% of total 15 9.1 Tcf 48% of total

10 Tcf per Year per Tcf

5

0 1997 1999 2001 2003 2005 2007 2009 2011 2013 2015 2017 2019 Conventional Tight Coalbed Shale

16

Figure2 showsacomparisonwiththecurrent(2008)EIAAnnualEnergyOutlook.TheEIA forecastforLower-48naturalgasproductionismuchlowerthanICF’sforecast,andproduction peaksatonly19.3Tcfperyearin2016.Unconventionalgasproductionincreasesonlyslightly, peakingat9.6Tcfin2018.EIA’sforecastofconventionalproduction(notshown)declinesfrom9.7 Tcfin2007to7.9Tcfin2030,whiletheICFforecastdeclinesto6.1Tcfin2030.Whilethereare severalfactorsthatimpactproductionforecasts,includingpriceandtechnologyimprovement assumptions,themostsignificantreasonICF’sunconventionalgasforecastishigherisICF’slarger shalegasresource,asdiscussedinSection5.OtherfactorsincludingU.S.electricityandnatural gasdemandassumptionsalsoaccountforsomeofthedifference.

Figure2ComparisonofForecasttoEIA2008AnnualEnergyOutlook

25

ICF Total Lower-48

20 EIA Total Lower-48

15 ICF Unconventional

10 Tcf per Year per Tcf

EIA Unconventional

5

0 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030

17 Figure3showsexpectedCanadianproduction.Conventionalproductionisexpectedtodecline overallthrough2020.Anexceptiontotheconventionalproductiondeclineistheassumedstartup oftheMackenziegaspipelinein2016(shownonthechartasanincreaseinthatyear).All categoriesofunconventionalnaturalgaswillgrow,butnotenoughtooffsetthedeclinein conventionalnaturalgasproduction.Canadianshalegasproductionisexpectedtobevery significant,butitisdifficulttoforecastduetotheemergingnatureoftheplays.

In2007,unconventionalnaturalgasproductionrepresented24percentofCanadiannaturalgas production.By2020,itisforecasttobe43percentofthetotal. Figure3CanadaNaturalGasProductionForecast

Canada

8

7

2007 Unconventional 6 1.6 Tcf 24% of total 5 2020 Unconventional 4 2.4 Tcf 43% of total 3 Tcf perTcf Year

2

1

0 1997 1999 2001 2003 2005 2007 2009 2011 2013 2015 2017 2019 Conventional Tight

1.6 ReportFindingsbyCategoryofUnconventional Gas

Table1 summarizesthefindingsofthisreport.Thetableshowseachofthecategoriesof unconventionalgasevaluatedhere.Whereavailable,thetablesummarizestherecoverableorin- placenaturalgasresourcebase,thecurrentrateofproduction,theforecasted2020rateof production,theestimatedcost,andimportantconsiderationsinassessingtheresourcecategory. Thefollowingisasummaryofthefindingsforeachcategory:

18 Table1SummaryofReportFindings

Estimated Forecast Estimated Resource Production in Production Major Obstacles and Source Base 2007 in 2020 Estimated Cost per Unit Uncertainties

Land access and produced water Wide range of costs. 2007 disposal concerns have slowed Coalbed 65 TCF (US) 33 TCF (Can) 1.8 TCF (US) 2.0 TCF (US) average was about $4.20 per development. Technology recoverable gas 0.2 TCF (Can) 0.5 TCF (Can) Methane MMBtu in US. improvements take time to develop and to penetrate the market.

Emerging areas have considerable geologic and geomechanical uncertainty. Technology improvements take time to develop Wide range of costs. 2007 385 TCF (US) 131 TCF (Can) 1.4 TCF (US) 4.8 TCF (US) and to penetrate the market. Shales average was about $5.00 per recoverable gas 0.0 TCF (Can) 0.5 TCF (Can) impacts, environmental concerns MMBtu in US. and lack of infrastructure will slow development, especially in areas with little historical oil and gas development.

Number and size of new of "sweet spots" will affect long-run Wide range of costs. 2007 production trends. Technology 174 TCF (US) 66 TCF (Can) 5.8 TCF (US) 9.2 TCF (US) average was about $5.90 per improvements take time to develop recoverable gas 1.3 TCF (Can) 1.4 TCF (Can) MMBtu in US. and to penetrate the market. Restricted land access in Rockies will constrain development. Gas gathering infrastructure is now Gas from Oil Total hydrocarbon costs were catching up with associated gas Shales 1.8 TCF (US) (Bakken) about to $31 per barrel oil 0.04 TCF (US) 0.18 TCF (US) production. Future production recoverable gas equivalent ($5.30/MMBtu) in mid- (Horizontal depends on oil prices and 2008. Drilling) technology evolution. Risk of immature technology, uncertain environmental impacts 5+ TCF gas in place in US, but Small amount Total hydrocarbon rsource costs and regulatory régime. Significant Gas from Oil thermal production of the 750 associated with for rich shales might be $28 to cost increase is possible under Shales billion barrels of rich shale (>25 none pilot or small $41 per barrel oil equivalent GHG constraints. Much (and gallons per ton) would produce commercial (Thermal) (about $5 to $7 per MMBtu). possibly all) of generated gas 100's of TCF of gas. projects. would be used to produce heat energy in production.

Nine plants are High costs of proven technology, Aboveground planned, and will Significant economies of scale. risks of new technology, high initial 0.06 TCF Great Coal Thousands of TCF produce more Large-scale plants are in $7.60 to costs and long cost recovery Plains Plant Gasification than 400 Bcf per $9 per MMBtu range. period. Significant cost increase is year. possible under GHG constraints.

Significant economies of project Concerns about ground water Small amount scale and of coal-seam thickness. contamination will need to be Underground associated with Large-scale projects might be in addressed. Risk of immature Coal Thousands of TCF none pilot or small $5.60 to $6.30 per MMBtu range. technology, high initial costs and Gasification commercial Cost could be higher if significant long cost recovery period. projects. investment in water treatment or Significant cost increase is site mitigation were needed. possible under GHG constraints. 800 Bcf of High energy prices and concerns 150 bcf methane methane is about GHG emissions are likely to 1,600 to 1,800 operating (300 bcf raw annual potential Cost of capture of raw gas is lead to more capture of LFG, but landfills in the U.S. landfill gas) used if all best sites about $3 per MMBtu. use as low-Btu onsite fuel may for energy in 2004 are used for often be the most economic energy choice. 0.8 TCF per year of methane is Digesters for dairy farms have High energy prices and concerns potential in US from all cattle. 10's of Bcf per costs of $10.00 to $26.00 per about air pollution, odors and GHG For Canada potential from year in US are Approximately 2 MMBtu on net basis (accounting emissions are likely to lead to more cattle is 0.1 Tcf methane per likely. Legislated Biogas bcf per year at for any fuel used to heat digester). capture of agricultural and water- year. Wastewater annual GHG limits farms For warmer climates, costs might treatment . However, use potential is 0.3 Tcf of methane would boost use be in $6.50 to $19.00 per MMBtu as low-Btu onsite fuel may often be for US and 0.03 Tcf for further. range. the most economic choice. Canada. Considerable uncertainty exists Hypothetical cost examples about characteristics of resource suggest that the best Arctic and its producibility. Only a small 303,000 TCF in place in U.S. resources might be producible for portion of gas-in-place should be Gas Hydrates with thousands of TCF in better none Very little, if any $2 to $8 per MMBtu at the expected to be target for reservoirs wellhead. Best deepwater GOM production. Arctic hydrates resources might have costs of $13 production to be limited by lack of to $24 per MMBtu. gas pipeline transportation to markets.

19 CoalbedMethane CoalbedmethaneproductionintheLower-48in2007was1.7Tcf,andinWesternCanadawas 0.2Tcf.ThelargestvolumesofLower-48coalbedmethaneareproducedintheSanJuanBasinin NewMexicoandColoradoandthePowderRiverBasininWyoming.ICFforecaststhatby2020, U.S.coalbedmethaneproductionwillbe2TcfperyearandCanadianproductionwillbe0.5Tcf peryear.Environmentalissuesincludingproducedwaterqualityanddisposalandwelldensityin theU.S.andCanadaarelikelytohaveimpactsonfuturedevelopment.Thisresourceis characterizedbyawiderangeofresourcecosts,spanningarangeoflessthan$1.00perMMBtuto $7.00ormore,withanaveragein2007of$4.20perMMBtu.(SeeSection7foradetailed discussionofourapproachtoestimatingresourcecosts).

GasShales WiththetremendoussuccessoftheBarnett,Fayetteville,andWoodfordShalesintheU.S.,thegas shaleresourcebasewillplayamajorroleinfuturenaturalgasproduction.Recentannouncements ofemergingplaysinAppalachia,NorthernLouisiana,BritishColumbiaandSouthTexasindicatethe widespreadpotential.ThecurrentICFresourceassessmentis385Tcfofrecoverablenaturalgasin theU.S.and131TcfinCanada.Productionin2007was1.5TcfintheU.S.,withnodocumented productioninCanada.Ourforecastisforapproximately4.8TcfofU.S.shalegasproductionby 2020,and0.5TcfofCanadianshalegasproduction.Theaverageresourcecostin2007was about$5perMMbtu.Emergingshaleshaveconsiderablegeologicvariabilityanduncertainty.In addition,wateruseimpacts,environmentalconcernsrelatedtothenumberofwells,and infrastructurerestrictionsandrequirementswillallbesignificantfactors,especiallyinareaswith littlehistoricaloilandgasdevelopment.

TightGas ThetightgasresourcebaseinboththeU.S.andCanadaistremendous,andiscurrentlyassessed byICFat240Tcf,ofwhich174TcfistheU.S..CurrentU.S.productionis5.9Tcfperyearwhile Canadianproductionisestimatedtobe1.3Tcfperyear.MostoftheU.S.developmentis occurringintheRockiesandEastTexas.ICFforecaststhattightgaswillaccountfor9.2TcfofU.S. productionand1.4TcfofCanadianproductionby2020.Aswiththecoalbedmethaneresource, theICFforecastaccountsforsomerestrictedaccessandthecostimpactofenvironmental regulations.Tightgashasawiderangeofcosts,andthe2007averagecostwasabout$5.90per MMBtu,witharangeofabout$3.00to$15.00perMMBtu.

GasfromOilShales(HorizontalDrilling) Inadditiontogasshaledeposits,oilshaledepositscontainingassociatednaturalgasarenowbeing developedintheU.S.Thistypeofoilshaleiscategorizedhereas“horizontaldrilling”oilshaleto differentiateitfromthemoreunconventionaloilshalesuchasthatinwesternColoradothat requiresheatingtorecovertheoil.IntheWillistonBasinofNorthDakotaandMontana,operators areusinghorizontaldrillingtotaptheBakkenOilShale.Thisplaywasassessedearlierthisyearby theU.S.GeologicalSurvey(USGS)at3.65billionbarrelsofoiland1.85Tcfofassociatedgas.A similarplayisunderwayintheoillegoftheBarnettShale.Resourcecostsforgasfromoilshale usinghorizontaldrillingareapproximately$31perbarrelofoilequivalentor$5.30perMMBtu.

20 GasfromOilShales(ThermalMethods) MostoftheworldwideoilshaleresourceisfoundintheU.S.TheU.S.in-placeoilshaleresourceis approximately2trillionbarrels. 1Ofthisamount,approximately1.5trillionbarrels(witharichness ofgreaterthan10gallonspertonofshale)isintheGreenRiverformationofColorado,Utah,and Wyoming,andabout200billionbarrelsisintheEasternU.S.intheAppalachianShale.

Thermalproductionofthe750billionbarrelsofrichshaledepositswouldproducehundredsofTcf ofgas.Resourcecostsforrichshalesareestimatedtobeintherangeof$28to$41perbarrelof oilequivalentorabout$5to$7perMMBtu.However,muchifnotallofthegasproducedmaybe usedtoproduceheatforthermalconversion.Significantenvironmentalandregulatoryhurdles wouldneedtobeovercometodevelopthisresource.

AbovegroundCoalGasification Gasificationsystemsconvertcoalorothersolidorliquidfeedstockssuchaspetroleumcokeor heavyoilsintoagaseoussyntheticfuel.Themostwidelyusedtypeofgasifieristhesteam-oxygen typethatproducesasyntheticgaswhichiscomposedpredominatelyofhydrogen(H2)andcarbon monoxide(CO).Theonlycommercialcoalgasificationplantofthiskindmakingmethaneinthe U.S.isofthistype.ItistheDakotaGasificationPlantinBeulahNorthDakota,whichusesasteam- oxygengasifier. Theconversionofshorttonsofcoaltomethaneiscalculatedonanenergybasis.Assuming10,000 Btu/lbofcoalasminedat60%thermalconversionefficiency,about12,000standardcubicfeetof methaneisproducedfromeachshorttonofbituminouscoal. TheavailableresourcebaseforNorthAmericaisinthethousandsofTcf.Largescaleplantswould havethemostfavorableeconomics,generallyinarangeof$7.60to$9perMMBtu.Nineplanned plantswithatotaloutputofover400billioncubicfeet(Bcf)peryearareidentifiedinthisreport. Significantenvironmentalissuesincludecoalminingissuesrelatedtosurfacedisturbance,water issues,andgreenhousegasemissions.Greenhousegaslegislationcouldresultinsignificantcost increases. UndergroundCoalGasification Undergroundcoalgasificationisatechnologytoconvertenergyinundergroundcoaltoa combustiblegasthatcanbeusedforpowergenerationandasafeedstockforrefinedfuelsand chemicals.Theprocessinvolvesdrillingairoroxygeninjectionwellsandgasproductionwells.The coalseamreactswithoxygenorairtoproducearelativelylowquality,combustiblegas.Theraw gasstreamcontainsmethane,carbonmonoxide,hydrogen,andcarbondioxide,alongwithother components.TheUCGprocessishaltedwheninjectionofairoroxygenceases. TheavailableresourcebaseforNorthAmericaisinthethousandsofTcf.Largescaleprojectsare expectedtohavethebesteconomics,generallyintherangeof$5.60to$6.30perMMBtu.Costs couldbemuchhigher,dependingontheneedforstricterwatertreatmentorsitemitigation. Greenhousegaslegislationcouldresultinsignificantcostincreases. LandfillGas 1SouthernStatesEnergyBoard,2006,“AmericanEnergySecurity,”July,2006.

21 Landfillgasisgeneratedbythedecompositionoforganicwasteinanaerobic(oxygen-deprived) conditionsatmunicipalsolidwastedisposalfacilities.Ofallthemanmadesourcesofmethane emissionsintheU.S.,landfillsaccountforthemostgenerationfromasinglesourcecategory—25 percentofthetotalin2004.Besidesthecompositionofthewasteitself,theamountofmethane generatedbyalandfilloveritslifetimeisdependentuponthequantityandmoisturecontentofthe wasteaswellasthedesignandmanagementpracticesofthefacility.

Over800BcfoflandfillmethanewillbegeneratedinU.S.landfillsby2020.About150Bcfof landfillmethanewasusedforenergyin2004.Costofcaptureoftherawgasisabout$3per MMBtu.Useofthisenergyasalow-Btuon-sitefueltogenerateelectricitymaybethebest economicchoiceinmostcases.

Biogas Agriculturalbiogasisthegenerationofmethanethroughtheanaerobicdigestionofagricultural byproducts.Thereisgrowinginterestinbiogasforseveralreasons.First,farmoperatorsalready needtodisposeofmanureandanaerobicdigestionisonemethodaddressingdisposal.Second, combustionofbiogasisawayofreducingemissionsofmethane,apotentgreenhousegas.Third, biogasisclassifiedasarenewablefuel,andcanbeusedtomeetrenewablemandates.Inthepast, thefocushasbeenonusingbiogasforon-sitepowergeneration.Morerecently,developersare startingtocleanupthegasandsupplyittoend-usecustomersviagaspipelines.

PotentialbiogasmethaneproductionfromU.S.cattleis800BcfperyearandfromCanadathe potentialis100Bcfperyear.Wastewaterbiogashasthepotentialtoproduce300Bcfperyearof gasintheU.S.and30BcfinCanada.By2020,itislikelyNorthAmericawillseetheuseofonlya smallfractionofthisresource,estimatedtobetensofBcfperyearofgasproduction.Biogas digestersfordairyfarmshavecostsintherangeof$6.50perMMBtu(lowendforwarmclimates, wherelittleornoheatingofthedigestersisneeded)to$26perMMBtu.

GasHydrates Methanehydratesareice-likesolidsinwhichmethanemoleculesaretrappedinwatermoleculesin acage-likestructurecalledaclathrate.Theyarefoundindeepwaterandarcticsettings.Thetotal assessedin-placepotentialforgashydratesworldwideisapproximately700,000Tcfwithawide rangeofuncertainty.(Notethatin-placeresourcesrepresentthetotalamountofmethanepresent andaremuchlargerthanrecoverableresources).TheU.S.assessedin-placeresourceisabout 300,000Tcf.Ofthatamount,about21,000TcfisintheGulfofMexico.Thereisnocurrent estimateofpotentialtechnicaloreconomicrecoveryandthereisnocommercialproduction worldwide.Duetotheearlystageofresearch,verylittleifanycommercialnaturalgashydrate productionisexpectedby2020.

ICFhasdevelopedseveralhypotheticalcostscenariostoestimatetheresourcecostsforhydrates. Thebestarcticresourcesmaybeeconomicat$2to$5perMMBtuatthewellhead,whilethebest deepwaterresourcesmaybeeconomicintherangeof$11to$19perMMBtu.Arctichydrate developmentwillbelimitedornon-existentuntilthereisanaturalgaspipelinetotransportthegas tomarket.

22 1.7 Conclusions Highernaturalgaspricesandtechnologicaladvanceshaveledtoincreasingunconventionalgas productionintheU.S.andCanada.Theresourcebaseandeconomicanalysespresentedinthis reportsuggestthatthistrendwillcontinueinthefuture,andthatby2020,69percentofU.S.gas productionand43percentofCanadiangasproductionwillbefromunconventionalsources. Approximately300,000unconventionalgaswellswillhavetobedrilledtoachievethegas productionforecast.Thisrepresentsanoutlayof$560billionforunconventionaldrillingand completionandothercapitalcosts.

Inadditiontotightgas,coalbedmethane,andshalegas,thereareseveralotherformsofpotential unconventionalgasproduction.Abovegroundcoalgasificationandlandfillgascollectionare expectedtocontributesignificantlyby2020,whileotherformsofunconventionalgaswilllikely experiencecommercialproductiononasmallscale.

Theresourcebaseofnaturalgashydratesistremendous,althoughnocommercialproductionhas beenestablished.Researchcontinuesintheareaofarcticanddeepwaterhydrates.

Potentialimpedimentstotheproductionforecastshownhereincludelandaccess,wateruseand disposal,andwellpermittingdelays.Whilesuchfactorshavebeenaccountedforinthemodeland resourcecostestimates,itisneverthelessdifficulttoquantifytheirimpact.

The2008creditcrisisandoilandnaturalgaspricedeclinesmayleadtoreductionsindrilling programsplannedbyproducers.However,thelong-termneedforenergyintheU.S.andCanada shouldbestrongenoughtosupportthefuturelevelsofgasproductionpresentedhere,albeitona possiblyslowerpace.

23 Thispageintentionallyblank.

24

2 INTRODUCTION

Developmentsinhorizontaldrilling,hydraulicfracturing,andtheemergenceofnumerousshalegas andtightgasplayshavedramaticallychangedthenatureofNorthAmericannaturalgasproduction potentialoverthepastdecade.Incontrasttorecentyearsofrelativelyunchangedproduction, U.S.naturalgasproductionisnowincreasing,primarilyasaresultofonshoreunconventional naturalgas.Expansionofunconventionalnaturalgasproductionhasalreadyhadalargeimpacton thenaturalgastransportationandprocessingsectorsoftheindustry.Examplesincludethe expansioninrecentyearsofgaspipelinesystemscarryinggasproductionfromtheBarnettShalein theFortWorthBasin,theBossiertightsandinEastTexas,andthetightgasandcoalbedmethane basinsoftheRockies.Shouldproductionfromshalegasandtightgasachievethepotential forecasthere,additionallargepipelinecapacityadditionswillberequiredincomingdecades.

Long-TermHistoryofGasDevelopmentintheU.S. Throughmostofitshistory,theU.S.oilandnaturalgasindustryfocusedondevelopingresources inhighpermeabilityrocksinwell-definedtraps.These“conventional”fieldswerecharacterizedby thepresenceofcontactsbetweennaturalgas,oil,andwater.Intheearlydecades,surfacegeology wasoftenusedtolocatefields.Later,advancesingeophysicaltechniquesincludinggravityand seismicdata,aswellasadvancesinwellloggingandothertechnologies,wereusedtolocatefields.

Inrecentdecades,widespreaduseofhighresolutiontwo-dimensional(2D)aswellasthree- dimentional(3D)seismicallowedcontinuedsuccessinconventionalplaysandprovincessuchasthe GulfCoast.However,throughtimeandwiththecompletionofthousandsofnaturalgaswells,it becameapparentthat,withtheexceptionofnewprovincessuchasthedeepwaterGulfofMexico andtheultra-deepshelf,mostconventionalU.S.playswerebecomingrelativelymature,asnew discoverieswerebecomingsmaller.

Inparallelwiththislong-termemphasisonconventionalexplorationandproduction,theU.S.hasa verylonghistoryofunconventionalgasproduction.NorthAmericahasvastdepositsofin-place unconventionalnaturalgasresourcesintheformoftightgas,coalbedmethane,andshalegas.

ShalegasproductionintheU.S.datestothe1800swiththeearlydevelopmentoftheAppalachian DevonianShaleinWestVirginia,,PennsylvaniaandNewYork.Thiseventuallyinvolved thedrillingofthousandsofshallowlowproductivityverticalwellswhoseproductioninmanycases wasunrecorded.Thewellswereoftenstimulatedwithexplosives.Thelackofasignificantpipeline

25 systemmeantthatthenaturalgaswasusedlocally.Appalachianshalegasproductionfromthese lowvolumewellscontinuestothepresentday.

The1980ssawthedevelopmentoftheBasinAntrimShale.Thiswasalsothetimeofthe initialdevelopmentoftheBarnettShaleintheFortWorthBasinofNorthTexas–aplaythatwasto expandinto,bymostdefinitions,thelargestandmostprolificnaturalgasplayinU.S.history.

TightgasproductionintheU.S.datestothe1940swiththedevelopmentoftheSanJuanBasinin northwesternNewMexicoandsouthwesternColorado.Tightgasreservoirswerealsodeveloped startinginthe1950sand1960sinAppalachia.

CoalbedmethaneproductionintheU.S.beganinasignificantwayinthe1980swiththeFruitland coalbedsoftheSanJuanBasininNewMexicoandColorado.Coalbedmethaneproductioninthe SanJuanincreasedrapidlyinsubsequentyears,reaching2Bcfperday(Bcfd)by1995.The WarriorBasincoalbedmethaneproductionalsostartedinthe1980sandsawmore modestgrowthtoabout300millioncubicfeetperday(MMcfd).Thencamethedevelopmentof thePowderRiverBasinineasternWyoming.Productionfromthatplaystartedinthemid-1990s andachievedoneBcfdby2003.Coalbedmethaneproductionalsostartedinseveralyears agoandproductionnowexceeds650MMcfd.

MoreRecentDevelopments Gasresourcesmaybeviewedasa“resourcepyramid.”Theconceptofthe“resourcepyramid”is thatthemajorityofnaturalresourcesarecontainedinlowconcentrationsorpoorrockquality.The apexofthepyramidisthelowcost,highqualitydepositsthataregenerallyproducedfirst.In general,itwasthesehigherqualityportionsoftheresourcepyramidthatweredevelopedinthe earlyhistoryoftheindustry.Toobtainproductionfromlowqualityrock,itisnecessarytohave improvedtechnologyandsufficientwellheadrevenuetodeveloptheresourceseconomically.

Thekeystounlockingthisgasincludehorizontalanddirectionaldrillingandadvancedmulti-stage fracturingtechnology.Advancedseismicdataarealsocriticalinmanyplays,especiallythosewith morecomplexgeology.KeyareasofrecentunconventionalproductiongrowthintheU.S.include theRockiestightgasandcoalbedmethane,EastTexastightgas,andNorthTexasandtheMid- Continentshalegas.

NorthAmericacurrentlyhasthreelarge-scale,activeshalegasplayswhereproductionisrapidly increasing.ThesearetheBarnettShaleofNorthTexas,andtheFayettevilleShaleandWoodford ShaleofandeasternOklahoma.NaturalgasproductionfromtheBarnettShaleinTexas hasgrownveryrapidly,withayear-end2007rateof2.9Bcfdandacurrentrateofapproximately 3.5Bcfd.Itisexpectedthatproductionfromthisplaywillcontinuetoincreasetoalevelof5Bcfd ormore,representing8to10percentofU.S.naturalgasproductionby2020.

Theyear2008hasbeenalandmarkyearfortheemergenceofNorthAmericanshalegasplays. ProducershaveannouncedmajornewhorizontaldrillingplaysintheMarcellusandHuronShalesin theAppalachianBasin,theUticaShaleineasternCanada,theHaynesvilleShaleinLouisianaand EastTexas,andtheMontneyandMuskwaShalesinBritishColumbia.Thelocationofcurrentand emergingU.S.Lower-48shaleplaysisshownin Figure4 .

26

Figure4ShaleGasBasinsoftheLower-48. Source:ModifiedfromSchlumbergerpresentation,2005 2

2Schlumberger,2005,“ShaleGas,”companywhitepaper http://www.slb.com/media/services/solutions/reservoir/shale_gas.pdf

27 Thispageintentionallyblank.

28

3 DATASOURCES

Thefollowingsourcesofinformationwereusedtopreparethisreport:

ProductionandDrillingData TheLassercommercialwelllevelgasproductiondatabasewasthemainsourceofgaswell productioninformation.ICFprocessingofthedataallowsanalysisofcoalbedmethane,tightgas, andshalegasproductionbybasinandformation.Thedatabasehasalsobeenprocessedto determinethenumberofannualproducingwellsbybasinandplay.Productionanddrillingactivity datawerealsoobtainedfromstatewebsitesandcompanypresentations. Overthepastfifteenyears,ICFhasdevelopedandmaintaineddatabasesofunconventionalnatural gasproductionintheU.S.Muchoftheoriginalworkwasdoneduringthe1990sfortheGas ResearchInstitute. 3Thecurrentstudyexpandsuponthatworktoidentifyunconventionalnatural gaswellsandproductionthrough2007. CompanyActivityData Informationontheindividualproducingfirmscomesprimarilyfrom2008investorpresentations. Thiswasaugmentedwithvariousindustrytradepublicationarticles. ResourceAssessments Severalgovernmentandindustrysponsoredorganizationspublishresourceassessments.Inthe U.S.theU.S.GeologicalSurvey(USGS)hasanactive,ongoingassessmenteffortthatincludesthe majorformsofunconventionalnaturalgas. 4Theyhavealsoassessedresourcessuchasmethane hydrates.TheMineralsManagementService(MMS)periodicallyassessestheconventionaloffshore resourcesoftheU.S.Theyrecentlycompletedapreliminaryassessmentofthenaturalgashydrate potentialinthedeepwaterGulfofMexico,andthoseresults,aswellasthehydrateassessmentof theUSGS,arepresented. OtherU.S.groupscarryingoutresourceworkincludetheDepartmentofEnergy,thePotentialGas Committee,andindustryorganizationsincludingtheNationalPetroleumCouncil.In2008,a

3GasResearchInstitute,1999,“UnconventionalGasField,Reservoir,andCompletionAnalysisofthe ContinentalUnitedStates,”GasTechnologyInstitute(formerlyGRI),Chicago,IL,ReportGRI98/0364.1. 4USGS,2008,NationalOilandgasAssessment, http://energy.cr.usgs.gov/oilgas/noga/

29 reportwaspublishedbytheAmericanCleanSkiesFoundation,whichassessedthepotentialfor shalegasproductionintheU.S. 5 InCanada,resourceassessmentsarepublishedbytheNationalEnergyBoard,provincialenergy agencies,andtheCanadianGasPotentialCommittee.OtherCanadianorganizationsincludethe CanadianAssociationofPetroleumProducersandtheCanadianSocietyforUnconventionalGas. SpecificreportreferencesareprovidedwiththetablesinSection5ofthisreport. ICFhascarriedoutvolumetricresourcestudiesonseveralofthemostactiveshalegasplaysinthe U.S.Theseincludeestimatesoftotalgas-in-place,drillingdepth,spacing,andrecoveryperwell. WellRecoveryandResourceCosts AdataprocessingmethodwasappliedtotheLasserwelllevelproductiondatatoestimaterecovery perwellforthemajorunconventionalplays.ICFevaluatedtheproductionhistorybywell “vintage”oryearofcompletion.Eachvintageofwellswasevaluatedusingstatisticalmethodsto evaluatetheproductionratedeclinethroughtime.Thisinformationwasextrapolatedtoestimate futureproductionfromeachvintage.Thepastproductionplustheestimatedfutureproduction equalstheestimatedultimaterecoveryforthatvintageofwells. Inaddition,themajorproducersofshalegas,tightgas,andcoalbedmethanehavepublished informationontypicalwellrecoveriesandeconomics.Thepublisheddatawerecomparedtothe statisticalinformationtodeterminethebestwellrecoverytouseintheeconomicanalysis. Afterestimatingultimaterecoveryperwell,theICFPlayLevelCostModel(PLCM)wasusedto evaluatethedevelopmenteconomicsofapproximately400plays.Thismodelestimatesfindingand developmentcostsandusesadiscountedcashflowapproachtodetermineresourcecosts (minimumacceptablesellingpriceatthewellhead)foreachplay.

5AmericanCleanSkiesFoundation,2008, http://www.cleanskies.org/

30

4 NORTHAMERICANNATURALGAS PRODUCTION,RESERVES,AND DRILLINGACTIVITY

4.1 NaturalGasProductionTrends Since1940,theU.S.hasproducedapproximately1,050Tcfofnaturalgas.6Figure5showsthat naturalgasproductionincreasedrapidlyfromthe1940sthroughthe1960sandpeakedin1973at almost22Tcf.Productionthenfellprettysteadilyuntilbottomingin1986at16Tcf.Thiswas followedbyaperiodofmoderateproductiongrowthandthenaflatteningofproductionoverthe pastdecade.The2007productionratewasapproximately19.2Tcf,asignificantincreaseoverthe rateof18.5Tcfin2006. Figure5U.S.DryNaturalGasProduction1940-2007

25

20

15

10 Tcf per Year

5

0

0 5 0 5 0 5 0 5 0 5 0 5 0 5

4 4 5 5 6 6 7 7 8 8 9 9 0 0 Year

6Thisfigureisestimatedbaseduponanalysisoriginallydoneforthe2003NationalPetroleumCouncilNorth Americangasstudy,withtheadditionofrecentyearsofproduction.Variouspublishedsourcesincluding reportsfromtheAmericanPetroleumInstitutewereusedforproductiondataolderthan1979whenthe DepartmentofEnergybeganreportingU.S.production.

31 Figure6showsrecentU.S.naturalgasproductiontrendsonawet,marketedbasis(asopposedto drygasproduction,whichexcludesgasplantliquidsandisslightlylower).Productionhasdeclined slightlysince2000,buthasincreasedsince2005.Thechartdisplaystotalunconventionalnatural gasproduction(coalbed,shale,andtight)andthepercentageofproductionthatisunconventional. In2007,about9.1Tcfor48percentofU.S.marketedproductionischaracterizedas unconventionalusingourdatabase.(Notethatwhilecoalbedmethaneproductionisgenerally trackedbythestatesandreportedtoDOE,tightgasandshalegasarenotyetbrokenoutby operatorsandreportedtoDOEsotheirvolumesarebasedupontheapproachesanddatasources describedinthisreport.) Figure6Lower-48MarketedNaturalGasProductionand UnconventionalPercentage

25 60%

50% 20

40% 15 Percent 30% Unconventional

10 Tcf per Year perTcf 20%

5 10%

0 0% 2000 2001 2002 2003 2004 2005 2006 2007 L-48 Total Unconventional % Unconventional

32

4.2 ProductionbyResourceType In2007,Lower-48unconventionalgasproductionwas9.1Tcfperyear.Thisconsistedof5.9Tcf oftightgas,1.7Tcfofcoalbedmethane,and1.5Tcfofshalegas.Canadianunconventionalgas productionwas1.58Tcf,andconsistedof1.34Tcfoftightgasand0.24Tcfofcoalbedmethane. TherewasnoreportedshalegasproductioninCanada.

Figure7showsthegrowthinunconventionalproductionthathasoccurredsince1970.During theindicatedperiod,tightgasconstitutedthemajorityofgrowthinunconventionalgas.Coalbed methaneexperiencedaperiodofgrowthinthe1980sand1990sbuthasgenerallyflattenedsince then.Shalegasproductionwasrelativelyconstantfordecadesuntiltheadventofrecentplays suchastheBarnettShaleintheFortWorthBasin. Figure7Lower-48UnconventionalNaturalGasProductionSince1970

10,000

9,000

8,000

7,000

6,000 Coalbed 5,000 Shale Tight 4,000 Bcf per Year per Bcf

3,000

2,000

1,000

0

8 4 76 80 84 8 92 96 00 0 1970 1972 1974 19 1978 19 1982 19 1986 19 1990 19 1994 19 1998 20 2002 20 2006

33 Figure8isadetailoftightgasproductionbyarea.Thechartillustratesthedramaticgrowthinthe RockiesandEastTexasinrecentyears.Priortothisperiod,therewasasignificantincreaseintight productionintheTexasportionoftheGulfCoast.Theearlyyearsoftightgasproductionwere dominatedbytheSanJuanBasin.

Figure8Lower-48TightGasProductionbyRegion

7,000

6,000

5,000 Permian (W. TX) Mid-Continent

4,000 San Juan Rockies Williston (MT + ND) 3,000 Gulf Coast Bcf perYear Bcf East TX 2,000 Eastern U.S.

1,000

0

6 8 74 76 78 80 90 92 94 9 9 9 9 9 1970 1972 19 19 19 19 1982 1984 1986 1988 1 1 1 19 19 2000 2002 2004 2006

34 Figure9showsthetrendsinshalegasproductionbyregion.TheDevonianShaleofthe AppalachianBasinhasproducedatabout100Bcfperyearinrecentdecades.Theproductionis estimatedbecauseoflackofdetailedreportingintheregion.TheAntrimandNewAlbanyshales intheMichiganandIllinoisBasins,respectively,experiencedasurgeinactivityinthe1990s.The recentdramaticgrowthoftheBarnettShaleinNorthTexasisillustrated.Mostofthegrowthinthe BarnettandtheLower-48asawholehasbeensince2000.Onthescaleofthischart,the productionfromtheFayettevilleandWoodfordshalesintheMid-Continentisshowntobe emerginginthelastfewyears.

Figure9Lower-48ShaleGasProductionbyRegion

1,800

1,600

1,400

1,200 Mid-Continent 1,000 North TX

800 Michigan -IL Eastern U.S. Bcf per Year per Bcf 600

400

200

0

2 4 6 4 6 2 4 6 8 4 6 78 97 9 98 98 99 99 00 1970 197 197 1 1 1980 1982 1 1 1988 1990 199 199 1 1 2000 2002 200 2

35 Figure10 showsthetrendsincoalbedmethaneproductionbyregion.Initialcoalbedmethane productionwasfromtheSanJuanBasininnorthwesternNewMexicoandsouthwesternColorado, aswellastheWarriorBasininAlabama.SanJuanFruitlandcoalbedmethanesurgedtoover900 Bcfperyear.PowderRiverBasincoalbedmethaneproductiongrewrapidlyinthe1990stoachieve acurrentproductionrateofover400Bcfperyear.SignificantRockiescoalbedproductionisfound intheUintaBasinofUtah.

Figure10Lower-48CoalbedGasProductionbyRegion

1,800

1,600

1,400

1,200 Mid-Continent 1,000 San Juan Rockies 800 Warrior (AL)

Bcf per Year per Bcf Eastern U.S. 600

400

200

0

2 4 6 4 6 2 4 6 8 4 6 78 97 9 98 98 99 99 00 1970 197 197 1 1 1980 1982 1 1 1988 1990 199 199 1 1 2000 2002 200 2

36

4.3 NaturalGasReservesandReserveAdditions U.S.naturaldrygasproduction(gasproductionaftertheremovalofimpuritiesandnaturalgas plantliquids)hasbeenalmostconstantsince2000,asshownin Table2.Provedreservesshowa differenttrend,witha27%increasesince2002. Provedreserves aredefinedbytheEnergy InformationAdministrationas:

“Theestimatedquantitiesofnaturalgaswhichanalysisofgeologicalandengineeringdata demonstratewithreasonablecertaintytoberecoverableinfutureyearsfromknown reservoirsunderexistingeconomicandoperatingconditions.” 7

Annualnaturalgasreserveadditions haveincreasedsubstantially. Reserveadditionsaredefinedby EIAas:

“Adjustments,netrevisions,extensionstooldreservoirs,newreservoirdiscoveriesinold fields,andnewfielddiscoveries.”

Thegreatmajorityofthesenewreservesareinunconventionalgasformations.Typically, unconventionalgaswellshavehigher“reservetoproductionratios”meaningthattheywill produceformanyyears.Thisisreflectedinthenationaltrendofincreasinggasreserveadditions andyear-endreserves.Althoughnotshownonthetable,therehasalsobeenanincreaseinthe “non-producing”portionofprovedreserves.(Mostreservesare“producing”reserves,butsome reservesare“non-producing.”)Thistrendalsoresultsfrommoredrillinginunconventional reservoirs,becauseofthenatureofdevelopmentofthoseresources.

Table2U.S.Lower-48DryNaturalGasProductionandReserves Trillion Cubic Feet EIA Form-23 Reports

Starting Net Ending Proved Reserve Proved Year Reserves Production Additions Reserves 2000 158 18.7 28.7 168 2001 168 19.3 26.3 175 2002 175 18.9 21.9 178 2003 178 18.9 21.9 181 2004 181 18.7 21.7 184 2005 184 18.0 30.0 196 2006 196 18.1 23.1 201 2007 201 19.1 44.1 226

7U.S.EnergyInformationAdministration,2008,“U.S.CrudeOil,NaturalGas,andNaturalGasLiquids Reserves–2007AnnualReport,”October,2008.

37

4.4 DrillingActivity–U.S.andCanada TherehavebeensomeverysignificanttrendsinNorthAmericandrillingactivity,mostofwhich reflecttheincreasedemphasisonunconventionalnaturalgas. Figure11showsthetrendsinU.S. activedrillingrigs,asreportedbyBakerHughes.8Thechartdisplaystotaloilandgasdrilling activitybrokenoutbythenumberofdrillingrigsutilizing“vertical,”“directional,”or“horizontal” drillingtechniques.(NodetaileddataareprovidedbyBaker-Hughesforjustgasdrilling).The 1990ssawrelativelylowrigactivitylevels,andthisperiodwasdominatedbyverticaldrilling. Startingabout2000,thedrillingactivitypickedup,againdominatedbyverticaldrilling.Inrecent years,overalldrillinghasincreasedgreatly,largelyasaresultofhorizontalanddirectionaldrilling techniques.Theincreasedhorizontaldrillingisassociatedprimarilywithshalegasactivity.

Figure11U.S.DrillingActivitybyType

2,000

1,800

1,600

1,400

1,200 Horizontal 1,000 Directional Rigs

800 Vertical

600

400

200

0 1/4/1991 1/4/1992 1/4/1993 1/4/1994 1/4/1995 1/4/1996 1/4/1997 1/4/1998 1/4/1999 1/4/2000 1/4/2001 1/4/2002 1/4/2003 1/4/2004 1/4/2005 1/4/2006 1/4/2007 1/4/2008

8BakerHughes,2008, http://www.bakerhughesdirect.com

38

Table3presentsasummaryofgascompletionactivityandtheroleofunconventionalnaturalgas completionsintheU.S.Gascompletionstatisticsrecordthenumberofwellscompletedasgas wells.(Notethatthisdataisderivedfromcountsofnewproducingwells,whichisnotidenticalto annualnaturalgascompletionsbycompletiondate).Thebottomportionofthetableshowsthat unconventionaldrillingin2007represented25,000outof31,000gaswellsdrilled.Themost activeplaysincludetheBarnettShale,theEastTexasBossier,andthePowderRiverBasin.

Table3UnconventionalWellCompletionActivityintheU.S.

(Play totals based on new producing well counts; Not identical to completed wells; includes estimates.)

Shale Plays Total in U.S. Ft. Worth Arkoma Arkoma Michigan Other Shale Barnett Fayetteville Woodford Antrim Plays Total 2004 815 13 38 302 1,060 2,228 2005 1,001 48 62 441 1,272 2,824 2006 1,393 116 126 452 1,147 3,234 2007 1,285 432 208 335 1,279 3,539

Tight Plays Total Green River Uinta San Juan E. Texas Texas in U.S. Jonah- Piceance Natural Dakota/ Bossier/ Denver Dist. 4 Other Tight Pinedale Mesaverde Buttes Mesaverde Cot.Valley Wattenberg Wilcox Plays Total 2004 245 433 234 605 1,146 219 162 8,628 11,672 2005 205 550 297 750 1,347 726 249 10,738 14,862 2006 250 600 360 800 1,491 556 308 12,609 16,974 2007 300 650 347 800 1,177 442 366 12,386 16,468

Coalbed Methane Plays Total in U.S. Powder Other Coalbed River Uinta San Juan Raton Plays Total 2004 1,826 75 330 300 2,054 4,585 2005 1,750 80 400 350 2,201 4,781 2006 1,900 90 450 450 2,069 4,959 2007 1,700 100 450 450 2,438 5,138

U.S. Totals and Unconventional Component

U.S. U.S. U.S. Total Unconventional Conventional Gas Wells Gas Wells Gas Wells 2004 24,400 18,485 5,915 2005 27,600 22,467 5,133 2006 30,600 25,167 5,433 2007 30,600 25,145 5,455

39 Table4presentstheactivityintheWesternCanadianSedimentaryBasin.Thesedataarefromthe CanadianAssociationofOilwellDrillingContractors. 9Sincethereisnoprovincialtrackingoftight gasinCanada,theunconventionalcountsshownareforcoalbedmethaneonly.Thecoalbed drillingaloneaccountsforabout25%ofWCSBdrilling.Ifoneweretoincludetheshallowlow permeabilitygasandthedeeptightgas,thepercentagewouldbemuchhigher.Therewassteep declineindrillingactivityin2007.Thisdeclineresultedfromacontinuingshiftawayfrommature conventionalplays.

Table4CoalbedMethaneDrillinginWesternCanada Sources: CAODC for WCSB Total Gas Wells; ERCB for Coalbed Drilling

New New Canadian WCSB Coalbed Wells in Coalbed Methane WCSB Wells Percent 2004 14,641 781 5% 2005 14,434 2,497 17% 2006 14,205 2,499 18% 2007 11,925 3,055 26%

4.5 ExpectedFutureContributionfrom UnconventionalNaturalGas UnconventionalgasisexpectedtoplayagrowingroleinNorthAmericangasproduction.TheICF GasMarketModel(GMM)isusedtoforecastsupplyanddemandutilizingadetailednodal structure.Themodelbalancessupplyanddemandateachnodethroughtheforecast. Assumptionsaboutresources,economicgrowth,oilprices,LNGimports,andotherfactorsare includedintheforecast.

Ananalysisoftheregionalmodelproductionforecastwasconductedforthestudy.Theresults, summarizedin Figure12, showestimatedtightgas,coalbedmethane,shalegas,andconventional naturalgasproductionfortheLower-48andCanadathrough2020.Thechartshowstheexpected declineinconventionalproductioninboththeU.S.andCanada.Tightgasgrowthwilldominatein theU.S.,butshalegasgrowthwillalsobelarge.InCanada,unconventionalgasproduction growthissignificant.Overall,asshownonthechart,NorthAmericanunconventionalgasgrows from42percentto64percentofthetotalthrough2020.

9CAODC,2008, http://www.caodc.ca

40 Figure12ForecastofNorthAmericanNaturalGasProductionbyType

North America

35

30

25

2007 Unconventional 20 10.7 Tcf 2020 42% of total Unconventional 15 18.3 Tcf 64% of total Tcf Tcf perYear 10

5

0 1997 1999 2001 2003 2005 2007 2009 2011 2013 2015 2017 2019

US Conv. US Tight US Coalbed US Shale Can. Conv. Can. Tight Can. Coalbed Can. Shale Followingthischart, Figures13though17depicttheregionaldatabehindtheoverallforecast. TheRockiesforecastisdominatedbytightgasgrowth,whiletheMid-Continentisdominatedby shalegrowth.Rockiesunconventionalproductionwillgrowfrom83percentto94percentofthe total,whileMid-Continentunconventionalproductionwillgrowfrom28percentto72percentof thetotal.TheGulfCoast,whichincludesNorthTexasandEastTexas,willbedominatedbyshale gasandtightgasgrowth.GulfCoastunconventionalproductionwillincreasefrom59percentto 77percentofthetotal.

TheEasternInterior(allareaseastoftheMississippiRiver,includingtheWarriorBasininAlabama) willseeasurgeinshalegasproductionfromtheMarcellusandotherplays,andunconventional productionwillincreasefrom71percentto89percentofthetotal.InWesternCanada,overall productionwilldecline,butunconventionalgaswillgrowfrom25percentto49percentofthe total.ShalegasresourcesinWesternCanadaareverylargebutproductionisforecasttoincrease somewhatmoregraduallyduetohighcostsandseasonaldrillingrestrictions. Table5 presentsthe productionforecastdataintableformat.

41 Figure13ForecastRockiesNaturalGasProduction

Rockies

7

6

5

4 2020 Unconventional 5.7 Tcf 3 2007 Unconventional 94% of total 3.7 Tcf Tcf per Year per Tcf 83% of total 2

1

0 1997 1999 2001 2003 2005 2007 2009 2011 2013 2015 2017 2019

Conventional Tight Coalbed Shale Figure14ForecastMid-ContinentNaturalGasProduction

Midcontinent

4.5

4.0

3.5

3.0 2020 Unconventional 2.5 2.8 Tcf 2007 Unconventional 72% of total 2.0 0.8 Tcf

Tcf per Year 28% of total 1.5

1.0

0.5

0.0 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 Conventional Tight Coalbed Shale

42 Figure15ForecastGulfCoastandEastTexas/ArklaNaturalGas Production

Gulf Coast/ Arkla Onshore

8

7

6 2020 Unconventional 5 5.4 Tcf 2007 Unconventional 77% of total 3.5 Tcf 4 59% of total

3 Tcf perYear

2

1

0 1997 1999 2001 2003 2005 2007 2009 2011 2013 2015 2017 2019 Conventional Tight Coalbed Shale Figure16ForecastEasternInteriorNaturalGasProduction

Eastern Interior U.S.

1.6

1.4

1.2

1.0 2020 Unconventional 1.3 Tcf 2007 Unconventional 0.8 89% of total 0.8 Tcf 71% of total 0.6 Tcf perYear Tcf

0.4

0.2

0.0 1997 1999 2001 2003 2005 2007 2009 2011 2013 2015 2017 2019 Conventional Tight Coalbed Shale

43 Figure17ForecastWesternCanadaNaturalGasProduction

Western Canada

7

6 2007 Unconventional 1.6 Tcf 5 25% of total 2020 Unconventional 4 2.4 Tcf 49% of total 3 Tcf perTcf Year 2

1

0 1997 1999 2001 2003 2005 2007 2009 2011 2013 2015 2017 2019 Conventional Tight Coalbed Shale

44 Table5SummaryofNaturalGasProductionForecast

Tcf per Year Percent Percent 2007-2020 2007 of Total 2020 of Total Change

Lower-48 Tcf % Tcf % Tcf Conventional 9.75 52% 7.25 31% -2.50 Tight 5.92 31% 9.15 40% 3.23 Coalbed 1.65 9% 1.99 9% 0.34 Shale 1.54 8% 4.77 21% 3.23 Total 18.86 100% 23.16 100% 4.30 Unconv. Total 9.11 48% 15.91 69% 6.80

Canada Tcf % Tcf % Tcf Conventional 5.05 76% 3.26 57% -1.79 Tight 1.34 20% 1.37 24% 0.03 Coalbed 0.24 4% 0.52 9% 0.28 Shale 0.00 0% 0.52 9% 0.52 Total 6.63 100% 5.67 100% -0.96 Unconv. Total 1.58 24% 2.41 43% 0.83

North America Tcf % Tcf % Tcf Conventional 14.8 58% 10.51 36% -4.29 Tight 7.26 28% 10.52 36% 3.26 Coalbed 1.89 7% 2.51 9% 0.62 Shale 1.54 6% 5.29 18% 3.75 Total 25.49 100% 28.83 100% 3.34 Unconv. Total 10.69 42% 18.32 64% 7.63 Regional Data Rockies Tcf % Tcf % Tcf Conventional 0.75 17% 0.38 6% -0.37 Tight 2.34 52% 4.08 67% 1.74 Coalbed 1.4 31% 1.59 26% 0.19 Shale 0 0% 0.05 1% 0.05 Total 4.49 100% 6.10 100% 1.61 Unconv. Total 3.74 83% 5.72 94% 1.98 Midcontinent Tcf % Tcf % Tcf Conventional 1.98 73% 1.08 28% -0.90 Tight 0.40 15% 0.71 18% 0.31 Coalbed 0.05 2% 0.13 3% 0.08 Shale 0.30 11% 1.97 51% 1.67 Total 2.73 100% 3.89 100% 1.16 Unconv. Total 0.75 27% 2.81 72% 2.06 Gulf Coast/East Tex. Onshore Tcf % Tcf % Tcf Conventional 2.45 42% 1.65 23% -0.80 Tight 2.49 42% 3.45 49% 0.96 Coalbed 0.00 0% 0.00 0% 0.00 Shale 0.96 16% 1.97 28% 1.01 Total 5.90 100% 7.07 100% 1.17 Unconv. Total 3.45 58% 5.42 77% 1.97 Eastern Interior Tcf % Tcf % Tcf Conventional 0.33 29% 0.17 11% -0.16 Tight 0.32 28% 0.26 18% -0.06 Coalbed 0.20 18% 0.26 18% 0.06 Shale 0.28 25% 0.79 53% 0.51 Total 1.13 100% 1.48 100% 0.35 Unconv. Total 0.80 71% 1.31 89% 0.51 Western Canada Tcf % Tcf % Tcf Conventional 4.87 76% 2.55 51% -2.32 Tight 1.34 21% 1.37 28% 0.03 Coalbed 0.24 4% 0.52 10% 0.28 Shale 0.00 0% 0.52 10% 0.52 Total 6.45 100% 4.96 100% -1.49 Unconv. Total 1.58 24% 2.41 49% 0.83

45 4.6 ImplicationsofForecastforFutureDrilling, IndustryOutlays,andWaterUse Theforecastdiscussedabovewillrequirethedrillingoftensofthousandsofbothconventionaland unconventionalgaswellsthrough2020andbeyond.Itwillrequirelargeoutlaysfordrillingand completion,wellstimulation,andotherupstreamcapitalexpenditures.Demandforwaterusein fracturingoperationswillcontinuetoincrease,anddisposalortreatmentofsuchwaterwillbe required.

In2007,approximately31,000gaswellsweredrilledintheU.S.ICFestimatesthatofthese, approximately25,000wellswereunconventional.Atotalof300,000unconventionalgaswellswill bedrilledbetween2009and2020toachievethegasproductionforecastthrough2020.This representsanoutlayof$560billionfordrillingandcompletioncostsoverthetwelveyearperiod. Whilethisisatremendousoutlaybyindustry,theanalysispresentedhereshowsthattheNorth Americangasmarketwillsupportthisdevelopment.

Artificialstimulationofunconventionalgaswellsrequiresagreatdealofwater.Bothtightgasand shalewellsrequirewaterforfracturestimulation.Ahorizontalshalewellcanrequireupto3.5 milliongallonsofgrosswaterinjectionforfracturestimulation.Totheextentthatwateris recycled,averagenetwateruseisless.DetailsofthisprocessarediscussedinSection5ofthis report.Concernshavebeenraisedaboutthedemandsplaceduponfreshwaterresourcesand aboutdisposalortreatmentofthewater.Ifoneweretoassumetheuseofonemilliongallonson averagepertightgaswellandtwomilliongallonspershalewell,theICFdrillingforecastthrough 2020wouldrequire300billiongallonsofwater.However,actualwaterneedsmaybemuch lower,duetowatertreatmentandrecyclingprogramsandthepossibilityofnewerstimulation technologiesorpracticesthatrequirelesswater.

Wateruseforstimulationhasnotyetbeenamajorimpedimenttoshaleortightgasdevelopment, inmostcases.However,futuredevelopmentmaybesubjecttomorerestrictionsorregulation.For example,theissueisbeingaddressedbythestateofPennsylvania,inpreparationforanexpected largeincreaseinMarcellusShaledrillingactivityinthatstate.Stateregulatorswanttoensurethat wateranddisposalispartoftheoverallstatewellpermittingprocess.

4.7 UnconventionalNaturalGasProduction“Upside” Oneapproachthatcanbeusedtoestimateatheoreticalmaximumrateofnaturalgasproduction fromanunconventionalresourceiscalledthe“twopercent”rule.Inthisapproach,theestimated peakproductionrateisequivalenttotwopercentoftherecoverableresourcewithinaplay.This wouldequateto50yearsofannualproductionatthisrate,butsincethereisarampupandramp downperiod,productionextendsoveraperiodthatisgreaterthan50years.Thissimplerule-of- thumbanalysisindicatesthatrelativetoourcurrentforecastfor2020,thereisanupsidepotential ofroughlyanadditional1.5TcfperyearfortheU.S.and0.7TcfperyearforCanada,basedupon theICFresourcebaseofunconventionalgas.

46

4.8 ComparisonofForecasttoEIAAnnualEnergy Outlook Figure18isacomparisonoftheICFLower-48naturalgasproductionforecastwiththatofthe EIA’s2008AnnualEnergyOutlook. 10 TheEIAforecastforLower-48naturalgasproductionis muchlowerthanICF’sforecast,andproductionpeaksatonly19.3Tcfperyearin2016. Unconventionalnaturalgasproductionincreasesonlyslightly,peakingat9.6Tcfin2018.EIA’s forecastofconventionalproduction(notshown)declinesfrom9.7Tcfin2007to7.9Tcfin2030, whiletheICFforecastdeclinesto6.1Tcfin2030.

AsisdiscussedinSection5,theICFshalegasresourcebaseismuchhigherthanthatofEIA;this likelyaccountsformostofthedifference. Figure18ComparisonofICFLower-48NaturalGasProduction ForecastwithEIA'sAnnualEnergyOutlook

25

ICF Total Lower-48

20 EIA Total Lower-48

15 ICF Unconventional

10 Tcf per Year Tcf

EIA Unconventional

5

0 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030

10 EnergyInformationAdministration,2008,“AnnualEnergyOutlook2008,” http://www.eia.doe.gov/oiaf/aeo/

47 Thispageintentionallyblank.

48

5 TIGHTGAS,SHALEGAS,AND COALBEDMETHANERESOURCES

5.1 PublishedU.S.ResourceEstimates

Theprevioussectionofthisreportpresentedasummaryof provednaturalgasreserves andannual reserveadditions.Inadditiontoprovedreserves,thereareestimatedvolumesofundeveloped recoverablegasresources .Theseareestimatedvolumesofoilandgasthatarenotyetclassifiedas proved butthatareexpectedtoberecoverableorproducibleinthefuture.Thevolumeofsuch undevelopedresourcesisestimatedusingarangeofassessmentmethodologies,dependingupon thenatureoftheresourceanditsstageofdevelopment. SeveralorganizationsintheU.S.assessthevolumeoftechnicallyrecoverableresourcesfromtight gas,shalegas,andcoalbedmethane,aswellasfromfutureconventionalfields.TheUSGSisthe principalorganizationforassessingonshoregasandoilresources.Theyassessremainingoiland gasresourcesattheformationorplaylevel.TheUSGSmaintainsawebsitewiththelatest assessmentsforeachgeologicalbasin. 11 EIAandNationalPetroleumCouncil(NPC)alsopublishassessmentsofunconventionalnaturalgas. TheEIApublishestheAnnualEnergyOutlookthatincludesassumptionsaboutnaturalgassupply andresources. 12 TheNPCpublisheditsmostrecentNorthAmericannaturalgasstudyin2003, whichincludedextensivedocumentationaboutresourcesandactivitytrendsintheU.S.and Canada. 13 AnotherprominentU.S.assessmentgroupisthePotentialGasCommittee,which publishesadetailedassessmenteverytwoyears. 14

11 USGSNationalOilandGasAssessment; http://energy.cr.usgs.gov/oilgas/noga/ 12 U.S.EnergyInformationAdministrationAnnualEnergyOutlook; http://www.eia.doe.gov/oiaf/aeo/ 13 NationalPetroleumCouncilNorthAmericanGasStudy,2003; http://www.npc.org/ 14 U.S.PotentialGasCommittee; http://www.mines.edu/research/pga/

49 Table6isasummaryofLower-48unconventionalgasassessments,includingtheICFassessment. ThefirstthreecolumnsarethepublishedassessmentsoftheUSGS,EIA,andNPC.Thevolumesof technicallyrecoverableunconventionalresourcesintheseassessmentsrangefrom272to511Tcf. ThetotalfortheICFassessmentis624Tcf,andtheprimarydifferenceisshowntobeICF’sshale gasassessmentof385Tcf. Therecentemergenceofnewshaleplaysandrapidtechnologychangeshavemadeitdifficultfor theassessmentgroupstodevelopassessmentsthatreflectcurrentactivity.Forexample,theNPC assessmentwaspublishedin2003butdidnotincludetheArkomaBasinFayettevilleandWoodford shalesbecause,atthetimeofpublication,theseresourceshadnotyetemerged.Ofthesethree publishedassessments,noneevaluatedthehorizontaldrillingpotentialintheMarcellusplayin AppalachiaortheLouisianaHaynesvilleShale. Publishedresourceassessmentsshouldbeviewedwithanawarenessofrapidlyevolvingtechnology andtheemergenceoflargenewplays.Inaddition,formerassessedshaleresourceswerebased uponanassumptionofverticaldrillingandoldercompletiontechnologies.Someoftheassessed shaleresourcesinolderreportsrepresentthelowpressure,shallowpartofashaleplaythatwas developedinpastdecades,asopposedtothedeeper,higherpressureareathatisnowthe developmenttargetforhorizontaldrilling. Table6SummaryofPublishedU.S.UnconventionalNaturalGas ResourceAssessments TCF Lower-48 Recoverable Resources USGS (Various EIA NPC ICF years) 2007 2003 2008

Tight gas 190 304 178 174

Coalbed methane 70 82 59 65

Shale gas 85 125 35 385

Total 345 511 272 624

Sources:

USGS National Oil and Gas Assessment Energy Information Administration: Supporting materials for the 2007 Annual Energy Outlook 2003 National Petroleum Council Gas Study

50

Table7summarizestheICFremainingnaturalgasresourcebasefortheU.S.andCanadaonshore andoffshoreareas,includingbothconventionalandunconventionalgas.Offshoreareasthathave beensubjecttomoratoriaareincluded.Remainingresourcesincludeprovedreserves,reserve appreciation(reserveadditionpotential)inexistingfields,newconventionalfields,tightgas, coalbedmethane,andshalegas.ThetotalremainingresourceintheU.S.andCanadaof2,338 Tcfrepresentsabout94yearsofproductionatthecurrentannualrateofabout25Tcfperyear.

Table7ICFNaturalGasResourceBase Tcf of Recoverable Resources U.S. Lower-48 Alaska Total Canada Total

Remaining proved 196 8 204 58 262 Reserve appreciation and discovered undeveloped 205 36 241 68 309 New conventional fields 503 201 704 152 856 Tight gas 174 0 174 66 240 Coalbed methane 65 57 122 33 155 Shale gas 385 0 385 131 516 Total remaining resources 1,528 302 1,830 508 2,338

Note: Canadian tight gas assumed here to be 30% of new field resources.

51 Table8summarizesthepublishedbasinleveltightgasassessmentsoftheLower-48.Ingeneral terms,thegreatestvolumesofassessedtightgasresourcesareinthenorthernRockies,EastTexas, theSanJuanBasinandAppalachia.However,thequalityofresourcevariesgreatlyandthe comparisoncanbemisleadingbecausethewellproductivitiesintheRockiesandsomeareasofEast Texasaremuchgreaterthaninotherbasins,especiallyinAppalachia.

Aswillbepresentedinalatersection,tightgasisthefocusofanintenselevelofactivityinthe basinsofsouthwesternWyoming(Jonah-Pinedale),northwesternColorado,andnortheasternUtah. EastTexasactivityintheBossierandCottonValleyformationcontinuestoexpandrapidly.Based uponwhathasbeentakingplaceinjustthesetwoareas,thecurrentassessmentsoftightgas potentiallookconservative.Itisunlikelythattheyreflectrecentadvancesinstimulationand completiontechnology. Table8SummaryofLower-48TightGasAssessments

Tcf of Recoverable Resources

2002-08 2007 2003 Region Basin USGS EIA NPC

Appalachia Appalachian 45.38 55.98 34.75

Arkla - East Texas East TX 6.03 31.60 5.86 Ark-La 0.00 0.00 0.00 total 6.03 31.60 5.86

Texas Gulf Onshore Texas Gulf Coast 0.00 14.60 2.61

LA-MS Gulf Coast LA-MS Salt Basins 0.00 0.00 0.00

Rocky Mtn. Foreland Piceance 5.02 24.29 9.70 Uinta 13.81 15.90 13.81 Powder River 0.79 0.00 0.79 Wind River 1.69 19.55 0.00 Green River 80.58 75.42 67.72 Denver 2.08 9.23 2.08 total 103.97 144.39 94.10

San Juan Basin San Juan 26.18 14.93 21.00

Mid-Continent Anadarko 0.00 13.41 0.00 Arkoma 0.00 4.10 0.00 total 0.00 17.51 0.00

Permian Basin Permian 0.00 13.82 0.00

Williston N. Cent. Montana 6.12 4.88 5.83 Williston 0.14 0.00 1.84 total 6.26 4.88 7.66

West Coast Onshore Oregon/Wash. 2.12 6.48 11.85

Lower 48 189.94 304.19 177.83 Alaska 0 0 0 U.S. Total 189.94 304.19 177.83

52 Lower-48coalbedmethanepotentialissummarizedin Table9.Thetableshowsthewidespread distributionofcoalbedmethaneresourcesintheU.S.,fromtheRockiesandSanJuanBasintothe Mid-Continent,GulfCoast,andAppalachianBasin.Regionswiththegreatestpotentialincludethe Rockies,SanJuanBasin,EasternGulfCoastandMid-Continent.

Overthepastfewyears,nomajornewcoalbedplayshaveemerged.Overall,coalbedproduction hasflattenedoutintheU.S.,indicatingacertainlevelofmaturity,atleastwithcurrenttechnology. However,higherwellheadnaturalgaspricesandincreaseddrillingareresultinginincreased productioninareassuchasthePowderRiverBasin.Inaddition,newtechnologiessuchas complexdirectionaldrillingandmulti-lateralcompletionsarejustbeginningtobeusedwidelyfor coalbedmethane.Thesenewtechnologiescouldhaveadramaticeffectontheeconomicviability oftheresourceifusedinthefuture. Table9SummaryofLower-48CoalbedMethaneAssessments

Tcf of Recoverable Resources

2002-08 2007 2003 Region Basin USGS EIA NPC

Appalachia C. Appalachian 3.58 3.58 3.48 N. Appalachian 4.82 4.82 4.68 total 8.40 8.40 8.16

Eastern Gulf Onshore Warrior 7.06 4.83 4.47

Michigan-Illinois Illinois 0.44 0.60 1.58

Arkla Tex +Ft Worth Bend Arch 0.00 0.00 0.00

Rocky Mtn. Foreland Piceance 0.37 7.91 3.75 Uinta 1.95 4.17 2.28 Raton 1.59 4.03 1.99 Wind River 0.25 0.00 0.43 Green River/Hanna 1.53 1.70 2.03 Powder River 14.26 26.76 20.00 Big Horn 0.00 0.00 0.00 Denver, etc 0.00 0.00 0.00 Paradox 0.00 0.00 0.00 Plateau. Blk Mesa 0.00 0.00 0.00 total 19.95 44.57 30.48

TX Gulf Coast Texas Gulf Cst. 4.06 0.00 0.00

Overthrust Belt total 0.00 0.00 0.00

San Juan Basin San Juan Fruitland 23.58 18.12 8.00 San Juan Menefee 0.66 0.24 0.66 total 24.24 18.36 8.66

Mid-Continent Forest City 0.45 w/Chero. 0.44 Cherokee 1.91 2.39 1.86 Arkoma 2.64 3.23 2.56 Anadarko 0.00 0.00 0.00 total 5.00 5.62 4.86

West Coast Onshore Western Oregon 0.71 0.00 0.68

Lower 48 69.86 82.38 58.89 Alaska 18.06 0.00 57.00 U.S. 87.92 82.38 115.89

53 Table10 summarizesthepublishedU.S.shalegasassessments.(Adetailedcomparisonwiththe ICFassessmentispresentedinthenextsection).Theinitialareaofshalegasdevelopmentinthe U.S.wastheAppalachianBasin,whereproductionbeganbefore1900.Inarecentassessment,the USGSassessedthelowpressureverticaldrillingportionoftheresourceat12Tcf.TheAntrimShale inMichiganalsohassubstantialremainingresources,althoughthevolumeofAntrimproductionis lowerthanmanyanalystshadpredictedadecadeago.TheBarnettShaleoftheFortWorthBasin inTexaswasassessedat26TcfbytheUSGSin2003.Baseduponrecenttrendsofdevelopmentin theBarnettandthesuccessfulexpansionofthatplay,thisassessmentislikelyveryconservative.

TheUSGShasnotyetassessedthepotentialofeithertheFayettevilleShaleortheWoodfordShale horizontaldrillingplaysintheArkomaBasinofArkansasandeasternOklahoma.TheEIAincluded resourceestimatesforthesetwoplaysof29Tcfand16Tcf,respectively. 15

TheUSGShasnotyetassessedtheAppalachianhorizontalMarcellusShaleortheHaynesvilleShale innorthwesternLouisiana.ArecenttradepressreportedthatastudybyresearchersatPennState andtheStateUniversityofNewYorkestimatedthegas-in-placeoftheMarcellusasrangingfrom 168Tcfto516Tcfwithrecoverableresourcesof50Tcf. 16 (Gas-in-placeisthetotalamountof naturalgascontainedwithinareservoir,andisagreatervolumethanrecoverablegas).Recent tradepresshasindicatedthattheHaynesvilleShaleinnorthwesternLouisianaandEastTexashas recoverableresourcesofatleast20Tcf.Theseplaysarediscussedindetailinthenextsectionof thisreport.

AlargeareaofthickBarnettandWoodfordShaleispresentinthePermianBasinofWestTexas. Recently,theUSGSassessedthisareaashaving35Tcfofpotentialproduction.

ThepotentialoftheRockyMountainshalegasislargelyunknown.EIA,however,hasestimated10 TcfofLewisshalepotentialintheSanJuanBasinofnorthwesternNewMexico.Thick,extensive ageshalesarepresentacrosstheRockiesbutarejustnowbeingevaluatedwith horizontaldrilling.Rockiesgasshalesareofteninterbeddedwithlow-permeabilitygas reservoirs,makingthedistinctionbetweentightgasandshalegasdifficult.

15 Supportingmaterialsforthe2007EIAAnnualEnergyOutlookandupdatedinformationprovidedtoICF. 16 GasDaily ,March19,2008.

54 Table10PublishedLower-48ShaleGasAssessments

Tcf of Recoverable Resources

2002-08 2007 2003 Region Basin USGS EIA NPC

Appalachia Appalachian Vertical Low Pressure 12.20 14.41 16.99 Appalachian Marcellus Horizontal not assessed not assessed not assessed Appalachian Huron Horizontal not assessed not assessed not assessed

Texas and LA Gulf Coast not assessed not assessed not assessed

Warrior Basin, AL and MS Floyd and Conasauga Shales not assessed not assessed not assessed

Michigan-Illinois MIchigan Antrim 7.47 10.55 7.37 Illinois New Albany 3.79 2.04 1.76 Cincinnati Arch 0.00 0.75 1.29 total 11.26 13.34 10.43

North Texas Fort Worth Barnett 26.20 38.01 7.00

Mid-Continent Arkoma - Arkansas not assessed 29.18 not assessed Arkoma - Oklahoma not assessed 15.79 not assessed total 0.00 44.97 0.00

Permian Basin Barnett and Woodford Horizontal 35.13 not assessed not assessed

Williston Williston Niobrara 0.00 3.85 0.00

Rockies San Juan Lewis 0.00 10.41 0.00 Raton Basin Pierre not assessed not assessed not assessed

Pacific Onshore San Joaquin Basin 0.00 0 0.32

Lower 48 total 84.79 124.99 34.74 Alaska 0 0 0 U.S. total 84.79 124.99 34.74

5.2 PublishedCanadianResourceEstimates Canadacontainsvastundevelopedresourcesofunconventionalnaturalgas.Aswithconventional naturalgasresources,coalbed,tight,andshalegasresourcesareconcentratedintheWestern CanadianSedimentaryBasininAlbertaandBritishColumbia.WhilecoalbedmethaneinCanada hasbeenassessed,muchworkremainstoevaluatetightgasandshalegasresources,recovery,and economicviability.

Table11summarizessomerecentlypublishednaturalgas-in-placevolumesbyseveralgroups. OrganizationsthathavedevelopedassessmentsinrecentyearsincludetheNationalEnergyBoard, theAlbertaEUB(nowERCB),theAlbertaGeologicalSurvey,theCanadianGasPotential Committee,andtheGasTechnologyInstitute.OrganizationssuchastheCanadianAssociationof

55 PetroleumProducers(CAPP)andtheCanadianSocietyforUnconventionalGas(CSUG)have publishedsummariesaswell.

Table11showsthattightgashasbeenassessedat430Tcf,ascitedinapaperbyGatens.17 CSUG hasanassessmentoftightgas(sandstone)potentialintheDeepBasinofwesternCanada. 18 Their assessmentofundiscoveredrecoverableresourcesis23Tcfforthattightgasplay.Coalbed methaneinCanadahasbeenassessedbytheAlbertaEnergyResourcesConservationBoard(ERCB) at500Tcfofgas-in-place. 19 Asshowninthetable,mostoftheassessedresourceisinthe Mannvilleformation(350Tcf).Amuchsmallerresource(84Tcf)isassignedtotheHorseshoe Canyonplay;itrepresentsmostofthecurrentproductionofover650MMcfperday.In2002the GasTechnologyInstitutecarriedoutanassessmentoftheshalegaspotentialofWesternCanada. 20 ThisreportisavailablefromGTIthroughtheirwebsiteandthedetailsarenotpresentedhere. However,theoverallassessmentof860Tcfofgas-in-placeiscommonlycited. Table11PublishedCanadianUnconventionalNaturalGas Assessments Tcf of Gas-In-Place

Tcf Category Gas-in-Place Source (see footnotes)

Tight 430 Petrel Robertson as referenced in Gatens, 2008 and CAPP, 2007.

Coalbed Methane 500 Alberta ERCB/EUB and NEB as referenced in Gatens, 2008

Shale Gas 860 Gas Technology Institute, 2002

Interval Breakout of Western Canada CBM Gas-in-Place (total of 454 Tcf; differs from above assessment)

Total WSCB 454 ERCB/EUB and AGS as referenced in Encana, 2008 Mannville 350 Horseshoe Canyon 84 Ardley 20

References:

Gatens, Michael, 2008, "The Role of Unconventional Gas in North America," CERI 2008 Natural Gas Conference, February 25-26, Calgary, Alberta, Canada. Encana, 2008, "Raymond James Oil Sands of Canada Conference," New York, May 5, 2008; available on company website: http://www.encana.com/investors/presentationsevents/index.htm Gas Technology Institute, 2002, "Shale Gas Potential of Selected Upper Cretaceous, , and Devonian Shale Formations in the WCSB of Western Canada: Implications for Shale Gas Production," GRI Report 02/0233, December, 2002. CAPP, 2007, " Oil and Gas Benefits to Alberta and Canada," June 2007 report by CAPP/SEPAC. 17 Gatens,Michael,2008,“TheRoleofUnconventionalGasinNorthAmerica,”CERI2008NaturalGas Conferenceslides,February25-26,2008,Calgary,AlbertaCanada. 18 CanadianSocietyforUnconventionalGas,2008,“WesternCanadaTightGasResourceCharacterization Project–DeepBasinTightGas,”CSUGslides,March12,2008. 19 Gatens,ibid. 20 GasTechnologyInstitute,2002,“ShaleGasPotentialofSelectedUpperCretaceous,Jurassic,andDevonian ShaleFormationsintheWCSBofWesternCanada–ImplicationsforShaleGasProduction,”GTI/GRIReport 02/0233,December2002. http://www.gastechnology.org

56 Table12showsthegas-in-placeandrecoveryassessmentpreparedforthe2003National PetroleumCouncilstudy.Thegas-in-placeassessmentwaspreparedbyGTI.Thetableshowsthat somebasicassumptionsonfractionofareadrillableandrecoveryfactorwereusedtoparethegas- in-placedowntorecoverablenaturalgas.Therecoverablegasincludedinthemodelwas17Tcf. Wellrecoverieswereassumedtobelowandwerebasedonverticalwells.Horizontalwell characterizationwasnotmade.

TheWilrich,Doig,andMontneyformationswereevaluatedinboththeAlbertaandBritish Columbiapartsofthebasin.However,theDevonianShalewasevaluatedonlyinAlberta. Therefore,anyresourcesfromthenewBritishColumbiaDevonianShalewouldbeincremental. ThetotalassessmentfortheMontneyformationgas-in-placeis187Tcf. Table12WCSBShaleVerticalWellAssessmentforthe2003National PetroleumCouncilStudy GIP in drillable G.I.P. fraction areas Recovery Recovery Play (Bcf) drillable (Bcf) factor (Bcf)

Upper K Wilrich 156,000 0.20 31,200 0.10 3,120 Triassic Doig 10,700 0.20 2,140 0.10 214 Triassic Doig Phosphate 129,000 0.20 25,800 0.10 2,580 Triassic Montney 187,000 0.20 37,400 0.10 3,740 Devonian Ireton/Duvernay /1 377,000 0.20 75,400 0.10 7,540

total 859,700 171,940 17,194

1. The Devonian Shale gas-in-place is only for Alberta. It excludes the new Horn River Basin play. 5.3 TechnologyAdvancesImpactingTightGas, CoalbedMethane,andShaleGas

Intheearlydecadesofoilandnaturalgasdevelopment,hydrocarbonreservoirsweredeveloped usingverticalwellsofconventionaldiameterbyusingconventionalrotarydrillingtools.Gaswell spacingwasgenerallyonewellpersquaremile.Wellstimulationwaseithernotusedoritwas baseduponlowtechnologymethodssuchasexplosivesoracidstimulation.

Inrecentdecades,tremendousadvanceshavebeenmadeinallareasofdrilling,stimulation,and wellcompletion.Themostimportantareasofcurrenttechnologyaredirectionalandhorizontal drillingandadvancedfracturestimulation.

57 DirectionalandHorizontalDrilling Currently,themostactiveshalegasplayssuchastheBarnettShaleintheFortWorthBasinare beingdrilleddirectionallyandcompletedhorizontally.Directionaldrillinghasbeenaroundfor decadesbuthasseengreatstridesintermsofdownholedirectionalcontrolandplacementofthe wellborewithinathinzone.Typically,awellisdrilledverticallytoadepthofperhapsseveral thousandfeet.Afterdrillingvertically,thewellissteeredhorizontallyandmaybedrilledforseveral thousandfeetto5,000feetormorewithintheshaleformation.

Theprocessofguidingthebitduringdirectionaldrillingistermed“geo-steering”andis accomplishedthroughreal-timedataacquisition.Thistechniqueisallowingcompaniesto accuratelyplaceahorizontalwellwithinaformationonlyafewfeetthick.

Increasingly,tightgasdevelopmentintheRockiesisbasedupondrillingnumerousdirectional wellboresfromasinglesurfacelocation,ratherthandrillingonewellborefromasurfacelocation. Thistechnologydiffersfromhorizontaldrillingwheretheobjectiveistohaveahorizontal completionzone.TheapproachisusedintheJonah-PinedalefieldofsouthwesternWyoming,and isespeciallyusefulinareaswheresurfacedisturbancemustbeminimized.

WellStimulation Afterdrillinganunconventionalgaswell,itisnecessarytofracture(stimulate)theformationto allowthegastomoreeasilyflowtothewellbore.Hydraulicfracturing(thepumpingoffluidinto thewellunderveryhighpressureuntiltheformationfractures)isthekeyintightgasandshalegas development.Coalbedmethanewellsoftenareartificiallystimulated.Mosttightreservoirsmust befracturedbeforetheywillflowatcommercialrates.Twentyormoreyearsago,industryused thickcross-linkedfluidscontaininghighvolumesofproppant(sandorothermaterialusedtoprop openartificialfracturessotheydonotcloseundernaturalpressure),butthesestimulation treatmentswereveryexpensive.Today,“slick-water”fracturingtechniquesusinghighvolumesof waterandlowervolumesofproppantareusedinstead.21Slickwatertechniquesemployadditives suchassurfactantstoreducefrictionandfacilitatefracturing. Figure19illustratesthetechniques usedtoartificiallyfractureMid-ContinentshaleformationssuchastheFayettevilleShaleplayinthe ArkomaBasin.Inthismethod,thehorizontalportionofthewelloftenexceeds2,000feetin length,andfourormoreverticalfracturezonesarecreatedbysuccessiveartificialstimulation procedures.

Anothermethodbeingusedisthesequentialstimulationofuptoseveraldozenzonesinasingle verticaltightgaswell.Thismethodisbeingusedtodevelopthicksandpackagesinnorthwestern ColoradoandsouthwesternWyoming. Figure20 illustratesthefracturingtechniquebeingusedto developtightsandsinthisregion.

21 OilandGasInvestor,2006,“TightGas,”March2006supplementpublicationtoOilandGasInvestor.

58

Figure19ShaleFracturinginaHorizontalWellbore

Figure20StimulationofaVerticalTightSandWell

59 WaterUseforStimulation Artificialstimulationofanunconventionalgaswellrequireslargevolumesofwater.Insomecases, concernshavebeenraisedaboutthedemandsplaceduponwaterresourcesforthispurpose,and alsoaboutdisposalortreatmentofthewater,andrelatedenvironmentalissues.

Hydraulicfracturingwaterisfreshwaterthathasbeentreatedwithafrictionreducerandother agentstofacilitatefracturing.Theso-calledslickwaterfracturingwasusedintheBarnettby1997 andwasfoundtobeverysuccessful. 22 Slickwaterfracturingofaverticalwellcanuse1.2million gallonsofwaterwhileahorizontalwellcanuse3.5milliongallons.Thewellsmayalsobe fracturedagainafteraperiodofnaturalgasproduction.In2005,about60percentofwaterused forBarnettShaledevelopmentwasfromgroundwatersourcesand40percentwasfromsurface sources. 23 MostBarnettShalewellstimulationwaterisnowhauledoffsitefordeepwellinjection intozonesfarbelowsourcesofdrinkingwater. 24 Toaddressenvironmentalconcernsrelatedto demandsonregionalwatersourcesaswellasdisposal,operatorsareincreasinglyrecyclingwaterto reducenetwateruse.

UnderbalancedDrilling Underbalanceddrillingreliesupondrillingfluidsthatarelowerindensityanddownholepressure thanthefluidsinthereservoirrock.Thismethodresultsinlessinvasionofdrillingfluidintothe reservoir,andthereforepreservesthereservoirandallowsforhigherratesofnaturalgas productionandmoreconsistentwellrecoveries.

Multi-LateralDrillingandCompletion Anemergingtrendforsomehorizontalshaleplaysistodrillmultiplehorizontallateralsfromone verticalwellbore.Forexample,EquitableResourcesisexploringtheapplicationofusingairdrilling (drillingwithcompressedairratherthandrillingfluid)withmulti-lateralstodevelopthelow pressureHuronShaleplayinAppalachia.Artificialfracturingofthewellisnotusedinthis approach.Instead,theyaredrillingmultiplehorizontalsegmentstoaccessanaturallyfractured section. 25 Themethodiseconomicallyviablebecauseinthisplayitispossibletouseinexpensive airdrillingratherthanconventionaldrilling.

Multi-lateralscanalsohaveapplicationswheresurfaceaccessislimitedandthereisaneedto utilizealimitednumberofverticalwells.

PinnateDrilling Pinnatedrillingisaformofmulti-lateralhorizontaldrillingthatisusedtodevelopcoalbedmethane inAppalachia.PioneeredbyCDXGas,themethodhasachievedexcellentresultsandshowsgreat promiseincontactingandrecoveringamuchhigherpercentageofgas-in-placethanvertical drillingorothertypesofhorizontaldrilling.Pinnatetechnologyinvolvesdrillingapairofboreholes ateachsurfacelocation.Thereisaverticalboreholeandanearbydirectionalboreholethat 22 RailroadCommissionofTexas: http://www.rrc.state.tx.us/ 23 TexasWaterDevelopmentBoard,2007,“NorthernTrinity/WoodbineGAMAssessmentofGroundwater UseintheNorthernTrinityAquiferDuetoUrbanGrowthandBarnettShaleDevelopment,”January,2007 http://www.twdb.state.tx.us/RWPG/rpgm_rpts/0604830613_BarnetShale.pdf 24 TexasWaterDevelopmentBoard,2007,ibid.page2-45. 25 OilandGasInvestor,June,2008.

60 contactsthecoalbedhorizontally. 26 Horizontalmulti-lateraldrillingwithinthecoalbedfollowsa patternthatissimilartotheveinsonaleaf.Oncethepinnatepatterniscompleted,gasis producedthroughtheverticalborehole.Productionofgasthroughtheverticalboreholeallows efficientde-wateringofthecoalseam.

Slim-HoleandMicro-HoleDrilling Coiledtubingmicro-holetechnologyusesacoiledtubingrigandsmalldiameterandless cumbersomedrillingequipmentthatgreatlyreducesdrillingtimeandcosts.Acoiledtubingrig doesnotusetraditionalrigiddrillpipewitharotarybit,butinsteadusesacoiloftubingthatisrun intotheholewithasteerableassemblyandrotarybitpoweredbydrillingfluidpumpeddownhole. Muchofthetechnologyisdownsizedversionsofexistingstandarddiameterdrillingequipment, includingbits,motors,andbottomholeassemblies.27 Drillingisaccomplishedutilizingcontinuous2 5/8inchcoiledtubing.Thebitisturnedbyturbinesthatarepoweredbythemudcirculation.

GTI,withthesupportofDOE,hascompletedsuccessfulfieldtestingofcoiledtubingmicro-hole drillingtechnologyintheNiobraragasplayofKansasandColorado.Thistechnologyhasthe potentialtosubstantiallyreducethecoststodrillandcompletegaswells,andtoincreaseU.S. futuregasproduction.Inaddition,thereducedenvironmentalfootprintshouldresultintheability toaccessresourcesinareaswhereenvironmentalconcernswouldhavebeenanimpedimentusing traditionaltechnology.

Technologiesinclude“builtfordrilling”coiledtubing(CT)rigs,specializedbits,andbottomhole assembliestoallowforsteering,loggingandcommunicationwiththesurface.Wellborescanbe verticalorcanhavesubstantialhorizontalcomponents.Technologiestofacilitatelongerhorizontal componentsareunderdevelopment,andincludedownhole“tractors”toprovideadditionalforce onthebit.

BiologicProductionEnhancement Itmaybepossibletoenhancemethaneproductionfromcoalbedsandshalesbyinjectingbio- engineeredmicrobesintothereservoir.Suchmicrobeswouldconvertadditionalorganicmatter intomethane.Researchintothisprocessisunderwayandmayprovedcommerciallyviableoverthe nextfewyears.

26 CDXGaswebsite: http://www.cdxgas.com/technology.php 27 Duttlinger,D.F.,2006,“MicroholeDrillingShavesWellCosts,”E&PMagazine,February,2006.

61 InfillDrilling Infilldrillingoftightgasreservoirshasplayedamajorroleingasdevelopmentactivityinrecent yearsandthereisexcellentpotentialtoreducefurtherthewellspacinginmanyareas.Infilldrilling towellspacingsassmallastenacresperwellisoccurringatJonah-PinedaleinWyoming.Amap ofunconventionalnaturalgaswellspacingforvariousplaysisshownin Figure21 .Themap showsrecenttrendsinwellspacingforvariousplays,withthemorerecentdevelopmentoccurring onsmallerspacings. Figure21MapShowingWellSpacingforUnconventionalNaturalGas Plays Source:IHS

62

5.4 ComparisonofSelectedShalePlayAssessments TheassessmentofshalegaspotentialintheU.S.andCanadaisaworkinprogressandthereisa longwaytogotounderstandremainingpotentialandimplicationsforfuturenaturalgas production.Thevolumesofgas-in-placeareextremelylarge,andasmalldifferenceinthe estimatedpercentageofgas-in-placethatisrecoverablehasahugeimpactonestimatesof recoverableresources.Inaddition,eachshalebasinisdifferentgeologically,andthescienceof understandingtheparametersthatcontrolproductionisstillevolving.

ICF’sgasmarketmodelsrequireassumptionsaboutremainingresourcesineachNorthAmerican Basin.WehaveutilizedUSGSandCanadiangovernmentagencyassessments,ormodifiedversions ofUSGS.assessmentsdevelopedinindustrystudiessuchasthe2003NPCStudy. 28 Asshownin Table13,theUSGS.hasnotpublishedassessmentsoftheArkomaBasinshale,andjustrecently publishedastudyofWestTexasShale. 29 TheirBarnettShaleassessmentof26Tcfismuchhigher thanpreviousassessments,butisnowconsideredconservative.The2003NPCstudyincludedonly 7TcffortheBarnett,reflectingtheunderstandingofthattimeandillustratingtheevolutionof resourceassessmentforshalegas.NPCdidnotincludetheArkomaBasinshale,sinceitwasnot yetactive.

Therighthandcolumnof Table13 presentstheresultsoftheICFanalysisofpotentialrecovery (production)fromtheseshaleplays.Therecoverableresourcevolumesshownrepresenttheresult ofvolumetricassessmentsthatincludeanalysisofshalearea,thickness,depth,organiccontent, andothervariablesandincludeonlythoseareaswithinthegasgenerationzoneofthermal maturity(areaswherethethermalhistoryhasbeenadequateforgasgeneration).Inestablished plays,operator-publishedanddatabase-derivedwellrecoverieshavebeenusedtocalibratethe assessments.Therecoverableresourceisalsodependentuponwellspacing.Inthisreport,ICF assumed40acrespacingforhorizontaldrilling,with40acreinfillwellsrecoveringlessgasthanthe original80acrewells.

Althoughtherecoverableresourcevolumesareverylarge,itshouldbenotedthatthismaynot translateintoeconomicdevelopmentorlargescalegasproduction.Forexample,industryhasbeen workingforseveralyearstoestablisheconomicproductioninWestTexas,butthathasnotyet occurredonasignificantscale.Unfortunately,littleinformationhasbeenpublishedtodateon effortstoestablishproductioninthatplay,andwhatdifficultiesmayhavebeenencountered.

28 NationalPetroleumCouncil,2003,“BalancingNaturalGasPolicy–FuelingtheDemandsofaGrowing Economy,”NPC,Washington,DC. http://www.npc.org 29 USGS,2008,”AssessmentofUndiscoveredOilandGasResourcesofthePermianBasinProvinceofWest TexasandSoutheastNewMexico,”USGSFactSheet2007-3115,2008.

63 Table13ComparisonofRecentU.S.ShaleGasAssessments–Selected Plays(NotIncludingRecentlyAnnouncedFrontierPlays)

Recoverable Resources - Tcf 2003 USGS National (Various Petroleum Current Years) Council ICF

Barnett - Fort Worth Basin 26 7 107

Fayetteville - Arkansas not assessed not assessed 58

Woodford - Oklahoma not assessed not assessed 53

Woodford/ Barnett - West Texas 35 not assessed 10

Details of 2007 USGS Assessment of West Texas:

Delaware Basin Woodford 15.1 Delaware Basin Barnett 17.2 Delaware Basin Wolfcamp 0 Total Delaware Basin 32.3

Midland Basin Woodford/Barnett 2.8 Total 35.1

Notes: ICF assessments based upon volumetrics and are based upon 40 acre horizontal wells or in the case of West Texas, 80 acres. USGS assessment is from 2008 publication titled: "Assessment of Undiscovered Oil and Gas Resources of the Permian Basin Province of West Texas and Southeast New Mexico, 2007," USGS Fact Sheet 2007-3115, February, 2008.

5.5 PreliminaryAssessmentofPotentialinFrontier ShaleGasPlays Theterm play referstoaspecificformationorgeologicalfeaturethatistargetedinapartofabasin forexplorationanddevelopment.Inthespringof2008,aflurryofcompanyannouncementswere madeaboutemergingshalegasplaysacrossNorthAmerica.Thesuccessfuldrillingresultsina varietyofregions,combinedwiththevastextentandvolumeoftheshaleformations,hasleadtoa newperceptionoffutureU.S.andCanadiannaturalgassupplyandproductionpotential. Figure 22isamapofthemajorshalegasbasinsintheU.S.Thismapshowsthewidespreaddistribution ofshaleplaysthatmayimpactfutureproduction.

64 Figure22ShaleGasBasinsoftheU.S. Source:Schlumbergerpresentation,2005 30 .

Newplaysincludethefollowing:

• AppalachianBasinMarcellusShale

• AppalachianBasinHuronShale

• AppalachianBasinUticaShale

• GulfCoastHaynesvilleShale

• BritishColumbiaDevonianShale

• BritishColumbiaMontneyShale

• RatonBasinPierreShale

Onlyfragmentaryinformationrelatingtoultimateplayresourcevolumesforthenewhorizontal playshasbeenpublished.Mostofwhatisavailablefromindustryrelatestotheresultsofinitial welltests,establishedacreagepositions,andsomeinformationondrillingplans.

USGSandCanadianagencieshavepublishedassessmentsthroughtheyears,buttheseassessments areoutdatedandarenotbaseduponhorizontaldrillingandcurrenttechnologies.Forexample, 30 Schlumberger,2005,“ShaleGas,”companywhitepaper http://www.slb.com/media/services/solutions/reservoir/shale_gas.pdf

65 theUSGSassessedthenaturalgas-in-placeandrecoverableresourcesoftheMarcellusShalein Appalachia,buttheassessmentwasbaseduponverticaldrillinginthelowerpressureportionsof theplay.Itdidnotassessthehighpressure,horizontaldrillingplay.

Inanefforttoevaluatethehorizontaldrillingshalegasresourcebase,ICFhasdevelopeda preliminaryanalysisoffactorsimportanttogasrecovery,includingarea,thickness,gas-in-place, andwellrecovery.

Table14showstheICFvolumetricanalysisofnaturalgas-in-placeandrecoveryfortheestablished andemergingshalegasplaysofNorthAmerica.Theupperportionofthetableshowstheresults ofstudiesthatwerecompletedin2007-08usingavarietyofsourcesincludingpublishedgeologic andshalepropertymaps.Thesemapswereusedtocreateanalytic“cells”characterizedbya specificsurfacearea,thickness,depth,pressure,organiccontent,andestimatedgas-in-placeper unitvolume.

Theanalysisofemergingshaleplaysisbaseduponsparseinformationandisthereforemuchmore uncertainintermsofbothgas-in-placeandpotentialrecovery.ForplayssuchastheLouisiana Haynesville,thereisverylittlegeologicinformationinthepublicdomain.Informationavailablefor analysisincludesindustrypressreleases,statements,andslidepresentationsshowingthepotential playoutline,combinedwithinformationonaverageshalethickness. 31 FortheMarcellus,the analysisisbasedinpartuponthe2002USGSassessmentofgas-in-place,alongwithanICF estimateoftheareaofshalewithfavorablematurity. 32 ForthePierreShaleintheRatonBasin, thedataarebasedinpartonapresentationbyPioneerNaturalResources. 33 Moreinformationon eachoftheseplaysispresentedinalatersectionofthisreport.

Althoughtheanalysisshowninthetableispreliminaryandissubjecttochange,itillustratesthe potentialmagnitudeoftheshalegasresource.Forexample,thecalculatedunrisked(notreduced forgeologicrisk)gas-in-placeoftheBarnettis1,150Tcf,butthisonlyrepresentsabout22percent ofthetotalgas-in-placeofallassessedplays.Further,itislikelythatadditionalplayswillemergein thefuture.

31 SlidepresentationsfromElPasoandExcoResources,andGasDailyarticlesandstatementsandslidesfrom ChesapeakeEnergy. 32 USGS,2002,“EasternInteriorProvinceNaturalGasWorkshop,”NationalPetroleumCouncilSupplyTask Grouppresentation,USGS,January,2003. 33 PioneerNaturalResources,2008,CompanyslidespresentedatHowardWeilEnergyConference,April9, 2008.

66 Table14AnalysisofExistingandEmergingShaleFormationVolumes andGas-in-Place

Preliminary ICF estimates for emerging plays based upon limited data Assumes horizontal development wells generally on 40-acre spacing Does not include all shale plays in North America

Basin Avg. Gross Shale Shale "Unrisked" "Risked" Technical Play Area Thickness/1 Volume Gas in Place/2 Gas in Place/2 Recovery Play Sq. Mi. Feet Cubic Mi. Tcf Tcf Tcf

Plays Evaluated Through Mapping

Fort Worth Barnett 7,750 250 367 1,150 538 107

Fayetteville 9,100 106 183 309 216 58

Woodford 11,600 180 395 719 169 53

West Texas Barnett /3 5,100 441 426 1,302 206 10 Total 3,480 1,129 229 ` Emerging Plays With Preliminary Volumetric and Gas-in-Place Estimates

Appalachian Marcellus /4 19,000 150 540 350 210 63

Appalachian Utica 7,500 350 497 75 23 7

Louisiana Haynesville 5,000 200 189 400 160 31

Colorado Pierre 250 1,500 71 35 11 2.0

BC Devonian Muskwa 3,000 350 199 750 300 60

WCSB Montney Horizontal 2,000 400 152 150 60 12 Total 1,760 763 175

Notes: 1. Average thickness includes all mapped areas of the play with potential. Areas developed first are typically thicker. 2. Unrisked gas in place is the total calculated gas in place using volumetrics. Risked gas in place is the value after a geologic risk factor is applied. The geologic risk factor essentially chops out a certain portion of the area due to factors such as erosion, faulting, extreme depth, and other factors. Fringe areas of a play that are not yet productive have higher geologic risk. 3. West Texas shale assumed to be developed on 80 acre spacing. 4. USGS assessed the Marcellus at 295 Tcf of gas in place in 2002. Actual total area is 54,000 sq. miles, but above area (19,000 sq. mi.) is based on the area assumed to have geologic and economic potential based on USGS maps.

67 5.6 ComparisonofICFLower-48ShalePlay AssessmentswithPublishedAssessments

Table15 comparesthecurrentICFassessmentoftechnicallyrecoverableshalegasresourcesofthe Lower-48withthemeanassessmentsoftheUSGS,2008EIA,2003NPC,andarecentlypublished studypreparedfortheAmericanCleanSkiesFoundation(ACSF).34 Itshouldbenotedthat differencesinassessmentsmayreflectthepublicinformationavailableatthetimeofeach assessmentanddonotnecessarilyreflectdifferentinterpretationsofthesamedata.

TheICFshaleassessmentisthelargestofthemeanassessmentsat385Tcf.Onereasonisthatthe ICFassessmentcoversmoreplaysandbasins,especiallywhencomparedwithUSGS,EIA35 ,and NPC. 36 Alsoshownonthetableforcomparisonisthe“maximum”assessmentpublishedinthe CleanSkiesreport.Thatassessmentwasbasedonmaximumoperatorestimatesforeachplayand totals842TcffortheLower-48.MostofthedifferencebetweentheCleanSkiesmeanand maximumassessmentsisintheAppalachianMarcellusShaleandtheLouisianaHaynesvilleShale. Themajordifferencesbyplayarea(meanassessments)areasfollows:

BarnettShale :TheICFassessmentisbyfarthelargest.Ourassessmentisbaseduponinternal mappingandwelllevelproductionanalysis.Itwasrecentlyincreasedbaseduponproduction performanceandthehighlevelofsuccessoverawiderareathanpreviouslyforecast.Production projectionsfromtheBarnettof6to7Bcfperdayareconsistentwiththisvolumeofresourceand forecastactivity.TheUSGSassessmentof26Tcfwaspublishedin2004anddoesnotcomeclose tocapturingtheimplicationsoftheplay’ssuccessoverthepastfewyears.Itisverylikelythatthe recoveryperwellandwellspacingassumptionsinthatstudyweretooconservative.TheClean SkiesstudyalsoincludedtheUSGSassessment,whileEIA’sassessmentof38Tcfappearstobean estimatebasedupontheUSGSplus50percent.The7TcfassessmentoftheNPCwasbasedupon anolderUSGSstudythatwasbaseduponverticaldrilling.

FayettevilleShale :TheICFassessmentof58Tcfisthelargestandwasalsobasedupondetailed mappingbyICFandwelllevelproductionanalysis.Itincorporatesgeologicriskthatreducesthe estimatedvolumeofrecoverablegasinoutlyingareas.TheUSGShasnotassessedtheFayetteville. EIAhasassessedthisplayat29TcfwhiletheCleanSkiesreporthas26Tcf.Theoriginofthese assessmentsisunknown.

WoodfordShale :TheICFassessmentof53TcfisthelargestandwasbaseduponICFmapping andwellproductiondata.EIAassessedtheformationat15TcfandtheCleanSkiesreporthas12

34 AmericanCleanSkiesFoundation,2008,“NorthAmericanNaturalGasSupplyAssessment,”preparedby NavigantConsulting,July,2008. 35 EIA,2008, http://www.eia.doe.gov/oiaf/aeo/assumption/pdf/oil_gas.pdf 36 NationalPetroleumCouncil,2003,“BalancingNaturalGasPolicy–FuelingtheDemandsofaGrowing Economy,”NPC,Washington,D.C. http://www.npc.org

68 Table15ComparisonofCurrentICFandOtherPublishedLower-48 ShaleAssessments

Tcf recoverable Current 2008 2008 ICF 2002-08 Clean Skies Clean Skies 2008 2003 Region Basin Assessment USGS Mean Maximum EIA NPC U.S. Appalachia Appalachian Vertical Low Pressure 30.6 12.2 35.4 49.8 14.4 17.0 Appalachian Marcellus Horizontal 63.0 not assessed 34.2 262.0 not assessed not assessed Appalachian Huron Horizontal 20.0 not assessed with vertical? with vertical? not assessed not assessed total 113.6 12.2 69.6 311.8 14.4 17.0

Texas and LA Gulf Coast Haynesville Shale 31.0 not assessed 34.0 251.0 not assessed not assessed

Warrior Basin Floyd and Conasauga Shales not assessed not assessed 2.1 4.5 not assessed not assessed

Michigan- MIchigan Antrim 4.0 7.47 13.2 20.0 10.6 7.4 Illinois Illinois New Albany 3.2 3.79 3.8 19.2 2.0 1.8 Cincinnati Arch 2.3 0.00 0.8 1.3 total 9.5 11.26 17.0 39.2 13.3 10.4 North Texas Fort Worth Barnett 107.0 26.20 26.2 44.0 38.0 7.0

Mid-Continent Arkoma - Arkansas Fayetteville 58.0 not assessed 26.0 41.6 29.18 not assessed Arkoma - Oklahoma Woodford 53.0 not assessed 12.2 17.4 15.79 not assessed total 111.0 not assessed 38.2 59.0 44.97 not assessed

Permian Basin Barnett and Woodford Horizontal 10.0 35.13 35.4 53.0 not assessed not assessed

Williston Williston Niobrara with tight not assessed 0.0 3.85 not assessed Williston Bakken Oil Play not assessed not assessed 1.8 3.0 not assessed not assessed

Rockies San Juan Lewis /1 with tight not assessed 10.2 12.3 10.41 not assessed Denver Niobrara with tight not assessed 1.3 2.7 not assessed not assessed Paradox Gothic Shale 1.0 not assessed not assessed not assessed not assessed not assessed Raton Basin Pierre 2.0 not assessed not assessed not assessed not assessed not assessed Green River Hilliard, Lewis, Mowry with tight not assessed 33.8 53.0 not assessed not assessed

Pacific Onshore San Joaquin Basin McClure 0.32 not assessed not assessed not assessed not assessed 0.32

Other (Palo Duro Basin) 0 0 4.7 8.3 0 0.00 Lower 48 total 385.4 84.8 274.3 841.8 125.0 34.7

Alaska not assessed not assessed not assessed not assessed not assessed not assessed U.S. total 385.4 84.8 274.3 841.8 125.0 34.7

Canada Eastern Canada Quebec Area 7.0 not assessed not assessed not assessed not assessed not assessed

Alberta, Sas., ManitobaCretaceous Shale - Vertical 9.4 not assessed not assessed not assessed not assessed 3.1 Triassic Doig - Vertical 8.4 not assessed not assessed not assessed not assessed 2.8 Triassic Montney - Vertical 11.2 not assessed not assessed not assessed not assessed 3.7 Devonian Shale - Vertical 22.6 not assessed not assessed not assessed not assessed 7.5 Triassic Montney -Horizontal (part) 2.0 not assessed not assessed not assessed not assessed 0.0 total 53.6 17.2

British Columbia Triassic Montney -Horizontal (part) 10.0 not assessed not assessed not assessed not assessed not assessed Devonian Shale - Horizontal 60.0 not assessed not assessed not assessed not assessed not assessed total 70.0

Canada total 130.6 17.2

69 Tcf.Wedonotknowtheoriginoftheotherstudies.Itmaybethatourmappedareaofpotential productionismuchlargerthanwhatisbeingassumedintheotherreports.Ourmapsofpotential Woodfordproductionextendwellbeyondtheareasofcurrentactivity.

HaynesvilleShale :TheICFHaynesvilleassessmentof31TcfissimilartotheCleanSkiesmean estimate.TheUSGShasnotassessedtheformation.TheICFassessmentisbaseduponpreliminary volumetricsonly,ratherthanadetailedmappingassessment.ICFdoesnothavedocumentationof theoriginoftheCleanSkiesmaximumassessmentof251Tcf

PermianBasinBarnettandWoodford :Thisplayisknowntohaveatremendousamountof gas-in-place,buteconomicsuccesshasbeenveryelusive.Inrecentyears,therehasbeenlittle reportedabouttheplay.ItwasassessedbytheUSGSin2007at35Tcf.However,activitytodate overanumberofyearsdoesnotappeartosupportthatassessment.ICFrecentlyreducedour assessmentofpotentialrecoverytotenTcf.

AppalachianMarcellusShale :ICFhasapreliminaryassessmentof63Tcfofpotentialrecovery. Asdiscussedabove,theUSGSgas-in-placevolumewas295Tcf.Baseduponourmapping,we estimateatotalunriskedgas-in-placeof350Tcfoveranareaof19,000squaremiles.The63Tcf assessmentresultsfromtheapplicationofriskandrecoveryfactors.TheCleanSkiesreporthasan assessmentof34Tcf.Theoriginofthatassessmentisunknown.

MichiganandIllinoisBasinShales :TheUSGShasassessedtheAntrimandNewAlbanyshales onaverticaldrillingbasis.TheseresultswerepublishedintheNPCstudyandthereisnotagreat dealofdifferenceinotherrecentassessments.TheNewAlbanyshouldprobablybere-evaluated forhorizontalpotential.

5.7 NaturalGasCompositionandQuality Thechemicalcompositionofnaturalgasproductionfromunconventionalsourcesisasignificant issueforindustry.Futurechangesinthecompositionofproducedgasinareaswithemerging unconventionalnaturalgasplayswillhaveanimpactonnaturalgasprocessingandtransportation. Thereisvariabilityingascompositionamongplaysandwithinindividualplays.Forexample,gas “wetness”(definedbelow)canhaveamajorimpactontheneedforliquidsremoval,andthe presenceofnon-hydrocarbonssuchascarbondioxide(CO 2)canrequiregasprocessingtoremove theimpurities.Theimpactofgascompositiononpipelineinfrastructuremaybemagnifiedbythe largevolumeofgasproductioncomingfromonesourcethatoftenhasdifferentcompositionthan older,conventionalsourcesinabasin,andfromtherapidramp-upofunconventionalproduction.

Thereisapaucityofdataonthechemicalcompositionofemergingunconventionalnaturalgas plays.ResearchcarriedoutbytheGasResearchInstituteinthe1990stocharacterizeU.S.natural gascompositionatthewellheadwasextensive,butfocusedonconventionalreservoirswithlimited informationforcoalbedmethaneandtightgas.Anexpansionofthatworktoencompass samplingofemergingnaturalgasresources,especiallyshalegas,isneeded.

NaturalgasproductionfromtheBarnettandotheremergingshaletendstobe“wet,”meaning thattheratioofheaviercomponents(C 2orethaneandhighercomponentssuchasand

butane)tomethaneishighandtheheatingvalueishigh.TheCO 2contentinshalegastendstobe low.AnexceptionistheAntrimShaleintheMichiganBasin--thebiogenicsourceofthemethane

70 producesCO 2aswellasmethane.Incontrasttoshales,coalbedmethanetendstobeverydry

(mostlymethane),andmayalsohaveasignificantfractionofCO 2,asintheSanJuanBasin.

ThecompositionofBarnettShaleproductionvariessignificantlyintermsofnaturalgaswetness andliquidyieldacrosstheproductivearea.Theplayexhibitsagradationfromdrygastowetgas, tooilandgas.Asshownin Figure23,theheatingcontentofBarnettShalerangesfrom1,000to 1,400Btuspercubicfoot,withageneralincreasefromeasttowest.Thischangeincomposition canbecorrelatedwiththermalmaturityasmeasuredbyvitrinitereflectance.Theterm thermal maturity referstothelevelofalterationofasourcebedintheprocessofformingoilandgas throughgeologictime.Vitrinitereflectance isaspecificmeasureofthermalmaturity.Amapof vitrinitereflectanceisshownin Figure24.(Notethedifferentmapscales).Areasofhigher vitrinitereflectanceintheeasternportionoftheplayaremorethermallymatureandhaveadrygas withalowerheatingcontent.

Figure23MapofHeatingContentofBarnettShaleGas Source:RepublicEnergy 37

37 Givens,Natalie,andHankZhao,2004,“TheBarnettShale:NotsoSimpleAfterAll,”RepublicEnergy, Dallas,TX https://www.republicenergy.com/Articles/Barnett_Shale/Barnett.aspx

71 BoththeoverallwetnessoftheBarnettandthelateralvariabilityofwetnessaresignificantinterms ofnaturalgasprocessinginfrastructureneeds.Thisisbecausetheliquidsmustbestrippedfrom thegasbeforetheycanbeacceptedforlongdistancetransportbytransmissionpipelines.Where existinggasprocessingcapacityisnotadequate,developmentofthegasresourcemaybe restricted.Naturalgasprocessingandliquidsinfrastructuremustbedevelopedincoordination withoverallgasgatheringandtransportation.

Figure24BarnettShaleThermalMaturation(VitriniteReflectance) Source:“TheBarnettShale”(PickeringEnergyPartners) 38

38 PickeringEnergyPartners,2005,“TheBarnettShale,” http://www.pickeringenergy.com

72

6 REGIONALTIGHTGAS,SHALEGAS, ANDCOALBEDMETHANE PRODUCTIONANDACTIVITY

6.1 Introduction Thischapterpresentsinformationonactivityandpotentialofindividualplaysandbasins.Manyof themajorunconventionalplaysarepresented.Productionandactivityisevaluatedintermsofeach majorproducingregionandwithinproducingbasins.Forthelargestplaysandforemergingshale plays,informationispresentedonwhichcompaniesareactive,whatthecompanieshavestated aboutthepotentialfortheplay,andplayeconomics.

6.2 CharacteristicsofMajorPlays Thepotentialforagivenplaytoproducegasisdependentuponawiderangeofgeological, geochemical,andphysicalproperties.Generallyspeaking,thekeycharacteristicsareknown.For shalegas,theyincludethickness,depth,organiccontent,andvitrinitereflectanceorthermal maturity.Otherimportantfactorsthatarenowknowntobeimportantincludesilicacontent,clay content,andpressuregradient.Someproductiveshalegas,suchastheAntrimShale,isbiogenicin origin(methanesourcedfrombacteria),ratherthanthermogenic(methanesourcedfrom conversionoforganicmaterialthroughheatandpressure).Asummaryofpublishedcharacteristics formajorshaleplaysisshownin Table16.

Forcoalbedmethane,importantconsiderationsarethickness,coalrank(bituminous,sub- bituminous),depth,distributionofseams,CO 2content,watersaturationandneedfordewatering, biogenicvsthermogenicmethane,andotherfactors.Asummaryisshownin Table17.

73 Table16CharacteristicsofMajorShalePlays

Sources: Published reports and gas industry slides

Ft. Worth Barnett Arkoma Arkoma Michigan Illinois Permian Appalachian Appalachian Louisiana Warrior Non-Core Fayetteville Woodford Antrim New Albany Woodford Marcellus Huron Haynesville Floyd Horizontal Horizontal Horizontal Vertical Vertical Vertical Horizontal Vertical

Geologic Age Devonian Devonian Mississippian Devonian Devonian Devonian Devonian Devonian Jurassic Mississippian Vertical Depth ft 4,500 - 9,000 1,500 - 6,500 6,000 - 12,000 600 - 2,400 3000 8,000 - 12,000 5,000 - 8,500 3,500 - 5,500 10,000 - 13,000 6,500 - 9,000 Gross Thickness ft 200 - 800 50 - 400 100 - 300 150 100 - 300 400 - 800 50 - 200 150 - 200 200+ 100 - 300 Pressure Gradient psi/ft .45 - .50 0.44 0.43 0.5 - 0.7? Origin of gas Thermogenic Thermogenic Thermogenic Biogenic Thermogenic Thermogenic Thermogenic Thermogenic Thermogenic Thermogenic Total Organic Carbon % 3.5 - 5.0+ 2.0 - 5.0+ 3.0 - 10.0 0.3 - 20+ 1 - 25 4.0 - 7.0 2.0 - 6.0 3.5 3.0 - 5.0 1.8 (0.5- 10) Vitrinite Reflectance %Ro 1.0 - 2.2 1.5 - 4.0 1.1 - 3.0 0.4 - 0.6 <0.7 1.0 - 2.5 0.92 - 1.6 Silica Content % 40-60 40-60 60-80 Gas Content scf/ton 300 - 500 40 - 100 Gas-in-place/sq. mile Bcf/sq. mi. 50-250 30-80 35-130 6 - 15 100-500 150-250 Reserves per well MMcf 1,500-3,000 + 1,600 + 3,000 - 5,000 200 - 600 3,000 800 (vert.) 800 - 1,500 3,000 - 6,500 General gas wetness Wet Wet Wet Wet Dry CO2 % Up to 20% 0 - 5 % negl. Methane % 80 - 95 Heating Content Btu/cf 1,000 - 1,400 900 - 1,300 Current Wells 7,500 600 + 500 + 8,300 +

E. Canada BC BC Utica Muskwa Montney Horizontal Horizontal Horizontal

Geologic Age Devonian Triassic Vertical Depth ft 2,300 - 6,000 7,800 - 13,000 6,500 - 12,000 Gross Thickness ft 500 500 500 Pressure Gradient psi/ft .45 - .60 Origin of gas Thermogenic Thermogenic Thermogenic Total Organic Carbon % 1.0 - 3.1 3.0 1.5 - 6.0 Vitrinite Reflectance %Ro 1.3 - 3.0 2.8 0.8 - 2.5 Silica Content % 65 Gas Content scf/ton Gas-in-place/sq. mile Bcf/sq. mi. 75 - 350 180 - 320 75 - 100 Reserves per well MMcf 1,700 4,000+ 2000+ General gas wetness CO2 % none Methane % 88 - 97 Heating Content Btu/cf 1,027 - 1,136 Current Wells

74 Table17CharacteristicsofMajorCoalbedPlays Source: Adapted from Jenkins, C.D. and Charles M. Boyer, Journal of Petroleum Technology, Feb. 2008

Powder San Juan Uinta Raton Warrior River WCSB Horseshoe Formation Fruitland Fruitland Ferron Vermejo Pottsville Wyodak Canyon Well type Vertical Vertical Vertical Vertical Vertical Vertical Vertical Sub-basin area Fairway Non-Fairway Net coal thickness ft 70 20 - 40 4 - 48 25 - 30 40 - 300 35 -110 Depth 2,500 - 5,500 250 - 1,500 Rank Bitum. Bitum. Bitum. Bitum. Sub-bitum. Sub-bitum. Gas Content scf/ton 300 - 600 425 250 - 500 30 - 70 35 - 110 Well spacing acres 60 - 320 160 80 80 80 - 160 Rate per well mcf/d 1,500 500 100 150 45 Recovery factor % 66 57 53 62 28 Reserves per well Bcf 6.00 0.50 1.5 - 4.0 0.5 - 1.5 0.2 - 0.5 0.25 - 0.5 Pressure regime High Low Low Completion method Cavitation Frac. Open hole Significant CO2 Yes Yes Producing wells basin total > 3,600 >580 >1,100 17,000 9,300

75 6.3 ActivitySummariesandDiscussionofExisting andEmergingPlays

NorthAmericaPlayLevelProduction

Productionandcompletionactivityhavebeenevaluatedformostofthemajorunconventional naturalgasplaysinNorthAmerica.TheresultsofthisanalysisaresummarizedTable18.The tablesummarizestightgas,coalbedmethane,andshalegasproductionbybasin.Productionfor individualplaysisdiscussedbelow.Fortightgas,theplaysshownrepresentmostofthetightgas productionintheU.S.Anestimatewasmadeoftheamountoftightproductionfromotherplays. Totalunconventionalnaturalgasproductionin2007wasapproximately9.1Tcfor48percentof totaldryU.S.naturalgasproduction.

Rockies

NaturalgasproductionintheRockieshasbeenincreasingrapidlyinrecentyears,andthegrowthis attributedtotightgas. Figure25showsthestateleveltotalgasproductionfrom1990,including bothconventionalandunconventionalnaturalgasproduction. Table19showsplaylevel production. Figure26showsthesignificanceofunconventionalnaturalgasintheregion.

Since1990,productionintheRockieshasmorethandoubled.Thechartshowsthatproduction growthsince2000wasprimarilyinColoradoandWyoming.ThisisduetotightgasintheGreen RiverandPiceanceBasins.Inthe1990s,NewMexicoexperiencedincreasedproductionfrom coalbedmethaneintheSanJuanBasin.NaturalgasproductioninUtahwasconstantthrough 2006,butisnowincreasingduetotightgasdevelopment.Montanaproductionisgradually increasing,dueinparttocoalbedmethaneinthestate’sportionofthePowderRiverBasin.

Jonah-PinedaleTightGas JonahandPinedalenaturalgasfieldsintheGreenRiverBasinofsouthwesternWyominghavebeen thelocationofanintensetightgasdevelopmenteffortoverthepastdecade.ICF’sdatabase indicatesannualproductionfrombothfieldsof717Bcfin2007orabout2Bcfperday.Production frombothfieldsincreasedgreatlyduring2007,fromanaverageofabout1.6Bcfdin2006to2.0 Bcfdin2007.

Geologically,thefieldsarecharacterizedbyaverythicksection(6,000feet)oflowpermeability Lanceformationsandsinterbeddedwithshales.Withintheoverallgrossintervalare20to70 individualsandswithanetpayaveraging1,400feet. 39 40 Depthofproductionrangesfrom7,000 to14,000feetandwellsaredrilledvertically/directionallyfromsurfacepads.Horizontaldrillingis notrequiredbecauseofthethicknessoftheoverallintervalandthesuccessofverticalwell stimulationproceduresthathavebeendeveloped.

39 OilandGasJournal,August3,2007. 40 OilandGasJournal,March3,2008.

76 Table18NorthAmericanBasinLevelUnconventionalNaturalGas Production

Tight Gas Analysis Consists of Studied Plays and Estimates for Other Tight Production Coalbed Methane and Shale Gas Defined by Play is U.S. Total Percent BCF per Year Raw Gas Change Since Region Basin Gas Type 2000 2001 2002 2003 2004 2005 2006 2007 2000 North Texas Fort Worth Basin Shale 79 135 221 305 381 504 707 930 1077% Mid-Continent Arkoma Shale 0 0 0 0 3 16 44 160 na Mid-Continent Chautaqua CBM 11 16 21 26 28 28 28 28 155% Mid-Continent Cherokee CBM 2 3 4 9 13 16 22 30 1329% Mid-Continent Anadarko Tight 83 91 97 101 141 182 231 260 213% East Texas East Texas Tight 540 619 646 725 826 962 1,065 1,176 118% West Texas Permian Tight 310 342 332 315 312 334 340 360 16% Rockies Powder River CBM 161 264 336 353 337 320 376 429 166% Rockies Green River Tight 138 187 263 332 387 504 580 717 419% Rockies Green River CBM 0 0 1 3 4 5 6 7 na Rockies Piceance Tight 65 83 112 144 203 256 313 336 419% Rockies Piceance CBM 1 1 1 3 3 2 2 2 162% Rockies Uinta Tight 68 69 73 79 97 125 160 178 162% Rockies Uinta CBM 76 93 103 99 91 84 79 79 4% Rockies Raton CBM 45 49 74 87 91 99 114 123 173% Rockies Denver Tight 136 156 176 191 188 180 177 180 32% Rockies San Juan Tight 454 461 462 461 455 447 450 452 0% Rockies San Juan CBM 966 918 900 904 912 907 889 840 -13% Western Gulf Coast Texas Gulf Coast Tight 460 434 416 419 423 415 432 445 -3% Eastern Gulf Coast Warrior CBM 109 111 117 110 121 113 114 115 6% Appalachian Virginia CBM 53 54 59 63 67 69 81 90 70% Appalachian PA and WV CBM 10 15 15 15 26 21 24 25 150% Appalachian Appalachian Tight 300 300 300 300 350 350 350 350 17% Appalachian Appalachian Shale 200 180 170 160 150 150 150 150 -25% Midwest Michigan Shale 183 175 166 154 149 144 141 136 -26% Western Canada Alberta CBM 2 5 4 4 23 47 167 237 12900%

U.S. Tight Gas- Defined Plays Above 2,554 2,742 2,877 3,066 3,382 3,756 4,098 4,454 74% U.S. Tight Gas- Estimate for Other Plays 1,015 1,069 1,033 1,085 1,142 1,161 1,322 1,468 45% U.S. Tight - Estimated Total 3,569 3,811 3,910 4,151 4,524 4,917 5,420 5,922 66% U.S. Coalbed 1,292 1,336 1,424 1,462 1,516 1,517 1,627 1,649 28% U.S. Shale Gas 371 430 502 593 685 818 1,098 1,538 315% U.S. Unconventional 5,232 5,577 5,836 6,206 6,725 7,252 8,145 9,109

U.S. dry gas production 17,989 19,318 18,893 18,947 18,690 17,940 18,137 18,860 5%

Percentage of Production That is Unconventional Percent tight (estimated total tight) 19.8% 19.7% 20.7% 21.9% 24.2% 27.4% 29.9% 31.4% Percent coalbed 7.2% 6.9% 7.5% 7.7% 8.1% 8.5% 9.0% 8.7% Percent shale 2.1% 2.2% 2.7% 3.1% 3.7% 4.6% 6.1% 8.2% Percent unconventional 29.1% 28.9% 30.9% 32.8% 36.0% 40.4% 44.9% 48.3%

77 Figure25RockyMountainStateGasProductionTrends

7,000

6,000

5,000 MT ND 4,000 NM UT 3,000

Bcf per Year Bcf per WY

2,000 CO

1,000

0

0 3 4 9 91 92 97 98 0 0 05 06 9 9 19 1 1 1993 1994 1995 1996 19 19 1999 2000 2001 2002 20 20 20 20 2007

Table19RockiesUnconventionalNaturalGasProductionbyPlay

Percent BCF per Year Raw Gas Change Since Basin Gas Type 2000 2001 2002 2003 2004 2005 2006 2007 2000 Powder River CBM 161 264 336 353 337 320 376 429 166% Green River Jonah Pinedale Tight 138 187 263 332 387 504 580 717 419% Green River CBM 0 0 1 3 4 5 6 7 na Piceance Mesaverde Tight 65 83 112 144 203 256 313 336 419% Piceance CBM 1 1 1 3 3 2 2 2 162% Uinta Natural Buttes Tight 68 69 73 79 97 125 160 178 162% Uinta Ferron CBM 76 93 103 99 91 84 79 79 4% Raton Vermejo CBM 45 49 74 87 91 99 114 123 173% Denver Wattenberg Tight 136 156 176 191 188 180 177 180 32% San Juan Dakota Tight 138 137 137 140 139 137 140 142 3% San Juan Mesaverde Tight 316 324 325 321 316 310 310 310 -2% San Juan Fruitland CBM 966 918 900 904 912 907 889 840 -13%

Tight Total - Studied Plays 861 956 1,086 1,206 1,330 1,513 1,680 1,863 116% Coalbed Total 1,249 1,325 1,415 1,449 1,438 1,417 1,466 1,480 19% Shale Total - Studied Plays 0 0 0 0 0 0 0 0

Total Unconventional 2,110 2,281 2,501 2,655 2,768 2,930 3,146 3,343 58%

78 Figure26RockiesUnconventionalNaturalGasProductionSummary

2,000

1,800

1,600

1,400

1,200 Tight 1,000 Coalbed 800 Bcf per Year Bcf

600

400

200

0 2000 2001 2002 2003 2004 2005 2006 2007

MajoroperatorsatJonah-PinedaleincludeUltraPetroleum,Questar,Shell,BPandEncana.Encana andBPhavethelargestpositionsatJonah,whereasUltraisthelargestoperatoratPinedale.Ultra PetroleumindicatesthatPinedalehas750naturalgaswellsandJonahhasabout1,000wells. 41 ThesenumbersareconsistentwithICF’stightgaswelldatabase.Thefield-wideaverage productionis1.1MMcfperdayperwell.Ultrastatesthattheyhaveabout5,300drillsitesintheir inventory.Further,ultimatelyrecoverableresourcesare31TcffromPinedaleand8.5Tcffrom Jonah.

Ultra’srecentdrillinghasindicated estimatedultimaterecovery (EUR)perwellof6.5Bcfandacost todrillandcompletetheverticalwellof$6.2million.(EURisameasureofhowmuchgasawellis expectedtorecoverinitslifetime).In2007,theycompleted183wellsaveraging8.8MMcfdeach. OnerecentwellatPinedaleproduced11.9MMcfperdayandhasanEURof8.6Bcf. 42

Ofthetotalwellcost,alargepercentageisfromthefracturingjobstostimulateproduction.Each fracturingstagecosts$100,000andthereareabout20stagesinonewell,totaling$2millionper

41 UltraPetroleum,April,2008investorslides. 42 OilandGasJournal.March3,2008.

79 welljustforthestimulation.Thatcanbecomparedtotheaveragecostof$6.2millionreported above,indicatingthatthefracturingcomponentofthecostsisaboutone-thirdofthetotal. 43

PiceanceBasinTightGas ThePiceanceBasinofnorthwesternColoradohasbeenthelocationofintensetightgassand developmentformanyyears.OperatorsincludeWilliams,Encana,ExxonMobil,andXTO.The basinproduced446Bcfofgaswellgasin2007,oranaverageof1.2Bcfd.Thiscanbecompared to403Bcfor1.1Bcfdin2006.In2000,basinproductionwasonly288MMcfperday.

TightgasactivityisfocusedontheWilliamsForkintervaloftheMesaverdeGroupatdepths rangingfrom4,500to8,500feet.Oneofthemainareasofdevelopmentisagroupoffourfields: GrandValley,Parachute,Rulison,andMammCreek.In2007,thesefieldsproducedabout900 MMcfperdayrepresentingmostofthebasinproduction.

InanAugust,2007presentation,XTOestimatedthattheyhavetwotofourTcfofpotentialinthe basin.Theyindicatedthatnaturalgas-in-placepersquaremileisapproximately400Bcf. Productionisfroma4,000footgrossformationthicknessaveraging850to1,000feetofpay.(Pay isthenetintervalthicknessthatisexpectedtoproduce).Wellcostsare$9to$10millionandwells arerecoveringthreetosixBcf. 44 IfoneassumesanaverageoffourBcfperwellandthreeTcfof potential,thiswouldrepresent750futurewells.

BillBarrettCorporationhaspublishedsomeinformationontheirPiceancewells.IntheirGibson Gulcharea,thereisanaveragepotentialproductionof1.0Bcfperwellwithatotalcompletedwell costof$1.9million. 45 Thewellcostincludes$0.8millionfordrillingand$1.1millionfor completion.Findinganddevelopmentcostsare$2.06.

Williamsisusinga“FlexRig”systemtoimproveefficiency.Therighasthecapabilityofdrillingup to22wellsfromasinglepad,usingdirectionalwells.46 Thecompanyciteslargeremaining potentialinthePiceanceValley,aswellasthePiceanceHighlands.TheHighlandsareaissaidto havethreeTcfofpotentialin3,700locations.Recentlycompletedwellsareaveraging1.2to2.4 Bcfperwell.

UintaBasinNaturalButtesTightGas TheUintaBasinofnortheasternUtahproduced350Bcfofnon-associatednaturalgasin2007. Thiswasdoubletheamountofgasproducedin2000(172Bcf).Essentiallyalloftheproduction growthhasbeenintheMesaverdeandWasatchtightgasplays.ThegiantNaturalButtesfieldis thefocusofmuchoftheactivity.ThisfieldandtheadjacentMonumentButtefieldcontain thousandsoffeetofnaturalgasproductiveintervals.Naturalgasreservesarebeingdevelopedon 20and10acrewellspacing.Thefieldsweredevelopedpreviouslyon40acrespacing.

43 OilandGasJournal,March3,2008. 44 XTO,March,2008Investorslides. 45 BillBarrettCorporation,March,2008investorslides. 46 Williams,February,2008investorslides.

80 AtMonumentButte,Newfieldisdevelopingoilintheshallowintervals.Thisareahasaverylarge deepintervalwithnaturalgaspotentialthatisbeingevaluated.Thedeepintervalconsistsof Wasatch,Mesaverde,Blackhawk,andMancosShaleformationsrangingtodepthsof16,000feet.

EOGResourcesisoneofthemainoperatorsinthebasin.Theyaredevelopingtightgasresources intheMesaverdeandWasatchformation.Theyaredrillingon40s,20s,and10acrespacings.The completedwellsforWasatchcost$1.2millionandtheyrecover0.7Bcf.Mesaverdewellscost $1.65millionandrecover1.2Bcf. 47 EOGstatesthatthegas-in-placeresourceaverages250Bcf persquaremileinthebasin.

BillBarrettisdevelopinganareaoftheUintaBasincalledWestTavaputz.Theyaredrillingboth WasatchandMesaverdeatrelativelyshallowdepthsoflessthan8,000feet.EURperwellis2.5Bcf andcompletedwellcostsare$3.1million.Thisconsistsof$1.0millionfordrillingand$2.1for stimulation/completion. 48 FindingandDevelopment(F&D)costsare$1.26permcf.Theyalso mentionadeepnaturalgasplayconsistingofNavajo,Entrada,Dakota,andMancosShale.

PowderRiverBasinCoalbedMethane ThePowderRiverBasinislocatedinnortheasternWyomingandsoutheasternMontana.Through theearly1990sithadahistoryofconventionaloilandnaturalgasproduction.Beginninginthe mid-1990s,significantactivityandproductionstartedinthecoalbedmethaneplay.Productionin thebasin(includingconventionalnaturalgas)hasgrownfromabout860MMcfdin2001toa 2007rateof1.3Bcfd.Mostoftheproductiongrowthoccurredby2001.Sincethattime, productionhasbeenrelativelyflat,althoughproductionwasupslightlyin2007.Ofthetotalbasin productionin2007of1.3Bcfd,1.2Bcfdwascoalbedmethane. Initially,activityprimarilyinvolvedtheshallowTertiaryFortUnionWyodakcoalsontheeastern flankofthebasin.Wellsareshallow,about800-1,500feetindepth,andtypicallyproduce around250to300MMcfoverthelifeofthewell.Whilebasinproductionremainsdominatedby theshallowWyodakplay,overthepastfewyearsthedeeperBigGeorgecoalbedformationhas becomeincreasinglyimportantintermsofbothactivityandproduction.Wellrecoveriesarehigher intheBigGeorgethanintheWyodak,andinsomeareas,recoveriesare600MMcfperwellor higher. BillBarrettisactiveintheBigGeorgeplay.Inarecentpresentation,theyindicatedarangeofEUR perwellfortheformationof0.15to0.8Bcfwithatypicalvalueof0.3Bcf.49 Drillingand completion(D&C)costissome$220thousandwhichincludes$90thousandfordrillingand$130 thousandforcompletionandequipment.ThisequatestoanincrementalD&Ccostof$0.88.The playisgenerallytothewestoftheoriginalWyodakplayandcoversanareaofabout4X10=40 townshipsor1,400squaremiles.

GreenRiverBasinCoalbedMethane TheGreenRiverBasinofsouthwesternWyomingonlyproducesabout20MMcfperdayofcoalbed methane.However,productionhasbeenincreasinggradually.Itappearsthattheplaymay experiencesignificantgrowthoverthenextfewyears.In2007,theBLMissuedaRecordof

47 EOG,February,2008investorslides. 48 BillBarrett,March,2008investorslides. 49 BillBarrett,April,2008investorslides.

81 DecisionallowingtheAtlanticRimCoalbedprojecttoproceed. 50 Thedecisionwillallowthe completionof1,800coalbedmethanewells,mostofwhichwillbecompletedoverthenextfive years.51 AnAnadarkopublicationstatesthattheyplantocomplete160CBMwellsinthefieldin 2008.DoubleEaglePetroleumisworkingwithAnadarkoBasinontheproject.Theyindicatethat initialpotentialsfromveryrecentwellsdrilledduringthepastyearhaveincreasedsubstantially, withrecentwellsaveraging783mcfperday. 52 Wellsareexpectedtorecover0.9to1.2Bcfwith adrillingandcompletioncostof$1.1millionincludinginfrastructure.

BaxterShale–GreenRiverBasin Twofirms–QuestarandKodiakOilandGas–havebeentestingthepotentialfornaturalgas productionfromtheCretaceousBaxterShaleinthesouthernGreenRiverBasininWyomingand Colorado.TheBaxterisatdepthsof9,500to13,000feetandtherearedeepertightsands objectivesintheDakotaandFrontier. 53 Questarhascompletedapproximately20wells,although verylittleinformationisavailableonthem.Kodiakissaidtohavetested2MMcfdintheKodiakin a$4.5millionwellwith9fracstages. 54

PierreShale-RatonBasin,Colorado PioneerNaturalResourceshasdiscoveredalargevolumeofrecoverablegasinthePierreShaleof theRatonBasininColorado.Thisplayliesbeneathitsexistingcoalbedmethaneproduction.The playissaidtoencompass134,000acres,allheldbyproductionfromthecoalbedmethane. Pioneerhasdrilledfiveverticalwellswhichareproducingacombined2MMcfperday. 55 The companyplans15Pierrewellsin2008,andindicatesthatthereare1,200risk-adjustedwell locationson80acrespacing.(Companiesoftenciterisk-adjustedlocations,whichadjustsgross drillinglocationsforperceivedgeologicalriskfactors).Theyexpect70Bcfofprovedreservesby yearend2008and200Bcfby2010,andarealsotestinghorizontalcompletions.

GothicShale–ParadoxBasin,Colorado BillBarretthastestednaturalgasfromtheGothicShaleformationinthesouthwesternColorado portionoftheParadoxBasin.A2007wellinMontezumaCounty,Coloradotestedat500mcfd withagasheatingvalueof1,200Btu. 56 Arecentcompanyreportstatesthattheyareevaluating theplayandplanoneortwohorizontalwellsin2008.Theshalesectionisabout150feetthick, thermallymature,andoverpressured.Thedepthrangeis5,500to7,500feet.Ithasbeenreported thatBarrettexpects800BcfequivalentofpotentialandisanticipatedonetothreeBcfperwell. 57

50 BureauofLandManagement,2007,“RecordofDecision–EnvironmentalImpactStatementforthe AtlanticRimNaturalGasField,CarbonCountyWyoming”BLM,Cheyenne,Wyoming,March,2007. 51 OilandGasJournal,September24,2007. 52 DoubleEaglePetroleum,April,2008investorslides. 53 Questar2007AnnualReport. 54 OilandGasJournal,August3,2007. 55 OilandGasJournal,April9,2008. 56 IHS,2007,IndustryHighlights,May,2007. 57 OilandGasJournal,September24,2007.

82

Mid-Continent

Figure27showsthestatelevelnaturalgasproductiontrendfortheMid-Continentregion. Productionhadbeeninasteadydeclineuntilrecentyearsbuthasnowturnedthecornerdueto tightgasandshalegasdevelopment. Table20 and Figure28presenttheplayleveldataanda summaryofunconventionalnaturalgasproduction.

Figure27Mid-ContinentStateNaturalGasProductionTrends

3,500

3,000

2,500

2,000 AR KS 1,500 OK Bcf per Year

1,000

500

0

3 92 9 95 96 99 02 06 9 0 1990 1991 19 19 1994 1 19 1997 1998 19 2000 2001 2 2003 2004 2005 20 2007

83 Table20Mid-ContinentUnconventionalNaturalGasProductionby Play

Percent BCF per Year Raw Gas Change Since Basin Gas Type 2000 2001 2002 2003 2004 2005 2006 2007 2000 Arkoma Woodford Shale 0 0 0 0 3 14 29 71 na 0 0 0 0 0 2 15 89 na Chautaqua Hartshorne CBM 6 9 12 15 15 15 15 15 150% Cherokee CBM 5 7 9 11 13 13 13 13 160% Cherokee Cherokee CBM 2 3 4 9 13 16 22 30 1329% Anadarko Cleveland Tight 32 32 32 35 46 55 59 60 88% Granite Wash Tight 51 59 65 66 95 127 172 200 292%

Tight Total - Studied Plays 83 91 97 101 141 182 231 260 213% Coalbed Total 13 19 25 35 41 44 50 58 343% Shale Total - Studied Plays 0 0 0 0 3 16 44 160 na

Total Unconventional 96 110 122 136 186 242 325 478 397%

Figure28Mid-ContinentUnconventionalNaturalGasProduction Summary

300

250

200 Tight 150 Shale Coalbed Bcf per Bcf Year 100

50

0 2000 2001 2002 2003 2004 2005 2006 2007

84

FayettevilleShale–ArkomaBasin ThemostactiveoperatorintheFayettevilleShalehorizontaldrillingplayintheArkansasArkoma BasinisSouthwesternEnergy.SouthwesternEnergyhasanacreagepositionofabout850,000 acresandhasgrossoperatedproductionofabout400MMcfd. 58 Thecompanycontinuestohave excellentsuccessacrossawidegeographicarea.Theyhavedrilledatotalof533wells,including 426horizontalscompletedwithslickwaterfractures.Theaveragelaterallengthhasincreasedto 3,300feetandcurrentcompletedwellcostsareaveraging$3.05million.Theaveragerecoveryof recentlydrilledwellsappearstobemorethan1.5Bcfbasedoncompanypublishedproduction informationandcharts.

SouthwesternEnergyhas33pilottestsencompassingareasof8countiesinArkansas.Theirpilot anddevelopmentactivityisabout140mileseast-westwhilethenorth-southdimensionisabout30 milesforanareaofabout4,200squaremiles.ThiscomparestoICF’smappedassessmentofthe Fayetteville(whichincludestheentireplay,notjusttheSouthwesternEnergypart)ofabout9,000 squaremiles.Onerecentarticleindicatedthattheeasternportionoftheplay,termedthe MississippiEmbaymentarea,isnotperformingaswellasthecorearea. 59

Geologically,theplayisthesameageastheBarnettShale,buttherearemanydifferences.Thereis morelateralgeologicalvariabilityoverallthantheBarnett.IntheFayetteville,thethickestportion oftheshaleliesintheshallowerareas,whileintheBarnettthethickestshaleliesinthedeeper areas. 60 Despitethis,thereappearstobeaverybroadareaofanticipatedeconomicdevelopment.

OtheroperatorsincludeChesapeake,XTO,andPetrohawk.Petrohawkisreportingthepotential foronetofourBcfperwellwithcompletedwellcostsof$1.75to$2.75million.Thereisatotalof 9,900potentiallocationsand3.2Tcfofpotentialontheirleasehold. 61 Welldepthsrangefrom 1,500feetinthenorthernshallowpartoftheplayto5,500feetinthesouthernarea.The$2.7 millionwellcostrelatestothe5,500footwells.

WoodfordShale–ArkomaBasin TheDevonianWoodfordShalehorizontalplayintheeasternOklahomaportionoftheArkoma Basincontinuestobeveryactive.ICFanalysisindicatesthattheplayproducedapproximately71 Bcfin2007foranaveragerateofalmost200MMcfd.TheproductionrateasofJanuarywas reportedbyoperatorstobe275MMcfd.

ThemostactiveoperatorisNewfieldExploration,withareportedyearendproductionrateof160 MMcfdandaforecast2008exitrateof260MMcfd.62 Reportedtotalindustrydrillingwas444 wellsthrough2007withNewfieldaccountingforabout160.OtheroperatorsincludeDevon, Antero,Chesapeake,ContinentalResources,Petroquest,andXTO.

58 SouthwesternEnergy,May2008investorslides. 59 OilandGasInvestor,2007,“AnInvestor’sGuidetoShaleGas,”January,2007. 60 OilandGasInvestor,2007,ibid. 61 Petrohawk,May,2008investorslides. 62 NewfieldExploration,March,2008investorslides.

85 WellcompletionmethodsandapproachescontinuetoevolveintheWoodford.Newfieldhas developedapproachesthatarerecoveringmorenaturalgasandgettingmuchhigherinitialwell productivity.Recentsuccesswiththisefforthasresultedfromlongerlateralsandmorefractures perwell. 63 64

Newfieldhasdrilled66standardlateralsatastandardlengthof2,500feet.Theyhavedrilled14 extendedlateralslongerthan3,000feet. 65 CurrentF&Dcostsarereportedtobeapproximately $2.30-$2.40permcf,butthefirmbelievesthatincreaseddrillingofextendedlateralsto3,500– 4,700feetormorewillreducecoststoarangeof$2.00orless.Costsavingapproachesthatare alsobeingappliedincludedrillinguptofourwellsperpadandperformingsimultaneousfractures inadjacentwells.Verticalwelldepthsareintherangeof8,000to11,000feet.

TheWoodfordcoversaverylargeareaandexhibitslargegeologicvariability.Becauseofthis, Newfieldisnowusing3-Dseismicsurveyingbeforedrillinginmostcases.Theplaydoesnot apparentlyhavethekarsting(erosional)issuesthatoccurintheBarnett,whichhaspresented difficultiesinthatplay.However,therearefaultsintheplay.Faultswithsignificantoffset(vertical displacement)canmakeitdifficulttokeepwithinthetargetedintervalinthehorizontalsection.

GraniteWashPlay–AnadarkoBasin TheICFdatabaseindicatesthattheGraniteWashtightgasplayinthewesternAnadarkoBasin producesabout200Bcfperyearfrom2,500naturalgaswells.

ChesapeakeEnergyhasbeenveryactiveinanareacalledtheColonyGraniteWashplayinCuster andWashitaCounties,Oklahoma.Recently,theyannouncedthattheyareteamingwithEnogexto expandgatheringandprocessingintheplay.Theyindicatethepotentialfor650wellsaveraging 3.2Bcfeachforanundevelopedpotentialofabout2.1Tcf. 66 Thecompaniesarerunning12rigs intheplay.

TheGraniteWashplayisalsoactiveintheTexasPanhandle.Questarreportsthattheyhave235 drillinglocationsintheTexaspartoftheplay.TheEURperwellis0.8to2.0Bcfanddrillingcosts are$2.2to$4.4million.

AtokaPlay–WesternAnadarko PennsylvanianAtokatightsandsarebeingtargetedintheTexasPanhandle.EOGResourcesis activeinAtokahorizontaldrilling,with17wellsdrilledtodate. 67 Theyreportinitialwellpotential ratesintherangeofsixtosevenMMcfdwithcompletedwellcostsof$3.4millionand400Bcfof playpotential.

63 OilandGasInvestor,2007,“AnInvestor’sGuidetoShaleGas,”January,2007. 64 OilandGasJournal,April7,2008. 65 OilandGasJournal,April7,2008. 66 ChesapeakeEnergy,May,2008investorslides. 67 EOG,May,2008investorslides.

86 ClevelandSandHorizontalPlay–AnadarkoBasin TheClevelandtightsandplayinthenortheastcorneroftheTexasPanhandleandextendinginto westernOklahomahasbeenactiveforseveraldecadeswithverticaldrillingandstimulation.Over thepasttenyears,horizontaldevelopmenthasdominated.BPtestedhorizontallateralsusingslim holedrilling.Ithasbeenreportedthatover350horizontalwellshavebeendrilledintheplay,with recoveriesaveraging1.5Bcfperwell. 68 Inaddition,ithasbeenreportedthat20horizontalswere completedinin2003,followedbyannualtotalsof70,90,and115in2006. 69 Thedepthrangeof theplayisrelativelyshallow,atabout6,500to8,000feet.EOGResourcesandJonesEnergyhave beenactiveintheplay.

WoodfordShaleGasintheAnadarkoBasin CimarexEnergyannouncedtheemergenceofahorizontaldrillingnaturalgasplayintheWoodford ShaleoftheAnadarkoBasin. 70 Measureddrillingdepthisintherangeof13,000to15,000feet andlaterallengthsbeingtestedrangefrom2,500to4,000feet.OnewellinCanadianCounty flowed2.6MMcfdand61b/dofoil.

NorthandEastTexas

ThegeologicalbasinsinNorthandEastTexasarethelocationofsomeofthemostactive developmentofunconventionalnaturalgasresourcesinNorthAmerica.Includedhereisthe BarnettShaleoftheFortWorthBasinandtheBossierandCottonValleytightsandsinEastTexas. Figure29isachartshowingdistrictlevelnaturalgasproductiontrendssince1990.TexasRailroad Commissiondistricts5and6coverthenortheastcornerofthestateandaregenerallyequivalentto thegeologicalEastTexasBasin.District9and7BencompassesmostoftheBarnettShaleplayin theFortWorthBasin.ThechartshowsrapidgrowthoverthepastdecadeconcentratedinDistrict 5and9.TheDistrict5growthisattributedmostlytotheBossiertightsandplaywhileDistrict9 growthislargelyfromtheBarnettShale.

Table21and Figure30 showthetrendsinunconventionalnaturalgas.BarnettShaleproduction increasedfrom79Bcfin2000to930Bcfin2007andcontinuestoincrease.Bossiertightgas productionisbrokenoutintotheshallow“Freestone”playandthe“DeepBossier”play.Early growthintheBossierisattributedtotheFreestonetrend,whilerecentgrowthisfromthedeep trend.Deeptrendgrowthhasbeenveryrapidoverthepasttwoyearsandisexpectedtorampup greatlyincomingyears.

68 PTTC,2008,April2008editionofPTTCNetworkNews. 69 IHS,2007,IndustryHighlights–May,2007. 70 OilandGasJournal,2008,“Woodford:AHorizontalAnadarkoBasinTarget,”May28,2008.

87 Figure29NorthandEastTexasDistrictNaturalGasProductionTrends

3,000

2,500

2,000 N. TX Dist. 7B N. TX Dist. 9 1,500 E. TX Dist. 6

Bcf per Year Bcf per E. TX Dist. 5 1,000

500

0

0 2 4 5 7 9 2 4 5 7 9 91 9 93 9 9 9 98 9 00 0 03 0 0 0 9 9 9 9 9 9 0 0 0 1 1 1 1 19 1 1996 19 1 19 2 2001 20 2 20 2 2006 20

Table21NorthandEastTexasUnconventionalNaturalGasProduction byPlay

BCF per Year Raw Gas Change Since Basin Gas Type 2000 2001 2002 2003 2004 2005 2006 2007 2000 Fort Worth Basin Shale 79 135 221 305 381 504 707 930 1077% East Texas Shallow Bossier Tight 107 158 194 242 280 286 282 290 171% East Texas Deep Bossier Tight 20 40 38 36 45 101 146 186 830% East Texas Cotton Valley 413 421 414 447 501 575 637 700 69%

Tight Total - Studied Plays 540 619 646 725 826 962 1,065 1,176 118% Coalbed Total 0 0 0 0 0 0 0 0na Shale Total - Studied Plays 79 135 221 305 381 504 707 930 1077% Total Unconventional 619 754 867 1,030 1,207 1,466 1,772 2,106 240%

88 Figure30NorthandEastTexasUnconventionalNaturalGas ProductionSummary

1,400

1,200

1,000

800 Tight

600 Shale Bcf per Year Bcf

400

200

0 2000 2001 2002 2003 2004 2005 2006 2007

BarnettShale–NorthTexas GasproductionfromtheBarnettShaleintheFortWorthBasincontinuestoincreaseandtheextent oftheplayisexpanding.TheTexasRailroadCommissionreportsthatthroughApril,2008there wereabout7,500BarnettShalegaswellsoperating.Thenumberofnewdrillingpermitscontinues toincrease,fromabout1,100in2004toover3,500in2007.Thetopfiveoperatorsonthebasisof annualproductionwereDevon,XTO,Chesapeake,EOG,andEncana.

EstimatesofrecoverableresourcesfromtheBarnetthaveincreasedconsistentlyoverthepast decadeormore.A1996USGSestimatewas3Tcf;theircurrentestimateis26Tcf.Asdiscussed above,ICFdevelopedavolumetricassessmentwithanunriskedgas-in-placevolumeof1,150Tcf andapotentialrecoveryof107Tcfbaseduponultimate40acrespacing.(Unriskedgas-in-placeis basedonvolumetriccalculationsofthickness,area,andotherfactorswithoutdiscountingfor perceivedgeologicrisk).

TheICFdatabaseindicatesa2007productionrateof930Bcforapproximately2.62Bcfd.That excludesassociatednaturalgas(gasfromoilwells)whichisalsoincreasingbutrepresentsasmall fractionoftotalnaturalgasproduction(currentlylessthan30MMcfd).ICF’sproductiondataare slightlyhigherthanwhattheRailroadCommission(RRC)isreportingbecausetheyincludeanICF

89 estimateofreporting“lag”.(Thereisoftenalongperiodoftimebeforeproductionreportsare receivedandprocessedbystateagencies). Table22showsthecompletedproductionseriesfrom theRRC.Notetheincreaseinoilproductionandcasinghead(gasassociatedwithoil)naturalgas production.TheBarnetthasverysignificantoilproductionpotential,andoperatorsarebeginning tousehorizontaldrillingtechniquesontheoilleg.

CurrentareasofhighactivityincludeJohnsonandTarrantCounties.Mostofthenewwellsare horizontalsusingstateoftheartrigs. 71 Inmanycases,rigsaredrillingmultiplehorizontalwells fromasinglepad.

Table22NewarkEast(BarnettShale)AnnualNaturalGasandLiquids Production Texas RRC Website with ICF Estimate for 2007

Ratio of Casinghead Condensate to Oil Gas Gas Well Gas Condensate Total Gas Total Gas Date (BBL) (MMCF) (MMCF) (BBL) (MMCF) (BBL/MMCF) 2000 0 0 79,068 129,001 79,068 1.632 2001 4,524 95 134,562 402,197 134,657 2.987 2002 15,484 206 220,571 936,413 220,778 4.241 2003 37,705 454 304,067 1,172,485 304,521 3.850 2004 88,392 1,134 379,762 1,318,257 380,896 3.461 2005 155,175 2,459 501,699 1,450,062 504,158 2.876 2006 320,965 3,723 704,295 1,639,113 708,018 2.315 2007 624,059 7,541 955,063 1,702,482 962,604 1.769

Note: Source: Texas RRC production query site; 2007 data includes ICF estimate.

BossierTightSand–EastTexas Asstatedabove,theBossiertightsandplayconsistsofashallowBossiertrendcalledtheFreestone trendandtheDeepBossierplay.TheshallowBossierisgenerallyfoundatdepthsof12,000to 14,000feetwhiletheDeepBossierisbelow15,000feet. 72 TheICFdatabaseindicatesthatabout 2,500wellshavebeencompletedintheshallowplayandapproximately500wellsinthedeepplay.

TheshallowtrendproducesinFreestone,Leon,,andRobertsoncountiesandhasbeen veryactiveoverthepastdecade.XTOisveryactiveintheregion,indicatinganinventoryof approximately2,000undrilledlocations. 73 Theyreportedyear2007provedreservesofover3Tcf whilerunning28rigsintheplay.Theyhavecompletedover1,100wellsandreportproductionof over650MMcfperday.Withanestimated2Bcfperwellfromtheundrilled2,000wells,the potentialisabout4Tcfjustontheiracreage.Mosthistoricdrillinghasbeenwithverticalwells. Theyhavethepotentialtodrillverticalson20acresandarealsodrillinghorizontalwells.Devonis alsoactiveandisdrillingsomehorizontalwells.

71 PTTC,2008,“PTTCNetworkNews,”PetroleumTechnologyTransferCouncil,April,2008. 72 OilandGasInvestor,2006,“TightGas,”March,2006. 73 XTO,2008,March,2008investorslides.

90 Productionfromthedeeptrendisexpandingrapidly.OperatorsincludeGastar,Encana,Leor Energy,andConocoPhillips.IthasbeenreportedthatatypicalrangeofEURperwellisabout5to 7Bcf,butsomeoperatorshavereportedreservesofover20Bcfperwell. 74 Theplayishighly overpressured,meaningthatithashigherpressureatagivendepththanwouldbeexpectedwitha normalpressuregradient,enhancingwellproductionrates.Reportedwellcosts$8to$12million, butwellproductivityandrecoveryareveryhigh.

CottonValleyandTravisPeak–EastTexas TheJurassicCottonValleyandTravisPeakformationshavebeenactivefordecadesbuthaveseena bigincreaseindrillingactivityoverthepastfiveyears.ICF’sdatabaseindicatesthat2007natural gasproductionfromtheCottonValleywas700Bcf,upfrom400in2000.Areasofsignificant activityincludeCarthageandOvertonfields. 75 DevonisveryactiveintheCottonValleyinthisarea andarecentpresentationindicatedthattheyplantodrill120verticalwellsand23horizontalwells in2008. 76

NeartheBossierdevelopmentistheCottonValleylimestonetightplay.AlsonearbyistheJames Limeplay,whichisveryactivesouthoftheCottonValleydevelopments.CabotOilandGasis drillingJamesLimehorizontalwellsandwellsaretestingatovertenMMcfd.Wellsare13,000feet deepwitha5,400footlateral. 77

TexasGulfCoast

TheTexasGulfCoasthasexperiencedasignificantamountoftightgasactivity.Amajorfocusof theactivityisinTexasDistrict4,whichliesatthesoutherntipofthestate.Severalplaysareactive includingtheWilcoxtightsand. Figure31 showsthehistoricproductionforDistrict4andTable 23and Figure32showWilcoxproduction.

74 OilandGasJournal,2007,“UnconventionalGas–NewPlays,Prospects,ResourcesContinuetoEmerge,” AdvancedResourcesInternational,OGJSeptember24,2007. 75 OilandGasInvestor,2006.ibid. 76 Devon,2008,February,2008investorslides. 77 OilVoice,2007,“CabotOilandGasAnnouncesHorizontalDrillingSuccessinEastTexas,Nov.15,2007, http://www.oilvoice.com

91 Figure31TexasGulfCoastDistrict4NaturalGasProduction

1,600

1,400

1,200

1,000

800

Bcf per Year 600

400

200

0 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007

Table23TexasDistrict4UnconventionalNaturalGasProductionby Play

BCF per Year Raw Gas Change Since Basin Gas Type 2000 2001 2002 2003 2004 2005 2006 2007 2000 Texas Gulf CoastWilcox Tight 460 434 416 419 423 415 432 445 -3%

Tight Total - Studied Plays 460 434 416 419 423 415 432 445 -3% Coalbed Total 0 0 0 0 0 0 0 0na Shale Total - Studied Plays 0 0 0 0 0 0 0 0 na

Total Unconventional 460 434 416 419 423 415 432 445 -3%

92 Figure32TexasGulfCoastUnconventionalNaturalGasProduction Summary

470

460

450

440

430 Tight

Bcf per Bcf Year 420

410

400

390 2000 2001 2002 2003 2004 2005 2006 2007

Southeast

TheSoutheastregionconsistsofAlabama,Mississippi,andLouisiana.Asshownin Figure33, naturalgasproductioninthisregionhasbeendecliningoverall. Table24and Figure34showthe contributionoftheWarriorBasincoalbedmethane.Asdiscussedbelow,significantactivityisalso takingplaceintightgasandintheHaynesvilleShaleinLouisiana.EmergingshaleplaysinAlabama arealsodiscussed.

93

Figure33SoutheasternStateNaturalGasProductionTrends

2,500

2,000

1,500 AL MS

1,000 LA Bcf per Year Bcf per

500

0

0 5 9 92 94 98 03 0 07 9 19 1991 19 1993 19 1995 1996 1997 1 1999 2000 2001 2002 20 2004 20 2006 20

Table24SoutheastUnconventionalNaturalGasProductionbyPlay

BCF per Year Raw Gas Change Since Basin Gas Type 2000 2001 2002 2003 2004 2005 2006 2007 2000 Warrior Pottsville CBM 109 111 117 110 121 113 114 115 6%

Tight Total - Studied Plays 0 0 0 0 0 0 0 0 na Coalbed Total 109 111 117 110 121 113 114 115 6% Shale Total - Studied Plays 0 0 0 0 0 0 0 0 na

Total Unconventional 109 111 117 110 121 113 114 115 6%

94

Figure34SoutheastUnconventionalNaturalGasProductionSummary

122

120

118

116

114

112 Coalbed

110 Bcf per Year per Bcf

108

106

104

102 2000 2001 2002 2003 2004 2005 2006 2007

HaynesvilleShalePlay InMarchof2008,ChesapeakeEnergyannouncedtheopeningofapotentiallylargenewshalegas playinnorthernLouisiana–theJurassicageHaynesvilleShale.Thecompanyindicatedthattheir acreagehasupto20Tcfofpotential.Chesapeakeisoperatingfourrigsintheplayandplansto increaseoperationstoeightrigsbytheendof2008.Theyhavenotreleasedtheresultsoftheir drilling,butstatedthattheyhavecompletedfourverticalwellsandthreehorizontalwells.Well recoveriesforHaynesvillehorizontalsareexpectedtobeintherangefiveBcf. InadditiontoChesapeake,operatorsincludePetrohawk,Encana,Questar,ElPaso,andanumber ofsmallindependents. TheplayislocatedprimarilyintheareaofCaddo,DeSoto,Bienville,BossierandRedRiverparishes innorthwesternLouisiana,butitalsoextendsintoEastTexas( Figure35).Thisareadescriptionis baseduponamappublishedbyElPasoandEXCOresources.Itisnotyetapparenthowfarthe playmayextendbeyondthisarea.Depthsrangefrom10,500to13,000feetandtheshaleis about200feetthick.TheformationthinstothewestintoEastTexasandbecomesdeeperfrom northtosouth.Thereareadditionalproductiveformationsabovetheshaleplayincludingthe HosstonandCottonValleyformationsThismeansthatagivenwellmayencounterseveralzones thatcouldbecompleted.

95 InJuly,2008,Petrohawkstatedthattheyhadthreerigsrunningandplannedtoincreasethatto tenbytheendof2008.Thecompanyexpectsthat100rigswillberunningintheplaybymid- 2009,upfromfiveatthebeginningof2008. 78 Figure35MapofHaynesvilleShalePlay Source:EXCOResources

PetrohawkindicatedthefollowingparametersforeconomicanalysisoftheHaynesville:fiveBcfper wellrecovery,completedwellcostsof$6.0to$7.0million,and2,700potentialcompanysiteson 60acrespacingcoveringanetacreageof150,000acres. 79 “Riskedpotential”of6.1Tcfwould equatetoabouthalfoftheindicatedfiveBcfperwellfor2,700wells(Unriskedpotentialis13.5 Tcf.Riskedpotentialincorporatestheoperatorsviewofgeologicrisktotheplayextendingacrossa specificarea).Welldepthsare10,500to13,000feet,makingitdeeperthantheFortWorthBasin BarnettShale. AnimportantaspectoftheHaynesvilleplayisthatitisJurassicinage,makingtheshalemuch youngerthanthatoftheBarnettandtheotherDevonianandMississippianplays.Shouldthe Haynesvillebesuccessfulasthefirstnon-Devonian/Mississippianmajorplay,thismayhave implicationsforotherpotentialnon-DevonianshaleplaysinNorthAmerica.80

78 OilandGasInvestor,July,2008,pg.26. 79 Petrohawk,May,2008investorslides. 80 TheDevonianperiodoccurredapproximately360-420millionyearsago,andtheJurassicPeriodoccurred approximately145-200millionyearsago.

96 BossierShaleinEastTexasandNorthwesternLouisiana AnemergingshaleplaythathasreceivedlittlepressistheBossierShaleofEastTexasandNorth Louisiana.ThisplayisbeingtargetedbyPetrohawkandissaidtoaddadditionalpotentialtothat oftheunderlyingHaynesville.81 Ithasamapdistributionthatextendstothesouthofthe HaynesvilleandtothewestintoEastTexas.

CottonValleyandHosstonTightGas–NorthwesternLouisiana Questarreportsthattheyhaveover1,600drillinglocationsintheCottonValleyandHosston formationsinnorthwesternLouisiana.TheEURperwellis0.7to3.25Bcfanddrillingand completioncostsare$1.7to$2.5million.

ConasaugaShale–Alabama TheageConasaugaShalehasseensomeexploratoryactivityinnortheasternAlabama, butnosignificantproductionhasoccurred.AnewshalegasfieldnamedBigCanoeCreekinSaint Claircounty,Alabamahasbeenestablished. 82 ThisareaisinnorthernAlabamaeastoftheBlack WarriorBasin.GeologicallyitisintheValleyandRidgeprovince,acomplexstructuralprovince trendingnortheastthroughtheAppalachians.ThefieldoperatorisHighmountBlackWarriorBasin, aunitofLoewsCorporation,whichacquireditfromDominionBlackWarriorBasinin2007. Dominiondrilled14wellsinthefieldrangingfrom3,400to9,000feetdeep.Initialtestsranged from26to233mcfperday.EightwellsproducedaboutsevenMMcfinAugust,2007.Theshale isverydifficulttodrilltothefaultingandfoldinginthearea.

EnergenandChesapeakehaveajointventureandareinvolvedinafivetotenwelltestprogram. 83 Inearly2008,Energenfiledpermitsfortwo12,500footwellsinBibbCounty,about95miles southwestofBigCanoeCreek.TheyalsopermittedawellinGreenCounty.

A2006shaletestoperatedbyDominionreportedlyblewoutafterencounteringnaturalgasat 3,500feet. 84 FieldobserversestimatedtheflowrateatbetweenfiveandnineMMcfd.Thearea ofinterestisavalleywithdimensionsof30byfivemilesandconsistsofahighlyfoldedsequence ofshalethatwasdeformedduringthrustfaulting.

FloydShale–Alabama TheMississippianagedFloyd(andNeal)shaleisageequivalenttotheBarnettShaleandthe FayettevilleShale.TheshaleistermedFloydShaleinAlabamaandNealShaleinMississippi.

TheorganicrichzoneoftheFloydshalerangesuptoabout150feetthickandhasadepthrange of4,000to10,000feet. 85 Theformationhaslateralgeologicchangesbutisnotcomplex structurally.Intermsoforganiccarbon,aUSGSreportindicatedanaveragetotalorganiccontent

81 OilandGasInvestor,July,2008,pg.26 82 OilandGasJournal,2008,“OperatorsChaseGasinThreeAlabamaShaleFormations,”January18,2008. 83 Energen,April2008investorslides 84 Williams,Peggy,2007,“ConasaugaSaga,”OilandGasInvestor,September1,2007. 85 OilandGasInvestor,2007,“TheFloyd/NeilShale,”January,2007.

97 of1.8percentwithawiderangeof0.5to10percent. 86 (Organiccontentisakeyfactorin estimatingshalegaspotential.SeeSection6foratableshowingtherangeoforganiccontentfor variousshaleplays).

AppalachianandMidwestBasinsandEasternCanada

TheAppalachianBasinhasproducednaturalgasfromtheDevonianShaleforoveronehundred years.Thebasinalsoproducestightgasandcoalbedmethane. Figure36showsproductionsince 1990.Overallproductionwasflatuntilthemid90s,withproductionincreasesinrecentyears largelyresultingfromMichiganBasinAntrimShale,Virginiacoalbedmethane,andWestVirginia production.

Table25and Figure37presenttheanalysisofunconventionalnaturalgasproduction.

Figure36AppalachianandMidwestStateNaturalGasProduction Trends

1,200

1,000 MI

800 TN OH VA 600 NY

BcfYear per WV 400 PA KY 200

0

2 5 91 9 95 96 99 00 04 0 9 0 1990 19 19 1993 1994 19 19 1997 1998 1 20 2001 2002 2003 2 20 2006 2007

86 Pawlewicz,MarkJ.,andJosephR.Hatch,2007,“PetroleumAssessmentoftheChattanoogaShale/Floyd ShalePaleozoicTotalPetroleumSystem,”Chapter3ofUSGSReportDDS69-I.

98 Table25AppalachianandMidwestUnconventionalNaturalGas ProductionbyPlay

Percent BCF per Year Raw Gas Change Since Basin Gas Type 2000 2001 2002 2003 2004 2005 2006 2007 2000 Appalachian Devonian Shale 200 180 170 160 150 150 150 150 -25% Appalachian Tight Gas 300 300 300 300 350 350 350 350 17% Virginia CBM 53 54 59 63 67 69 81 90 70% PA and WV CBM 10 15 15 15 26 21 24 25 150% Michigan 183 175 166 154 149 144 141 136 -26%

Tight Total - Studied Plays 300 300 300 300 350 350 350 350 17% Coalbed Total 63 69 74 78 93 90 105 115 83% Shale Total - Studied Plays 383 355 336 314 299 294 291 286 -25%

Total Unconventional 746 724 710 692 742 734 746 751 1%

Notes: Appalachian Devonian Shale is produced in , Kentucky, Ohio, Pennsylvania, Virginia, Tennessee and New York. Appalachian tight gas is predominately the Clinton-Medina of eastern Ohio and western Pennsylvania, the Tuscarora which primarily occurs in Pennsylvania and West Virginia, and the Berea of western WV and southwestern VA. The source for above Devonian Shale and Tight Gas plays was a 2007 EIA slide set on the Annual Energy Outlook with post-2004 ICF estimates. Figure37AppalachianandMidwestUnconventionalNaturalGas ProductionSummary

450

400

350

300

250 Tight Shale 200 Coalbed Bcf per Year per Bcf 150

100

50

0 2000 2001 2002 2003 2004 2005 2006 2007

99 MarcellusShalePlay–AppalachianBasin TheDevonianageMarcellusShaleemergedinearly2008asapotentiallylargenewshalegasplay. Operatorshavebeentestingbothverticalandhorizontaldrillingacrossaverywidearea representingthefullknowndepositionalextentoftheMarcellusfromWestVirginiaonthe southwesttonortheasternPennsylvaniaandsouthernNewYorkonthenorth(Figure38). Severallargeoperatorshaveannouncedthattheyhavelargeacreagepositions,includingRange Resources,Chesapeake,SouthwesternEnergy,andAtlasEnergy.AnadarkoandEOGandCabot arealsoactive. Althoughanumberofoperatorshaveannounceddrillingplans,theplayisinanearlystageandit isdifficulttoforecastdrillingactivityandreserveadditions,evenoverthenearterm. RangeResourceshasdrilledabout100totalwellsincluding20horizontaltests.Theyhavetested someratesonhorizontalsofupto4.7MMcfperday.InaJuly,2008pressrelease,theystated thataveragereservesperwellareexpectedtobethreetofourBcf,horizontalwelldrillingcostsare $3to$4million,andfindinganddevelopmentcostsrangefrom$0.90to$1.60permcf equivalent.Theystatedthatunriskedpotentialoncompanyacreageis15to22Tcf,ofwhich10to 15TcfisinsouthwestPennsylvaniaandWestVirginia,withtheremainderinthenortheastpartof theplay. Chesapeakehasstatedthattheyplantocomplete165verticalandhorizontalwellsin2008and 2009.TheyseepotentialinboththeMarcellusandHuron. RangeResourceshasannouncedpotentialresourcesof15to22Tcf,XTOmayhavetwotofour Tcf,andAtlasEnergymayhavefourtosixTcf. Geologically,theMarcellusextendsacrossaverylargegeographicarea,evenincomparisontothe Barnett.ItisgenerallythinnerthantheBarnett,averagingabout50–200feet.Organiccontent andmaturityarefavorableanddepthsareinarangeof5,000to8,500feet. In2002,theUSGSassessedtheMarcellusashaving295Tcfofnaturalgas-in-place,andtechnically recoverableresourcesof1.93Tcfofnaturalgasand11.6millionbarrelsofnaturalgasliquids. 87 Thatassessmentwasbaseduponverticalwellsanddoesnotincludetheeffectsofmodern fracturingtechnology.TheextenttowhichtheUSGSincludedthedeeper,morehigherpressured partsoftheplayisnotknown.AsdiscussedinSection5,theICFassessmentofrecoverable resourcesforthisplayis63Tcf.Thisisapreliminaryassessmentthatisderivedinpartfromthe earlierUSGSassessmentofgas-in-place. WhiletheMarcellusislocatedclosetoeasternpopulationcenters,accessibilityorabilitytodrillmay hinderdevelopmentintheplay,atleastrelativetoplaysinTexas,Oklahoma,andArkansas.For example,topographyisexpectedtobeafactorinsomeareas,resultingineitherreducedaccessor highercosts.Industryanalystshavementionedtheneedforsmaller,moreportablerigsdueto roadandbridgeinfrastructurecharacteristics.Ifthereisaneedtoconstructnon-standardrigs,this couldimpacttherateofactivity.

87 USGS,2006,“AssessmentofAppalachianBasinOilandGasResources:DevonianShale–Middleand UpperPaleozoicTotalPetroleumSystem,”USGSOpenFileReport2006-1237.

100 Figure38MapofMarcellusandHuronShale Source:EXCOResources

HuronShalePlay–AppalachianBasin TheDevonianHuronShalehasbeenproducingnaturalgasformorethanacenturyfromvertical wellsinareassuchastheBigSandyFieldinKentucky.In2006,Pittsburgh-basedEquitable Resourcesbegandrillinghorizontalwellsinthislowpressureshaleplay. 88 Thecompanyisair drillingthesewellsandusingmultiplefracturingstagesandarehavingexcellentsuccess.Todate, theyhavedrilledmorethan200horizontalsandplantodrillmorethan300in2008.Thewells cost$1.2millionperwellandareexpectedtorecover0.75to1.50Bcf,assumingat3,500foot lateralandninefracturestages.Also,theyareexperimentingwiththeuseofmulti-lateraldrilling, usingmanyhorizontallateralstoaccessthenaturallyfracturedplayinsteadofasinglelateralwith artificialfracturing.Thesemulti-lateralwellsaremuchlessexpensiveduetotheuseofairdrilling, butrecoverlessgas.Theproductioneconomicsaresaidtobeverygood.

UticaShale–QuebecandNewYork InAprilof2008,ForestOilannouncedthediscoveryofnaturalgasintheUticaShaleintheSt. LawrenceLowlandsbetweenMontrealandQuebec.Thediscoveryisstillintheearlyevaluation projectstage.ForestOilestimates4.1Tcfofpotentialnaturalgasrecoveryonitsacreageposition ofabout270,000acres.Thisisbasedupona20percentrecoveryfactor( Figure39).Other operatorsincludeTalisman,Gastem,Questerre,andJunex. 88 OilandGasInvestor,June,2008.

101 AGasDailyarticle(April7,2008)indicatedthattheUticaShaleextendsacrossmuchofsouthern NewYorkandintoCanada.InNewYork,theformationisabout12,000feetdeep,muchdeeper thanthe2,000to6,000feetofdepthinQuebec.ItliesbelowtheMarcellusShale,sothatarea mayhavedualformationpotentialinNewYork. InQuebec,ForestOilplannedtodrillthreehorizontalwellsduring2008.Firstcommercial productionshouldoccurin2009,whileafull-scaledevelopmentprojectmayoccurin2010, dependingondrillingresults.TwoverticalwellswerecompletedbyForestin2007withinitial potentialsofupto1MMcfperdayandhorizontalwellsaretestingatseveraltimesthatrate,with 2,000footlateralsandfourfracturesperlateral.Thegasis87-97percentmethanewithlessthan onepercentinerts(CO 2ornitrogen)andaheatingvalueof1,027to1,136Btu’s.Currently,there isexistingpipelinecapacitytomovethenaturalgas. Geologically,theUticaisOrdovicianinage,makingitsignificantlyolderthantheDevonian MarcellusandotherDevonianandMississippianorganicshales.However,thereiscurrentlyno reasontobelievethatgeologicageisasignificantfactoraffectingtheunit’spotential.The formationisabout500feetthick.Totalorganiccontentisfavorable,althoughitappearslower thantheBarnett. Figure39LocationofUticaShalePlay Source:ForestOil,2008

102

ShaleGasPlaysinNewBrunswickandNovaScotia Recently,TrianglePetroleumofCalgaryannouncedparticipationintwoemergingshaleplaysin EasternCanada( Figure40 ).TheHortonBluffShaleplayislocatedinonshoreNovaScotiaandthe FrederickBrookShaleplayislocatedinNewBrunswick. AstudypreparedbyRyderScottofCalgaryforTrianglePetroleumhasanaturalgas-in-place estimatefortheNovaScotiaplayof69Tcf. 89 90 Thisstudyalsoindicatedthattotalorganiccontent is13percentandthermalmaturationisfavorableat1.5to2.0%vitrinitereflectance.Drilling depthrangesfrom3,700to4,400feetandthicknessis590feet. Trianglehasannouncedplanstospend$30to$33milliontotesttheNovaScotiaplaywithsix wells.A10,000footverticaltestwasplannedforJulyof2008.Bothverticalandhorizontaltest wellsareplanned.Theirleaseareais516,000acresor806squaremiles.TheRyderScottstudy focusedona25squaremileareathatisestimatedtocontainthreeTcfofgas-in-placeor120Bcf persquaremile. IntheNewBrunswickplay,twootheroperatorsinadditiontoTriangleareactive–Corridor ResourcesandPetroworth.Petroworthhasafourwelldrillingprogramfor2008witharigcapable of7,500feet.CorridorResourcesistestingthepotentialforhorizontalshaledevelopmentinthe FrederickBrookformationneartheirMcCullyfield.Theyhavenotyetestablishedproduction. Figure40ShalePlaysinNewBrunswickandNovaScotia

89 Marciano,Vince,2008,“TheFourHorsemenoftheMaritimeShale, www.statesidereport.com ,June2008. 90 Ryder-Scott,2008,“ResourcePotential–HortonBluffFormation,WindsorBasin,NovaScotia,”March, 2008.(fromTrianglePetroleumwebsite).

103 PermianBasin

ThePermianBasinofWestTexasisthelocationofsignificanttightgasactivityandpotentialshale gasproduction. Figure41 showsthedistrictlevelnaturalgasproductionsince1990. Conventionalnon-associated(gaswell)andassociated(oilwell)productiondeclinedoverall.This declinewassomewhatoffsetbytightgasdevelopment,whichhasincreasedinrecentyears.Major tightformationsinthebasinincludetheCanyonandMorrow. Table26and Figure42summarize theunconventionalnaturalproductioninthePermianBasin.

Figure41PermianBasinDistrictNaturalGasProductionTrends

1,400

1,200

1,000

800 W. TX Dist. 8 W. TX Dist. 8A 600 W. TX Dist. 7C Bcf per Year Bcf per

400

200

0

0 2 8 0 6 9 9 96 9 0 04 0 19 1991 19 1993 1994 1995 19 1997 19 1999 20 2001 2002 2003 20 2005 20 2007

104 Table26PermianBasinUnconventionalNaturalGasProductionby Play

BCF per Year Raw Gas Change Since Basin Gas Type 2000 2001 2002 2003 2004 2005 2006 2007 2000 Permian Canyon Tight 161 172 172 169 164 175 183 200 24% Permian Morrow Tight 149 170 160 146 148 159 157 160 7%

Tight Total - Studied Plays 310 342 332 315 312 334 340 360 16% Coalbed Total 0 0 0 0 0 0 0 0na Shale Total - Studied Plays 0 0 0 0 0 0 0 0 na

Total Unconventional 310 342 332 315 312 334 340 360 16%

Figure42PermianBasinUnconventionalNaturalGasProduction Summary

370

360

350

340

330 Tight 320 Bcf per Year Bcf 310

300

290

280 2000 2001 2002 2003 2004 2005 2006 2007

105 PermianBasinDevonianShalePlay BoththeBarnettandWoodfordorganicshalesarepresentintheDelawareBasinportionofthe overallPermianBasinofWestTexas.TheBarnettshalerangesupto800feetthick,substantially thickerthanintheFortWorthBasin.TheWoodford,whichisonlyslightlydeeper,isupto400feet thick.Totalorganiccarbonisstatedtobeintherangeof4.5tosevenpercentinReevesCounty, Texas.Insomeareasoftheplay,thetotalshalethicknessisuptothreetimesasgreatasthe thicknessintheFortWorthBasin.

CountiesincludedintheplayincludeReeves,Brewster,Pecos,andCulbersonCounties,Texas.The playisconcentratedintheareaofReevesandCulbersonCounties.

Littlegeological,wellpotential,orcostinformationhasbeenpublishedontheplay.Atypical drillingdepthfortheplayis12,500feetorgreater,witharangeof10,000to16,000feet.Thisis muchdeeperthantheFortWorthBasinBarnett.Thedepthoftheplayhasresultedinhighercosts andmoreexpensive,difficultcompletions.Wellcostsforverticalwellsaresaidtobeapproximately $3millionandhorizontalwellaresaidtocost$4.5million. 91

SeveraloperatorshavebeenactiveintheplayincludingChesapeakeandQuicksilver.In2007, Chesapeakehadover800,000acresintheplaywithanunriskedpotentialofabout11Tcf. Quicksilverindicatestheyhave375,000acreswiththreetosixTcfofpotential.Otheroperators includeConoco-PhillipsandEncana.In2007,Chesapeakestatedthattheyhadtwoverticaland twohorizontalproducingwellsandeightwellsinvariousstagesofdrillingandcompletion.

Quicksilverhadplannedfivetosixevaluationwellsin2007;itisunknownwhethertheyhave establishedcommerciality.Theydostate,however,thattheyhaveaninventoryof1,000–2,000 welllocationswithpotentiallythreeBcfperwell. 92

91 Reisterberg,Robert,etal,2007,“NewandEmergingUnconventionalPlaysandProspects,”OilandGas Journal,August3,2007. 92 QuicksilverResources,April,2008investorslides.

106 WesternCanada

TheWesternCanadaSedimentaryBasinaccountsforthevastmajorityofallCanadiannaturalgas production.Thebasinexperiencedalargeincreaseingasproductioninthe1990s.Thisincrease wasbroughtaboutbynewdevelopmentaswellasproductionfrompreviouslydiscovered resources.Inrecentyears,productionhaspeaked,asshownin Figure43.Coalbedmethane activityhasincreasedandaninterestindeep,tightgashasemerged.Theprovincialgovernment doesnotreporttightgas,butinformationoncoalbedmethaneispublishedandissummarizedin Table27and Figure44 .In2007,coalbedmethaneproductionwasapproximately650MMcfd andwasprimarilyfromthedryHorseshoeCanyonformation.Industryplanstodevelopthe deeper,andwet,Mannvillecoalbeds.Mannvillecostsarehigherbutthewellsaremuchmore productive.

Intermsoftightgas,themajoractivityisinAlberta’sDeepBasin.Thecurrentrateofnaturalgas productionfromthisareais2.7Bcfd.Thisisanincreasefrom1.7Bcfdin1996.Arecentreportby CSUGindicatedarangeofundevelopedpotentialof16to30Tcf.93 Figure43.WesternCanadaProvinceNaturalGasProduction

7,000

6,000

5,000

4,000 3,000 Alberta Bcf Bcf per year

2,000

1,000

0 80 82 84 86 88 90 92 94 96 98 00 02 04 06 Year 93 CanadianSocietyforUnconventionalGas,2007,“DeepBasinTightGas,”presentationbyDaveFlintand BobDixon,November,2007.

107 Table27WesternCanadaUnconventional(CBM)NaturalGas Production

Percent BCF per Year Raw Gas Change Since Basin Gas Type 2000 2001 2002 2003 2004 2005 2006 2007 2000

Alberta CBM 2 5 4 4 23 47 167 237 12900%

Figure44WesternCanadaUnconventionalNaturalGasProduction (CBMOnly)

250

200

150

CBM

100 Bcf per Bcf Year

50

0 2000 2001 2002 2003 2004 2005 2006 2007

BritishColumbiaWesternCanadianSedimentaryBasinDevonianMuskwaShale TheHornRiverBasinofnortheasternBritishColumbiahasseenagreatdealofleasingand experimentalshalegasdrillingactivityoverthepasttwoyears.Theplayofinterestisanorganically richDevonianageshalecalledtheMuskwaShale.AccordingtotheBCMinistryofMinesand Energy,since2001,16drilledwellsandfivelicensedundrilledlocationshadbeengranted experimentalstatusthrough2007. 94 Leasingactivityintheplayacceleratedin2006,withthis 94 BritishColumbiaMinistryofMinesandEnergy,PetroleumGeologyOpenFileReport2007-01.

108 trendcontinuingthrough2008.Althoughgashasbeentestedfromnumerouswells,commercial productionhasnotyetbeenestablished. Figure45isamapofthearea. ArecentreportbyconsultantWoodMackenzieindicatedthattheHornRiverBasinmayhave recoverablereservesof37to50Tcf. 95 Further,recoveryperwellcouldbedoublethatofthe Barnettduetotheshalethickness,organiccontent,andpressure.Inaddition,theplaywould requirewellheadpricesof$6.50perMMBtutobeeconomicallyviable. Figure45MapofHornRiverBasin,BCShalePlay Source:Encana,2008

95 GasDaily,May8,2008.

109 InAprilof2008,Nexenannouncedit’snewsuccessintheMuskwaShale.Thefirmhasestimated thatthepotentialforthreetosixTcfofnaturalgason123,000netacres. 96 Nexenhasplacedone horizontalandoneverticalwellintolong-termproductiontests.Otheroperatorsintheplay includeEncana,Apache,EOG,Devon,ExxonMobilandQuicksilver. Geologically,theMuskwashalehasmanysimilaritiestotheBarnett.Theseincludeathicksection oforganicshalewithgoodsilicacontentmakingitamenabletohydraulicfracturing.(Highersilica contentsmakeshalesmorebrittleandmoreamenabletofracturing).Wellproductivityand indicatedreservesperwellmaybesimilartoorbetterthantheBarnett. Challengesforthisareaincluderemoteness,paucityoftransportationandprocessing,winter drillingrestrictions,andtherefore,costs.Wellsareexpensive,intherangeof$10milliontodrill andcomplete.TheWoodMackenziereportdiscussedthechallengesofdevelopinggasinthe remotebasin,indicatingthatdevelopmentwouldlikelyproceedmuchmoreslowlythaninthe Barnett,duetodrillingandtransportationinfrastructureconstraints. Toencouragedevelopment,theprovinceofBritishColumbiahasadoptedanoil-sandslikeroyalty frameworkforshalegasdevelopment. 97 Thisframeworkimprovesprofitabilitybyreducingthe royaltyrate.Onceaprojectisapproved,theroyaltyistwopercentofgrossreservesuntilcapital costsarerecovered.Itthenrisestoamaximumoffivepercentofgrossproceedsor35percentof netprofits,whicheverisgreater. Nexenhasdrilledseveralwellsoverthepasttwodrillingseasonswithgoodsuccess.Horizontal completionsaretestingatfourtoeightMMcfperdaywithfourtosix6Bcfperwell. Apachebelievesthatthepotentialontheiracreageisintherangeofnineto16Tcf.Assumingthe potentialisabout12Tcfoverthecompany’s323squaremiles,recoverypersquaremilewouldbe 37Bcf.Apache’sfirstthreehorizontalstestedatratesofeight,six,andfiveMMcfperday. EOGhasestimated318Bcfpersquaremileofgas-in-placeandhasdrilledthreehorizontaland threeverticalwells.RecenthorizontalstestedintherangeofthreetofourMMcfperday.Further, EOGestimatessixTcfontheiracreage.Firstproductionisexpectedinthesecondquarterof2008 withsignificantproductionstartingin2010. Quicksilverplanstodevelopfourwellsin2008andstatesthatrecoveryperwellwillbe approximatelyfiveBcf. 98 ICFhasdeterminedthattheareaencompassedbycurrentdrilling,asshownonamappublishedby theBCMinistryofEnergyandMines,isabout750squaremiles.99 Thetotalgeologicalbasinis approximately5,000squaremilesandthetotalplayareacouldbeaslargeas2,000squaremiles. 96 GasDail y,April24,2008. 97 EnergyInvestmentStrategies,2008,“HugeDiscoveriesinNortheastIgnite‘MassiveLandGrab’forDrilling Rights”DavidEbner,March3,2008. http://www.energyinvestmentstrategies.com/2008/03/03/huge-bc- natural-gas-find-boosts-some-stocks/ 98 FortWorthStarTelegram,May21,2008. 99 BritishColumbiaMinistryofEnergy,Mines,andPetroleumResources,2008. http://www.em.gov.bc.ca

110 BritishColumbiaWesternCanadianSedimentaryBasinTriassicMontneyShale TheTriassicageMontneyformationhasemergedasanewhorizontalshalegasplayintheSwan Lake/CutbankRidgeareaofnortheastBritishColumbia.Theplayisintheearlystagesof development,withanumberofpilotprojectsunderway.TheoverallMontney-Doigintervalhas beendevelopedformanyyears.However,thosewellswerecompletedinlowpermeabilitysands. Recenthorizontalactivityhastargetedbothtightsandsandshales,andthegeologyofthisinterval differsfromDevonianshales,whichtendtobeallormostlyorganicshale. A2008BCMinistryofEnergyassessmentstudyassessedtheMontneyShaleinBritishColumbia(it excludestheportionoftheplayinAlberta)at80Tcfofgas-in-place,indicatingapossiblerecovery ofabout20Tcf. 100 101 Ofthe80Tcf,30TcfistheUpperMontneyand50TcfistheLower Montney.Thisassessmentincludesbothsandandshaleunits.AccordingtotheBCMinistryof Energy,about40horizontalnaturalgaswellsand100verticalwellarecurrentlyproducinginthe UpperMontney,althoughthesearetightsandratherthanshalewells. 102 Horizontalactivityinthe overallplayhasincreasedsubstantiallyoverthepasttwoyears. EncanaisthelargestleaseholderintheMontneyandtheyareactiveintheCutbankRidgearea (Figure46).Encanaisdevelopingbothtightsandandshalegaswithhorizontaldrilling.Their overallproductionintheareais208MMcfd,ofwhich125MMcfdistheMontney.103 Industry tradepressreportsthatEncanaisplanning50horizontalMontneywellsin2008andatotalof90 horizontalsareexpectedtobedrilledin2008.Encanaisalsoexpandingthepipelineand compressioninfrastructureinthearea.ThecompanyisdoublingcapacityatitsSteeprockplantto 140MMcfd,allowingasignificantincreaseinMontneyproductionbyyear’send. 104 They anticipateanincreasetoapproximately1Bcfd,buthavenotprovidedatimeframefortheincrease. TheyhavealsoindicatedthathorizontalwellrecoveriesareexpectedtobefiveBcf. OtheroperatorsincludeDuvernayOil,ARCEnergyTrust,StormExploration,andBirchcliff,Murphy, andSabretooth. WellcostsforhorizontalMontneywellsareabout$4.5to$5.5million.Lateralwellsectionsareup to7,000feet. 105 Initialpotentialsrangefrom2.5to5MMcfperday.Wellsareexpectedtobe spacedatfourpersquaremile.Encanaindicatesthatthecostpercompletedintervalinthe Montneyis$1million.Itdoesnotstatethetypicalnumberofcompletedintervals.

100 GasDaily,March25,2008. 101 BCMinistryofMines,“RegionalShaleGasPotentialoftheTriassicDoigandMontneyFormations, NortheasternBritishColumbia,”OpenFileReport2006-02. 102 BCMinistryofEnergy,Mines,andPetroleumResources,2008. http://www.em.gov.bc.ca/subwebs/oilandgas/petroleum_geology/uncog/maps/Mar27_TriassicMap.pdf 103 GasDaily,June3,2008. 104 GasDaily,June3,2008. 105 NicklesDailyOilBulletin, http://www.dailyoilbulletin.com

111 Figure46LocationofTriassicMontneyShale,BritishColumbia Source:Encana,May,2008

112

7 WELLRECOVERYANDRESOURCE DEVELOPMENTCOSTS

7.1 NationalUpstreamCosts Thecostsofupstreamactivity,includingdrilling,stimulation,andcompletion,haveincreased dramaticallyinrecentyears.Therearemanyfactorsbehindthis,buttheprimaryoneshavebeen increaseddemandforqualitydrillingrigs,limitedavailabilityofqualitypersonnel,andincreased commoditycosts.

Therehavebeensteepincreasesinthecostofmaterialsandlaborusedintheconstructionofall typesofenergyinfrastructure,includingpowerplants,pipelinesandoilandnaturalgaswells. Figure47showstherecenthistoryofcostpertonofcarbonsteelplate(usedinlinepipe,casing, pressurevessels,etc.)Figure48showstheaveragedayrateforonshoredrillingrigsintheU.S.

ThedayrateforonshorerigsisakeyfactorinU.S.drillingcosts.Theaveragedayrateessentially doubledbetween2003and2007. 106 Thishadamajorimpactonoverallresourcedevelopment costs,especiallywhencombinedwithcostincreasesformaterials.Thechartindicatesthattheday rateappearstohavepeakedin2006andearly2007.Theslightdeclinein2007,inpart,reflects theadditionofnewrigcapacity.

Althoughnotincludedinthedayrates,anotherfactordrivingcostsintheunconventionalplaysis thereservoirstimulationcomponent.Thestimulationcomponenthasincreasedgreatlyas operatorsemploynewlydevelopedtechniquesthatcancostseveralhundredthousanddollarsor moreperwell.VerticalunconventionalwellssuchasthoseatJonah-Pinedalereceivenumerous fracturetreatments,addinggreatlytothewellcosts.Horizontalshalewellsareexpensivebecause ofthehorizontaldrillingcomponentandcomplexstimulation.

106 LandRigNewsletter. http://www.landrig.com

113 Figure47U.S.CarbonSteelPlatePrices

$1,600

$1,400

$1,200

$1,000

$800

$600

$400 US US Short Dollars Ton per

$200

$0

1 2 3 8 06 -07 -08 0 n-0 n-0 n-0 y- n y- ep-01 ep-02 ay-03 ep-03 ay-04 ep-04 ay-05 ep-05 a ep-06 ep a Ja May-01 S Ja May-02 S Ja M S Jan-04 M S Jan-05 M S Jan-06 M S Jan-07 May-07 S Ja M Month Domestic plate A36 (FOB US Midwest mill) from Bloomberg

Figure48U.S.DrillingRigDayRates Source: Land Rig Newsletter; various reports through first quarter, 2008.

$16,000

$14,000

$12,000

$10,000

$8,000

Dollars per Day $6,000

$4,000

$2,000

$0 Q1.99 Q3.99 Q1.00 Q3.00 Q1.01 Q3.01 Q1.02 Q3.02 Q1.03 Q3.03 Q1.04 Q3.04 Q1.05 Q3.05 Q1.06 Q3.06 Q1.07 Q3.07 Q1.08 Quarter

114 7.2 ResourceCostApproachandResults ICFhasdevelopedthePlayLevelCostModel(PLCM)todeterminecostofnaturalgasreserve additionsintheU.S.nationally,regionally,andbyformationorplay.Itincludesrepresentationsof approximately400playsintheU.S.,includingbothconventionalandunconventionalnaturalgas. PlayexamplesincludethecoalbedmethaneplayinthePowderRiverBasin,theshallowBossier Trend,andtheBarnettShale.

ThePLCMcomputesthewellhead“resourcecost”ofeachplayorformation.The wellhead resourcecost isthetotalrequiredwellheadpriceneededforcapitalexpenditures,costofcapital, operatingcosts,royalties,severancetaxesandincometaxes.Inthisapproach,thecostisappliedto actualinvestmentsmadeandreserveadditionsinahistoricalyear.Asupplycurveisbuiltby summingallofthevolumesaddedbyplayaccordingtotheirresourcecosts.Thewellheadresource costexcludesthecostsrequiredforgathering,compression,andtransporttothemainline.For example,intheRockies,suchcoststypicallyrangefrom12toover80centsperthousandcubic feet.Inaddition,gaslossesintherangeoftwototenpercentcanbeexpectedduetogasusefor compressionandprocessingfuel.Compressioncostsaregreatestinlowpressureplayssuchasthe coalbedmethaneplaysorolderplayswithlowwellheadpressures.

TheannualdistributionofwellheadresourcecostsacrossLower-48playsisshownin Figure49for nineyearsofdata.Thefigureshowscumulativenon-associated(gaswell)gasreserveadditions fromnewnaturalgascompletionssortedfromthecheapestplaystothemostexpensive.Notethat becauseactualcostsareused,allvaluesareinnominaldollars. Figure49Annual(ConventionalandUnconventional)Lower-48Non- AssociatedNaturalGasWellheadCostCurves

$11 1999 $10 2000 2001 2002 $9 2003 2004 $8 2005 2006 2007 $7

$6

$5

$/MMBtuResource Cost $4

$3

$2

$1 0 2,000 4,000 6,000 8,000 10,000 12,000 14,000 16,000 18,000 20,000 22,000 24,000 26,000 Bcf of Reserves in New Completions

115 Totaketheyear2007of Figure49 asanexample(thelightbluelinewithopensquares)thetotal non-associatedreservesaddedwas24Tcf.Ofthatamount,approximately14Tcfwasaddedat resourcecostsbelow$5.00perMMBtu,andsixTcfwasaddedbelow$3.00.Thecurvefromthe 1999wellsshowsthatalargequantityofreserveswasaddedbelow$3.00perMMBtu(about10 Tcf).However,thetotalreservesaddedin1999wereonly14Tcf.Overall,thisshowsthat operatorsareaddingalotmorereserves,butthosereservesarebeingaddedatmuchhighercosts. Notethatsincewell-levelproductiondataarenotreportedforoilwellsthroughouttheU.S.no similarcurvecanbecreatedfortheapproximately2Tcfperyearofreserveadditionscomingfrom associated-dissolvedgas.

Figures50through53showthebreakoutofannualreserveadditioncostsbytypeofnaturalgas fortheLower-48.Thelightbluelineswithopensquaresrepresent2007reserveadditions.With tightgas( Figure50 ,therewaslittleresourceprovenin2007withcostsbelow$4.00perMMBtu. Halfofthetightgasreserveadditionshaveresourcecostsupto$5.00.AboutfourTcfoutofthe 14Tcftotalhadcostsabove$8.00.

Coalbedmethanecostsareshownin Figure51 .Ofthe1.9Tcfofreservesadded,asubstantial fraction(about1.3Tcf)wasatresourcecostsbelow$3.00perMMBtu.Theshalegasreserve additionsdisplayedin Figure52areprimarilytheBarnettShale,sincetheFayettevilleand Woodfordhavenotbeendevelopedasextensively.Mostoftheshaleresourcedevelopedis$4.00 perMMBtuorhigherresourcecosts.Conventionalcostsarepresentedin Figure53.Thesecurves showthatthetotalconventionalreserveadditionsinrecentyearshavebeenlower,andlittle conventionalnaturalgasisbeingaddedatcostsbelow$4.00. Figure50AnnualLower-48TightGasWellheadCostCurves

$11 1999 $10 2000 2001 2002 $9 2003 2004 $8 2005 2006 2007 $7

$6

$5

$/MMBtu $/MMBtu Resource Cost $4

$3

$2

$1 0 2,000 4,000 6,000 8,000 10,000 12,000 14,000 16,000 Bcf of Reserves in New Completions

116 Figure51AnnualLower-48CoalbedMethaneWellheadCostCurves

$11 1999 $10 2000 2001 2002 $9 2003 2004 $8 2005 2006 2007 $7

$6

$5

$/MMBtu Resource Cost $/MMBtu $4

$3

$2

$1 0 500 1,000 1,500 2,000 2,500 3,000 Bcf of Reserves in New Completions Figure52AnnualLower-48ShaleGasWellheadCostCurves

$11 1999 $10 2000 2001 2002 $9 2003 2004 $8 2005 2006 2007 $7

$6

$5

$/MMBtu Resource Cost $4

$3

$2

$1 0 500 1,000 1,500 2,000 2,500 3,000 3,500 4,000 4,500 Bcf of Reserves in New Completions

117 Figure53AnnualLower-48ConventionalWellheadCostCurves

$11 1999 $10 2000 2001 2002 $9 2003 2004 $8 2005 2006 2007 $7

$6

$5

$/MMBtu Resource$/MMBtu Cost $4

$3

$2

$1 0 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 Bcf of Reserves in New Completions

Tables28through32summarizethenaturalgaswellfindinganddevelopmentcostandresource costsfortheLower-48andforthevariouscategoriesofunconventionalnaturalgassince1999. Eachtableshowstheannualnumberofcompletions,theaveragerecoverypercompletion,the averagefindingcost,andtheresourcecostatthewellhead.Findingcostsaredefinedasthetotal capitalcostsincurredintheyeardividedbythetotalreserveadditionsinthatyear.Findingcostson thetableareinunitsof“Mcfe,”ormcfofgas-equivalent.Thisisaconventionusedtoevaluate costsinwhichthevalueoftheco-producednaturalgasliquidsisalsoincluded.Indevelopingthis measure,thenaturalgasliquidsareconvertedtoanequivalentvolumeofnaturalgas.

118 Table28SummaryofFindingandResourceCosts-AllL-48Natural GasWells Note:ThetermMcfestandsformcf-equivalent.Seetextforexplanation.

Average Average Resource Cost Number of bcf per Finding Cost ($/MMBtu at Year Completions Completion ($/Mcfe) wellhead) 1999 13,578 1.04 $1.28 $2.64 2000 18,636 0.89 $1.40 $2.96 2001 23,855 0.80 $1.59 $3.42 2002 20,776 0.81 $1.40 $3.09 2003 21,015 0.82 $1.53 $3.43 2004 23,458 0.79 $1.71 $3.93 2005 27,983 0.75 $2.31 $5.21 2006 31,138 0.76 $2.74 $6.14 2007 31,462 0.79 $2.59 $5.91 Table29SummaryofFindingandResourceCosts-TightGas Resource Average Cost Number of Bcf per Finding Cost ($/MMBtu at Year Completions Completion ($/Mcfe) wellhead) 1999 6,571 0.96 $0.92 $2.49 2000 8,456 0.89 $1.08 $2.90 2001 10,643 0.83 $1.34 $3.50 2002 9,486 0.83 $1.16 $3.10 2003 10,432 0.85 $1.28 $3.36 2004 11,672 0.87 $1.48 $3.85 2005 14,862 0.82 $1.99 $5.05 2006 16,974 0.81 $2.42 $6.03 2007 16,468 0.83 $2.33 $5.89

119 Table30SummaryofFindingandResourceCosts-CoalbedMethane

Average Average Resource Cost Number of bcf per Finding Cost ($/MMBtu at Year Completions Completion ($/Mcfe) wellhead) 1999 2,260 0.62 $0.36 $0.96 2000 4,471 0.36 $0.55 $1.43 2001 6,108 0.40 $0.64 $1.57 2002 5,354 0.36 $0.77 $1.87 2003 3,895 0.48 $0.69 $1.67 2004 4,585 0.37 $1.17 $2.63 2005 4,781 0.38 $1.43 $3.14 2006 4,959 0.38 $1.99 $4.12 2007 5,138 0.38 $2.00 $4.20 Table31SummaryofFindingandResourceCosts-ShaleGas Resource Average Cost Number of Bcf per Finding Cost ($/MMBtu at Year Completions Completion ($/Mcfe) wellhead) 1999 875 0.46 $0.81 $3.01 2000 1,248 0.46 $0.95 $3.52 2001 1,812 0.49 $1.28 $4.22 2002 1,855 0.48 $1.40 $4.48 2003 2,064 0.59 $1.19 $3.89 2004 2,228 0.83 $1.37 $3.93 2005 2,824 0.73 $1.79 $4.93 2006 3,234 0.90 $2.07 $5.40 2007 3,539 1.15 $1.93 $5.03

120 Table32SummaryofFindingandResourceCosts-Conventional Resource Average Cost Number of Bcf per Finding Cost ($/MMBtu at Year Completions Completion ($/Mcfe) wellhead) 1999 3,872 1.53 $1.89 $3.18 2000 4,461 1.52 $1.98 $3.33 2001 5,292 1.32 $2.26 $3.87 2002 4,081 1.48 $1.90 $3.27 2003 4,623 1.15 $2.30 $4.07 2004 4,973 0.98 $2.47 $4.52 2005 5,517 0.88 $3.63 $6.50 2006 5,971 0.84 $4.26 $7.64 2007 6,318 0.82 $3.95 $7.30

7.3 SensitivityofCoststoLeaseBonusandRoyalty Rates ThePLCManalysiscarriedoutinthisstudyisbaseduponourbestcurrentdataforwellrecoveries andcosts.Onefactorthatimpactscostsisvariabilityinleasecostsandroyaltyrates.Emerging shaleplaysarecharacterizedbyhigherleasecostsandroyaltiesthanthoseofthepast,asoperators competetosecureleasepositions.Inareaswith“normal”demandforleasingrights,acreagecan beheldforaleasebonusof$50to$100peracreplusapromisetopayroyaltiesof1/8ofanyoil ornaturalgasproduction.Leasecostsinsomecaseshavebeenseveralthousanddollarsperacre, andupto$15,000peracreormoreinprimepartsoftheBarnettandHaynesvilleShale. Competitiveroyaltyratesfornewacreageare1/6,1/5,oreven1/4intheBarnettandotherhot areas.

7.4 ResourceCostSummary GaswellresourcedevelopmentcostshavebeenevaluatedfortheLower-48overtheperiod1999 through2007.Therehasbeenashiftoveralltogreaterreserveadditionsperyear,andtoa distributionthatincludesmoreadditionsathigherplaylevelresourcecostsandlessreservesadded atlowercosts.Asindustryhasmadealargescaleshifttowarddevelopmentofunconventional naturalgas,theunderlyingcostofU.S.naturalgasreserveadditionshasgoneup.Inotherwords, thecapitaloutlayperunitofnewreservesishigher,becausethegasdoesnotflowtothewell withoutstimulationasisthecasewithconventionalresources.Whilethisimpliesthatlong-term priceswillremainhigherthaninpreviousyears,thelargeresourcebasemeansthatthereis assurancethatfuturenaturalgassupplieswillbeadequate.

121

Thereareanumberoffactorsthatmaychangeinthefuturethatcouldaltertheresourcecostsin futureyears.Factorsinclude:

• Improveddrillingandstimulationtechnology

• Improvedoperationalefficiency

• Morewidespreadapplicationofspecifictechnologieswheremosteffective

• Reducedfactorcoststhroughexperience.Examplesincludedrillingdayrates,horizontal drillingcosts,stimulationcosts,andoperatingcosts.

• Reducedcostsbroughtaboutbyexpandedgatheringandprocessinginfrastructure

• Bettergeologicandengineeringunderstandingleadingtofeweruneconomicwells.Inall unconventionalplays,therearegeologiccomplexitiesthataffectwellrecoveryand productioneconomics.Throughresearchandthedevelopmentofbetterunderstandingof thefactorscontrollingproduction,itispossibletoavoidmostdryholesoruneconomic wells.Itisalsopossibletocustomizedrillingandstimulationpracticestoaccountfor geologicvariability.

122

8 OTHERCATEGORIESOF UNCONVENTIONALGAS

8.1 OilShale–HorizontalDrilling(BakkenShaleand BarnettShaleOilLeg) Shaleformationscontainingcrudeoilandassociatednaturalgasarenowbeingdevelopedinthe U.S.Thistypeofoilshaleiscategorizedhereas“horizontaldrilling”oilshaletodifferentiateit fromthetrulynon-conventionaloilshalesuchasthatinwesternColoradothatrequiresthermal distillationtorecovertheoil.

IntheWillistonBasinofNorthDakotaandMontana,operatorsareusinghorizontaldrilling technologytotaptheBakkenOilShale.ThisplaywasassessedearlierthisyearbytheUSGSat 3.65billionbarrelsofoiland1.85Tcfofassociatednaturalgas.Asimilarplayisunderwayinthe oillegoftheBarnettShale.

IntheBakken,HeadingtonOilreportedthathorizontalwellproductivitiesrangefrom200to1,900 barrelsofoilperday(BOPD)andtheassociatednaturalgasrangesfrom100to900mcfperday. 107 IndustryhasfocusedonElmCouleeField,neartheMontana/NorthDakotastateline( Figure54). Thefielddepthis8,500to10,500feet.Cumulativeoilproductionthrough2005was27million barrelsofoil,whiletheper-wellaverageproductionratewas165BOPD.Theproductiveareain ElmCouleeisabout450squaremilesandtheplaythereisexpectedtorecover225millionbarrels ofoiland225Bcfofnaturalgas. 108 Wellsarereportedtohavebetween4,000and23,000feetof totallaterals(includingmulti-laterals).Thecompletedwellcostrangesfrom$2.5millionto$4.5 million,whichincludesastimulationcomponentof$350,000to$650,000.Resourcecostsfor typicalhorizontalwellsareestimatedtobeabout$31perbarrelofoilequivalentor$5.30per MMBtuformid-2008.

107 HeadingtonOil,2006investorslides(companyacquiredbyXTO). 108 HeadingtonOil,ibid.

123 InMay,2008,WillistonBasinInterstatePipelineCompanyannounceditisplanninga100mile pipelinetotransportnaturalgasfromtheBakkenoilplaynortheasttoaninterconnectwith AlliancePipeline.109 Thecompanyplanstohavethe100-200MMcfdpipelineoperationalby 2010.

Figure54ExtentofBakkenOilShalePlay

8.2 OilShale–ThermalMethods Oilshaleisafinegrainedsedimentaryrockcontainingarelativelyhighpercentageoforganic mattercalledkerogen.Thekerogenisatypeoforganicmattercanbeconvertedtooilthrough distillation.Theshalemustbeheatedto500degreesCentigradefortheconversiontotakeplace. Dependingonthequalityoftheoilshale,between20and50gallonsofoilisgeneratedpertonof rock.

MostoftheworldwideoilshaleresourceoccursintheU.S.Asshownin Table33,theU.S.in- placeoilshaleresourceisapproximately2trillionbarrels. 110 Ofthisamount,approximately1.5

109 Reuters,2008,“WillistonBasinPipelineAnnouncesPlanstoDevelopNaturalGasPipeline,”May19,2008. http://www.reuters.com/article/pressRelease/idUS213500+19-May-2008+BW20080519 110 SouthernStatesEnergyBoard,2006,“AmericanEnergySecurity,”July,2006.

124 trillionbarrelswitharichnessofgreaterthantengallonspertonisintheGreenRiverformationof Colorado,Utah,andWyoming.(Richnessisavolumetricyieldmeasureindicatingthevolumeofoil thatcanbeextracted).Thereisalsoabout200billionbarrelsisintheEasternU.S.inthe AppalachianDevonianShale.ThebestoilshaledepositsintheU.S.,thosewithrichnessgreater than25gallonsperton,total750billionbarrels.

Mostindustryactivityinoilshaleoccurredinthe1980sinthePiceanceBasinofnorthwestern Colorado. Figure55isamapshowingthedistributionofoilshaleintheU.S. Table33U.S.OilShaleResources Oil-in-Place Billion Bbls Total Resource in Place 2,000 Green River Fm portion 1,500 Other than Green River 500

Resource > 25 gal/ton 750

Source: "America's : A Roadmap for Federal Decisionmaking," DOE Office of Naval Petroleum and , December, 2004. Figure55MapofU.S.OilShaleFormations

125 ExtractionTechnologies Oilshaleresourcescanbeextractedusingtwobasicapproaches:miningwithsurfaceretortingand in-situretorting.Oilshalecanbeminedthroughroom-and-pillarmethodsorbysurfacemining. 111 Surfaceretortingtechnologyhassignificanttechnicalhurdles.TheworkintheColoradooilshales inthe1970sand1980sestablishedtechnicalbutnotcommercialviability. Within-situretorting,theshaleisheatedinplaceandtheoilisextractedfromunderground.A majoradvantageofthismethodisthatishasmuchlesssurfaceimpactthanmining.ShellOilhas conductedsomesmallscalefieldtestsofthetechnologyusingelectricityastheheatsource.About 250to300kilowatt-hoursarerequiredfordownholeheatingperbarrelofoilproduced.The companyclaimspotentialcommercialityofthisprocessinthemid$20perbarrelrange. NaturalGasProducedinAssociationwithOilShale Animportantaspectofpotentialoilshaledevelopmentisthevolumeofnaturalgasthatisco- produced.ResearchbyShellOilindicatesthatshouldinsituoilshaledevelopmentattainalevelof activityof150acresperyear,sustainedoilproductionwouldbe500,000barrelsperdayandthe associatednaturalgasproductionwouldbe500Bcfperyearorapproximately1.4Bcfd.112 Whileessentiallyalloftheco-producednaturalgascouldbeusedforon-sitegenerationofpower orthermalenergy,itwouldstillcontributetooverallU.S.energyproductionandcouldbedisplaced byotherenergysuppliesthatcouldbeusedforextraction.Forexample,accordingtoRAND,the twomillionbarrelsperdayofoilextractionproductionpossibleby2020wouldco-produce5.6Bcf perdayorovertwoTcfperyear.Ifhalfofthisgascouldbedivertedtonaturalgasmarkets throughenergysavingtechnologiesand/orfuelsubstitution,thatwouldaddaboutoneTcfperyear toU.S.naturalgassupplies. DOEOilShaleProgram Duringthe1980s,theU.S.governmentmanagedtheNavalOilShaleReservesintheWesternU.S. Whenthesereserveswereopenedtodevelopmenttopromotedomesticenergyproduction,there wassignificantindustryactivityatthattimetocommercializeoilshaleproduction.Inthemid- 1980s,oilpricesdeclinedandtheprojectswereabandoned.Afterthis,thegovernment transferredtheNavalOilShaleReservestotheBureauofLandManagement(BLM)andaNative Americantribe. 113 IntheEnergyPolicyActof2005(EPAct),CongressdirectedtheDOEPetroleumReservesprogram astheleadofficetocoordinatethecreationofacommercialstrategicfueldevelopmentprogram, consistingofoilshaleandtarsands. ThefollowingisanexcerptfromDOEthatdescribesthescopeofthePetroleumReservesprogram: “TheFossilEnergyprograminoilshalefocusesonreviewingthepotentialofoilshaleasastrategic resourceforliquidfuels.Activitiesincludereviewingthestrategicvalueofoilshaledevelopment, 111 RandCorporation,2005,“OilShaleDevelopmentintheUnitedStates,”RandCorp.,SantaMonica,CA. 112 RandCorporation,2005,ibid. 113 DOE,2006,DOEWebsite. http://www.fossil.energy.gov/programs/reserves

126 publicbenefitsfromitsdevelopment,possibleramificationsoffailuretodeveloptheseresources andrelatedpublicpolicyissues.Theprogramisalsoinvolvedincharacterizingtheoilshale resource,assessingoilshaletechnology,summarizingenvironmentalandregulatoryissues,and reviewingtarsandcommercializationasananalogforoilshale.” StatusofLeasingonFederalLand Currently,fiveoilshaleprojectsareunderreviewbyBLM.AnEnvironmentalImpactStatementis underwayandcommercialleasingcouldtakeplaceby2008.ShellOilandChevronareactivein Westernoilshaletechnologydevelopment. Ina2004reportonU.S.oilshale,DOEestimatedthatoilshaleproductioncouldachievearateof twomillionbarrelsperdayby2020,assumingthatinitialproductionbeginsin2011. 114That scenarioisdependentuponrapidmovementtowarddevelopingthisresourceandovercoming manyenvironmentalandpoliticalhurdles.Thereportlistsairquality,surfaceandgroundwater quality,landreclamation,andecologicaleffectsasbeingsignificanthurdles.However,thereport concludesthatthetechnologiesandprocedurestodealwiththeseissueshavebeenwell establishedinthecoalmining,refining,andchemicalindustries.DOEalsonotedthatmajor uncertaintiesincludepotentialfuturechangesinenvironmentalregulationsandlengthypermitting processesatalllevelsofgovernment. Ina2005report,RandCorporationestimatedthatU.S.oilshaleproductioncouldpotentiallyattain arateof3millionbarrelsperdaywithinatimeperiodof17yearsaftertheinitialdecisionto developtheoil.Thisscenarioisprimarilyatechnicalscenariothatassumessuchdevelopment wouldbeallowed. EconomicsofLiquidandGasProductionfromOilShales Sincetheprimaryproductofproductionfromoilshalesisoil,therequiredsellingpriceofanyco- producedpipeline-qualitynaturalgaswoulddependon(1)thevalueoftheoil,(2)thepriceofthe process-heatfuelsource,and(3)thecapitalandoperatingcostsofwhateverproduction technologiesprovecommerciallyviable.Costestimatesforoilshaleproductionrangefromabout $25toover$70perbarrelandusuallyassumethatco-producednaturalgasislargelyusedinthe productionprocessitself.Therefore,smallvolumesofsurplusnaturalgaswouldbeavailableata verylowpriceandgreatervolumesatasubstitute-fuelprice(basedoncoalgasifiedintoacrude )ofroughly$4.00perMMBtuandup.Evenifasubstitutefuelsuchascoalwere unavailable,largeamountsofgaswouldbeavailableat$5.00to$12.00perMMBtu(theprice rangeatwhichtheoilcouldbeburnedtomakemethane,insteadoftheotherwayaround). Ingeneral,thereisapaucityofinformationontheeconomicviabilityofliquidsproductionfromoil shalesintheU.S.TheRandreportcametothefollowingconclusionsregardingtheeconomics: “Theestimatedcostofsurfaceretortingishigh,wellabovetherecord-settingcrudeoil pricesthatoccurredinthefirsthalfof2005.Forsurfaceretorting,itthereforeseems inappropriatetocontemplatenear-termcommercialefforts.Meanwhile,thetechnical groundworkmaybeinplaceforafundamentalshiftinoilshaleeconomics.Advancesin

114 U.S.DepartmentofEnergy,2004,“StrategicSignificanceofAmerica’sOilShaleResource,”DOEOfficeof NavalPetroleumandOilShaleReserves,Washington,D.C.,March,2004.

127 thermallyconduciveinsitu-conversionmaycauseshale-derivedoiltobecompetitivewith crudeoilatpricesbelow$30perbarrel.”115 AccordingtoaDOEreport,ShellOilbelievesthatitsin-situconversiontechnologycanproduce transportationfuelatacostthatwillbeprofitableinthe$25perbarrelrange. 116However,ithas concludedthattheeconomicriskremainshighduetothelargeup-frontcapitalcosts. Table34showsICFestimatesoftheenergybalanceandcostsfor in-situ oilshaleproductionusing electricheatingofthereservoirandtoday’sdrillingandconstructioncosts.Theoiliscontained withintheprojectarea(andwaterinfluxiscontrolled)byanunderground“freezewall”aroundthe perimeteroftheproject.Thetablecharacterizesthreegradesofoilshale.Thebestgradeofshale (“veryrich”at40gallonsperton)hasaresourcecostofabout$28perbarrelofoilequivalent (BOE).Thenextbestgradeofshale(“rich”at30gallonsperton)hasaresourcecostofabout$41 perBOE,andthepoorestgrade(“typical”at20gallonsperton)hasaresourcecostof$79per BOE.

Asshownatthebottomofthetable,ifgasfromtheprojectisusedtopowertheproject,about 74.9Bcfofgaswouldbemarketableannuallyfroma200acreoilshaleprojectinaveryrichshale. Thetableshowsthat14.5Bcfwouldbeproducedannuallyfromtherichshaleexampleproject. Thepoorestgradeofshalehasnomarketablegasproductionbecausetheenergyneededexceeds grossgasproduction.Gasproductionwouldbepossiblefromtheprojectonlyiftheneeded electricitywereimportedorifanothersourceofenergy,suchascoal,wasusedtogeneratethe electricity.

115 RAND,2005,“OilShaleDevelopmentintheUnitedStates,”RANDCorp.,SantaMonica,CA. 116 DOE,2004,“StrategicSignificanceofAmerica’sOilShaleResource,“DOEOfficeofNavalPetroleumand OilShaleReserves,March,2004.

128 Table34HypotheticalEconomicsofIn-SituProductionofGreenRiver OilShales Very Rich Shale Rich Shale Typical Shale Gallons oil per ton shale 40 30 20 Depth to Bottom of Shale(ft) 2,500 2,500 2,500 Net Thickness of Shale (ft) 900 900 900 Barrels oil in place per acre 3,136,589 2,352,441 1,568,294 MMBtus oil in place per acre 18,192,214 13,644,160 9,096,107 Heating Well Density (wells per acres) 25 25 25 Initial reservior temperature in Fahrenheit 98 98 98 Desired reservoir temperature in Fahrenheit 700 700 700 MMBtu per acre of heat and heat losses 1,419,203 1,419,203 1,419,203 Kilowatt-hours per acre of heat and heat losses 415,944,487 415,944,487 415,944,487 Energy Efficiency of Heating Process (e.g. generate electricity and heat reservoir with microwaves or resistance heaters) 0.44 0.44 0.44 Input MMBtus of Natural Gas/Other Fuels for Reservoir Heating for 1 Acre 3,234,176 3,234,176 3,234,176 Input Energy for Reservoir Heating as % of Oil in Place 18% 24% 36% Recovery of oil in place as oil or gas 80% 80% 80% cf of gas per barrel produced (after heating) 2,800 2,800 2,800 Oil Production per Acre in Barrels 1,675,929 1,256,947 837,965 Gross Gas Production per Acre (MMBtu) 4,833,380 3,625,035 2,416,690

Freeze Wall Temperature Fahrenheit 25 25 25 Freeze Wall Well Spacing in Feet 50 50 50 kWh/Year per freeze well 1,882,906 1,882,906 1,882,906

Capital Costs per Multi-Well Field Project Acres per Project 200 200 200 Years to Produce Oil 4 4 4 Number of Heater/Production Wells per Project 5,000 5,000 5,000 Freeze-wall Wells per Project 236 236 236 Lease Acquisition, Geological and Geophysical Costs $2,063,438 $2,063,438 $2,063,438 Well Costs $3,125,000,000 $3,125,000,000 $3,125,000,000 Well Equipment $250,000,000 $250,000,000 $250,000,000 Pro-rated Power Equipment Cost $712,233,711 $712,233,711 $712,233,711 Pro-rated Chiller Equipment Cost $32,988,988 $32,988,988 $32,988,988 Site Reclamation $200,000,000 $200,000,000 $200,000,000 General and Administrative Costs $648,342,921 $648,342,921 $648,342,921 Total Capital Cost $4,970,629,057 $4,970,629,057 $4,970,629,057 Gross Recoverable Reserves for Project (MMBtu) 2,910,754,215 2,183,065,661 1,455,377,107 Total Capital Cost as $/MMBtu Gross Recoverable Reserves $1.71 $2.28 $3.42

Annual Costs and Production per Project Capital Recovery $2,087,324,815 $2,087,324,815 $2,087,324,815 Operations & Maintenance $249,412,581 $249,412,581 $249,412,581 Total Annual Costs $2,336,737,396 $2,336,737,396 $2,336,737,396 Gross Annual Production (MMBtu) 727,688,554 545,766,415 363,844,277 Less Fuel for Heating (MMBtu) 161,708,795 161,708,795 161,708,795 Less Fuel for Chilling (MMBtu) 5,081,774 5,081,774 5,081,774 Net Marketable Oil and Gas (MMBtu) 560,897,985 378,975,846 197,053,708 Less Royalty Volumes (MMBtu) 70,112,248 47,371,981 24,631,713 Working Interest Hydrocarbon Sales (MMBtu) 490,785,736 331,603,865 172,421,994

Resource Cost in $/MMBtu $4.76 $7.05 $13.55 Resource Cost in $/BOE $27.62 $40.87 $78.60

Assuming Gas is Used First for Process Energy, and then if needed, Oil Gross Annual Production Oil (bbl) 83,796,471 62,847,353 41,898,235 Net Annual Marketable Production Oil (bbl) 83,796,471 62,847,353 33,974,777 Gross Annual Production Gas (MMBtu) 241,669,022 181,251,767 120,834,511 Net Annual Marketable Production Gas (MMBtu) 74,878,453 14,461,197 0

129 8.3 OffshoreandArcticNaturalGasHydrates Methanehydratesareice-likesolidsinwhichgasmoleculesaretrappedinwatermoleculesina cage-likestructurecalledaclathrate.Theyarefoundindeepwaterandarcticsettings.Thetotal assessedin-placepotentialworldwideisintherangeof700,000Tcfandmaybeordersof magnitudehigher. 117 TheU.S.assessedin-placeresourceisestimatedat300,000Tcf.Ofthat amount,about21,000TcfisintheGulfofMexico.Thereisnocurrentestimateofpotential technicaloreconomicrecovery;further,thereisnocommercialproductionworldwide.

IntheU.S.,naturalgashydratedepositsarefoundinonshoreAlaska,inthedeepwaterAtlantic OceaninBlakePlateauarea,andinthedeepwaterGulfofMexico.Hydratesmayalsoexist offshoreofthePacificNorthwest. 118

Figure56showstworesourcepyramidspublishedinarecentreportpreparedbyLawrence Berkeley,theUSGS,andDOE. 119 Thepyramidontheleftrepresentshydrates,andthepyramidon therightrepresentsconventionalgas.Thetopofthehydratespyramidrepresentsthein-place arctichydratesthatexistathighsaturations,ingoodreservoirrocks,andthatarecloseto producinginfrastructure.ThisvolumeisestimatedattensofTcfofgas-in-place.Thenextlevelon thepyramidrepresentsarctichydratesthatareinsimilargeologicsettingsbutareremotefrom existinginfrastructure.ThatvolumeisinthehundredsofTcfin-place.Thenextlevelofthe resourcerepresentsdeepwaterhydrateswithinsandstoneunits.Thediagramshowsthisresource tobeapproximately1,000Tcf.Asdiscussedbelow,however,theMineralsManagementService (MMS)isnowestimatingGulfofMexicosandstonehydratestobesignificantlyhigher,about6,700 Tcfin-place.Thelowestportionsofthepyramid,containingmostofthegas-in-place,represent thehydratesinverylowpermeabilitystrata(siltstoneandshale)indeepwater(labeledonthe pyramidchartasnon-sandstonemarinereservoirs).

Table35isasummaryofthecurrentUSGS/MMSassessmentofU.S.naturalgashydrates.The MMSrecentlycompletedanewgas-in-placeassessmentoftheGulfofMexico,andplansto continuewiththeassessmentoftheAtlanticandPacificandoffshoreAlaska. 120 Previously,the USGShadcompletedanassessmentofoffshoreLower-48andAlaskaareas.Thetablecombines thesetwoassessments,givingatotalU.S.volumeof303,000Tcf.

Intheirreport,theMMSstatesthathydratesintheGulfofMexicocanforminwaterdepthsmore than400meters.Thethicknessofthehydratestabilityzone(pressure-temperatureregimewhere hydratesexist)hasbeenmodeledintobeinexcessof1,000meters.ThetableshowstheGulfof Mexicoassessmentof21,000Tcfin-place.The“sandstoneresource”(secondcolumninthetable) wasassessedatapproximately6,700Tcf.Thesandstoneresourceisthehydratevolumethatis modeledtoresidewithinastratigraphicsectionthatcontainsmoresand,resultingingreater permeability. 117 USGS,2001,“GasHydrates–VastResource,UncertainFuture,”USGSFactSheet021-01,March,2001. 118 DOENETL,2008,“AllAboutHydrates,” http://www.netl.doe.gov 119 Moridis,etal,2008,“TowardProductionfromGasHydrates:CurrentStatus,AssessmentofResources, andSimulation-BasedEvaluationofTechnologyandPotential,”SPEPaper114163. 120 MMS,2008,“PreliminaryEvaluationofIn-PlaceGasHydrateResources:GulfofMexicoOuterContinental Shelf,”MMS2008-04,February,2008.

130 Figure56NaturalGasHydrateandConventionalU.S.NaturalGas ResourcePyramids Source:Moridis,etal,2008 121

Table35CurrentUSGSAssessmentofU.S.NaturalGasHydrate Resource

Sandstone Total Only Gas-in-Place Gas-in-Place Tcf Tcf

Gulf of Mexico (MMS, 2008) West 4,626 ? Central 11,476 ? East - 1 3,154 ? East - 2 2,187 ? Total 21,443 6,717

Other Than Gulf of Mexico (USGS, 2001)) Atlantic Offshore 51,831 Pacific Offshore 61,071 Alaska Offshore 168,449 Alaska Onshore 590

U.S. Total (ICF sum of two volumes) 303,384

Sources: USGS, 2001, "Gas Hydrates - Vast Resource, Uncertain Future," USGS Fact Sheet 021-01, March, 2001.

MMS, 2008, "Preliminary Evaluation of In-Place Gas Hydrate Resources: Gulf of Mexico Outer Continental Shelf," MMS 2008-04, February, 2008.

121 Moridis,etal,2008,“TowardProductionfromGasHydrates:CurrentStatus,AssessmentofResources, andSimulation-BasedEvaluationofTechnologyandPotential,”SPEPaper114163.

131

InNovemberof2008theUSGSannouncedtheinitialconclusionthat85.4Tcfofrecoverable hydratesmayexistontheNorthSlopeofAlaska. 122 Furtheranalysisincludingeconomicevaluation isongoing.

Therehasbeenaggressiveinternationalcollaborationtostudybotharcticandsubseamethane hydrates.JapanandtheU.S.areconductingarcticdrillingandresearchinCanada.In1998,the firstresearchwellwasdrilledtostudymethanehydratesintheCanadianArctic.

TheJapaneseareresearchingdeepwaterhydratepotential.In1999,theJapanesedrilledan offshoredeepwaterhydrateresearchwellintheNankaitrough.Abouttwoyearsago,the Japaneseannouncedthedelineationofalargedeepwaterhydratedepositthatliesclosetothe seabed.123 Thismayeventuallybetheareaofthefirstattempttoproduceadeepwaterhydrate resource.

IntheU.S.thisyear,ajointindustrygashydrateresearchprojectisexpectedtodrillthreewellsin thedeepwaterGulfofMexico.Inaddition,theDOEisinvolvedinarctichydrateresearchinAlaska withBP.DOEstatedthat,whilelongtermproductiontestshavenotyetbeenachieved,itislikely thatproductioncanbedemonstratedby2020andcommercialproductionby2025. 124 FactorsDeterminingProductionfromHydrates

Thefollowingfactorsarenecessaryforeconomicproductionofhydrates:

• Reservoirsectionwithadequate permeability sothatthedissociatedgascanflowtowells

• Reservoirsectionwithadequate stability tomaintainthepositionandmechanicalintegrity ofwellsandotherdownholeequipment

• Thicksectionofhydrates sothatalargeamountofnaturalgascanberecoveredperwell

• Highhydratesaturation relativetototalporositysothatalargeamountofnaturalgas canberecoveredperwell

• Pressure-temperatureregimethatis closetotheedgeofthehydratepressure- temperatureequilibriumenvelope(seediscussionbelow)sothatpressurescanbe droppedand/ortemperatureraisedtocausedissociationofthehydrateintomethaneand water

122 GasDaily ,November13,2008 123 OilandGasJournal,October16,2006. 124 OilandGasJournal,May9,2008.

132 Thefollowingchart( Figure57)illustratesthepressure-temperatureenvelopefornaturalgas hydratesalongwithexamplesofmeasuredreservoirconditionsindeepwaterGulfofMexicoand Articsettings.Thebluearrowsillustratethatanincreaseintemperatureordecreaseinpressure canmovethehydrateoutofthestabilityzone,allowinggasproduction.Severalspecifichydrate accumulationsareplottedonthechart,showingtheirrelationshiptothestabilityboundary. Hydrateswhoseinitialconditionsareclosesttothethree-phasehydrateboundarypressureand temperaturewillbetheeasiesttoproduce. Figure57GasHydratePressure-TemperatureEnvelope

5,000 Methane Hydrate 3-Phase Boundary in Saltwater (approximate) 4,500 Alaminos Canyon Block 818

4,000 Mallik Zone (zone @ 899 m)

3,500 Mallik Zone (zone @ 1,007 m)

3,000 Mallik Zone (zone @ 905 m)

2,500 To produce hydrates, 2,000 initial reservoir pressure Pressure in PSI must be reduced and/or 1,500 temperature increased so as to move conditions to this side of line. 1,000

500

0 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 Temperature in Fahrenheit

133 GasHydrateProductionEconomics Table36showsfourhypotheticalexamplesofwhathydrateproductioneconomicsmightlooklike basedonmid-2008costs.ThefirsttwoexamplesareinthedeepwaterGulfofMexico, representingafairlythickhydrate-richsandstonereservoir. 125 Example#1assumesthathydrate productionwillrequiretheintroductionofartificialheatintothereservoirwhileExample#2 assumesthatpressurereductionalone(fromproducingfreegasinthereservoirandbypumping outwater)willbesufficienttoproducethehydrates. Whetherornottheintroductionofheatwillbeneededdependson(1)howclosethereservoir pressureandtemperatureconditionsaretothehydrateequilibriumpointand(2)whethernaturally occurringheatenergyfromsurroundingrockwillenterthereservoirtocompensateforthecooling effectthatwilltakeplaceintheendothermicprocessofthemethanehydratesdissociatinginto waterandmethane.Anotherimportantfactorwillbewhetherreservoirpressuredeclinescanbe achievedbyproducinganyfreegasorfreewater.Inthecasewherenofreegasorwaterexists andwhereartificialheatisneededtoinitiatepressuredecline,theeconomiccalculationsassume heatwillbeappliedbyelectric(microwaveorresistance)heaterscontainedinhorizontalheater wellsspanninginfourdirectionsawayfromtheverticalproductionwells.Theamountofadded heatenergywascalculatedsoastoraisethereservoirtemperatures10ºCapproximately200feet aroundtheheaterwelllaterals.Thisheatwouldmeltthehydratesimmediatelyaroundthelaterals andprovideapathwayforgasandwatertomovetowardtheproductionwell.Theremainderof thehydratesfurtherawayfromtheheaterwelllateralswouldhavetodissociatefrompressure declinesalone,sinceheatlossestothesurroundingrockoutsidethereservoirwouldmakeartificial heatingofallthehydratereservoirrocksimpractical.Inallcases,itisassumedthatall-new productioninfrastructure,includingaproductionplatform,mustbeconstructed.Whereexisting infrastructurecouldbeutilized,costswouldbelowerthanthe$12.77to$23.85perMMBtu wellheadcostsshownhere. ThesecondpairofexamplesisforonshoreArcticconditions,suchastheMackenzieDeltaorNorth SlopeofAlaska. 126 Example#3assumesthatartificialheatmustbeadded,whileExample#4 assumesthatpressurereductionsalonewillallowthehydratestobeproduced.TheArctic wellheadcostsare$1.61to$7.85perMMBtuandaresubstantiallylowerthanthedeepwater examplesduetomuchlowerdrillinganddevelopmentcosts.

125 U.S.DOE,2008,“NewSimulationsoftheProductionPotentialofMethaneHydrates.” http://www.netl.doe.gov 126 Moridis,George,etal,2002,“NumericalStudiesofGasProductionfromSeveralCH4HydrateZonesat theMallikSite,MackenzieDelta,Canada,“LawrenceBerkeleyNationalLaboratoryreportLBNL-50257,May, 2002.

134 Table36HypotheticalExamplesofGasHydrateEconomics #2 Deepwater #4 Onshore GOM Example: Arctic Example: #1 Deepwater Production #3 Onshore Production GOM Example: Through Arctic Example: Through Production Pressure Production Pressure Requires Decline of Free Requires Decline of Free Significant Gas, Water Significant Gas, Water Added Heat Removal Added Heat Removal Water Depth (ft) 9,000 9,000 0 0 Bottom of Hydrate Zone (ft below mudline or surface) 1,530 1,530 3,608 3,608 Producing Well Measured Depth (ft) 10,530 10,530 3,608 3,608

Drainage Area in Acres per Producing Well 640 640 640 640 Hydrate Thickness (ft) 60 60 66 66 Porosity 30% 30% 28% 28% Hydrate Saturation 70.0% 70.0% 80.0% 80.0% Cubic Feet of Hydrate-Filled Porosity in Drainage Area 351,267,840 351,267,840 409,656,361 409,656,361 Ratio cf gas to cf hydrate 164 164 164 164 Standard Cubic feet of Natural Gas in Drainage Area 57,607,925,760 57,607,925,760 67,183,643,197 67,183,643,197 Recovery Factor 60% 60% 60% 60% Standard Cubic Feet of Natural Gas Recovered per Producing Well 34,564,755,456 34,564,755,456 40,310,185,918 40,310,185,918 MMBtus of Gas Produced per Producing Well 35,601,698 35,601,698 41,519,491 41,519,491

Number of Heater Wells Laterals per Producing Well 4 0 4 0 Heater Well Horizontal Lateral Length (ft) 3,722 - 3,722 - MMBtus to Raise Reservoir Temperature Around Laterals for 1 Producing Well 865,629 - 904,280 - Energy Efficiency of Heating Process (e.g. generate electricity and heat reservoir with microwaves or resistance heaters) 0.44 0.44 0.44 0.44 MMBtus of Natural Gas for Reservoir Heating Around 1 Producing Well 1,972,654 - 2,060,735 - Natural Gas for Reservoir Heating as % of Production 5.5% 0.0% 5.0% 0.0% Production Life in Years 15 15 15 15

kW Electric Generation Capacity for Heating 1 Prod. Well 2,145 - 2,240 -

Barrels Water to be Pumped from Reservoir per 1 Producing Well 46,894,257 46,894,257 54,689,124 54,689,124 kWh Total for Water Pumping, Reinjection 47,597,670 47,597,670 112,331,461 112,331,461 Natural Gas for Water Pumping as % of Production 0.9% 0.9% 1.9% 1.9%

Capital Costs per Multi-Well Field Project Number of Production Wells per Project 16 16 25 25 Lease Acquisition, Geological and Geophysical Costs $5,248,000 $5,248,000 $7,075,000 $7,075,000 Production Well Costs $707,616,000 $707,616,000 $360,800,000 $360,800,000 Heater Well Footage per Producing Well 25,420 - 18,498 - Heater Well Costs $1,708,197,120 $0 $1,849,760,000 $0 Production Equipment, Platform Costs, Structures $1,461,013,780 $1,456,724,470 $106,190,597 $101,709,763 General and Administrative Costs $582,311,235 $325,438,270 $348,573,839 $70,437,715 Total Capital Cost $4,464,386,135 $2,495,026,740 $2,672,399,436 $540,022,478 Recoverable Reserves for Project (Mcf) 553,036,087 553,036,087 1,007,754,648 1,007,754,648 Total Capital Cost as $/Mcf Recoverable Reserves $8.07 $4.51 $2.65 $0.54

Annual Costs and Production per Project Capital Recovery $587,015,081 $328,067,125 $351,389,581 $71,006,703 Operations & Maintenance $103,687,723 $64,300,535 $60,947,989 $18,300,450 Total Annual Costs $690,702,804 $392,367,660 $412,337,570 $89,307,152 Annual Gross Production (Mcf) 36,869,072 36,869,072 67,183,643 67,183,643 Less Power Generation Fuel (Mcf) 2,387,922 345,045 4,606,886 1,272,363 Less Compressor Fuel (Mcf) 737,381 737,381 1,343,673 1,343,673 Net Marketable Production (Mcf) 33,743,769 35,786,646 61,233,085 64,567,608 Less Royalty Gas (Mcf) 5,623,961 5,964,441 10,205,514 10,761,268 Working Interest Gas Sales (Mcf) 28,119,807 29,822,205 51,027,571 53,806,340 Resource Cost in $/MMBtu $23.85 $12.77 $7.85 $1.61

135 Sincecommercialproductionofhydrateshasneverbeenachieved,therealityofachievingthese economicexamplesisveryuncertain.Also,itisimportanttonotethattheexamplesarebasedon favorablereservoirconditions(highpermeability,stablereservoirrock,highhydratesaturationsand easily-dissociatedhydrates)whichwillapplytoonlyasmallfractionofthetotalhydrateresource. TheeconomicexamplessuggestthatonshoreArcticproductionmightbetheclosesttobeing economicallyviable,oncetransportationoutletsforthegasexist.Theoffshorehydrateswillbe morechallengingtodevelopeconomically,butmightbeeconomicinthoseinstanceswherethe mostfavorablegeologicconditionscoincidewithanexistingconventionalgasandoilproduction infrastructurethatcouldbeusedtoreducehydratedevelopmentcosts.

8.4 AbovegroundCoaltoMethane Gasificationsystemsconvertcoal(orothersolidorliquidfeedstockssuchaspetroleumcokeor heavyoils)intoagaseoussyngas(syntheticgas).Themostwidelyusedtypeofgasifieristhe steam-oxygengasifier thatproducesasyngaswhichiscomposedpredominatelyofhydrogen(H 2) andcarbonmonoxide(CO).ThisisillustratedinFigure58.Themajorcomponentsofacoal- fueled steam-oxygengasifier include:coalhandlingequipment,gasifier,airseparationunittomake oxygen,gascoolingandclean-upprocesses,andapowerblocktomakeelectricitytooperatethe plant.Ifthegasifierisdesignedtoproducemethane,thefacilitywillalsoincludewater-gas-shiftto

convertsomeoftheCO(pluswater)intohydrogen(plusCO 2)andaunittoconvert

H2andCO 2intomethane(pluswater).Theonlycommercialgasificationplantmakingmethanein theU.S.,theDakotaGasificationPlantinNorthDakota,isofthistype. Figure58FlowSchematicforDakotaGasification Source:DakotaGasificationCompany

136 Twootherkindsofcoalgasificationsystemsthatproducemethanethathaveattractedcommercial interestare catalyticgasifiers and hydro-gasifiers .Thecatalyticprocessusesacatalyst,suchas potassiumcarbonateorametal,toendothermicallyconvertcoalandsteamdirectlyintomethane andCO 2.Thecatalyticprocesshaslowercapitalcostsbecauseitdoesnotrequireanairseparation unitandbecauseseparatewater-gasshiftandmethanationstepsareavoided.However,thecosts ofboththecatalystitselfandcatalystrecoveryandrecyclingmustbeborne. GreatPointEnergyofCambridge,Massachusettsisdevelopinga hydro-gasifiersprocessthatthey hopetocommercialize( Figure59).GreatPointEnergy’stechnologyusesanovelcatalystto “crack”thecarbonbondsandtransformthecoalintomethane.Byaddingaproprietarycatalystto thecoalgasificationsystem,GreatPointEnergyisabletoreducetheoperatingtemperatureinthe gasifiersothatlessexpensivereactorcomponentsarerequired.Also,ashremovalandslagging problemsareavoidedthusreducingmaintenancerequirementsandincreasingoverallthermal efficiencyto65%. Figure59FlowSchematicofGreatPointEnergyGasificationProcess Source:GreatPointEnergy

137 The hydro-gasification processcombineshydrogenwithcoaltoexothermicallyproducemethane andcarbonmonoxide.Thecarbonmonoxidegoesthroughawater-gasshifttoproducemore feedstockhydrogen.Hydro-gasificationdoesnotrequireanairseparationunitoraseparate methanationstep.However,toobtainsufficienthydrogenfortheprocess,someoftheproduct methaneneedstobereformedintohydrogen.Thisrequiresareformerandadditionalwater-gas- shiftcapacity.HCE,LLCofOakton,Virginiaishopingtocommercializehydro-gasificationtomake methanebothinabovegroundplantsandinundergroundcoalseams(“PumpedCarbonMining”). Thisisillustratedin Figure60 . Figure60FlowSchematicofHCEHydro-gasificationProcess Source:HCE,LLC

138 CurrentlyPlannedCoalGasificationPlantsandExpectedGasProduction Table37 liststheknowncurrentandplannedcoal-methaneplants.Coalgasificationplantswhich produceelectricpower(IGCC),Fischer-Tropschliquids,methanol,ammonia,andsyntheticgas (here,amixtureofhydrogenandcarbonmonoxide)areexcluded.Theannualgasproductionfrom thenineplantsisexpectedtobemorethan400Bcfperyear. Table37CurrentandPlannedCoaltoMethanePlants Plant Company Location Technology Project Size Status Dakota Gasification Beulah, ND Sasol Lurgi Dry Ash Moving Bed 62 Bcf/yr Operational Company GreatPoint Energy Somerset, Catalytic gasifier Pilot scale Pilot-scale MA plant planned HCE, LLC TBD Hydro-gasifier TBD Uncertain Indiana Southwest GE Energy Technology -- Coal to 40 Bcf/yr Plant startup Gasification, LLC Indiana syngas to methane, with nickel- 2011 oxide catalyst Indiana Louisiana GE Gasification Technology -- TBD Uncertain Gasification, LLC Petroleum coke to methane, hydrogen, and methane Peabody Energy/ Kentucky E-GAS (ConocoPhillips) 28 Bcf/yr Plant startup ConocoPhillips Gasification Process 2013 Power Holdings of Mount GE Gasification – coal to SNG 50 Bcf/yr Plant startup Illinois LLC Vernon, IL 2009 Secure Energy Decatur, IL Siemens SFG Gasification 27 Bcf/yr Plant startup Systems Process – coal to SNG 2009 Sherritt Camrose, Dodds-Roundhill 117 Bcf/yr of Plant startup International Alberta Project – coal to syngas to syngas to be 2011 Corporation hydrogen refined into 98 Bcf/yr of H2

139 NorthAmericanCoalResourcesandEstimatedGasPotential Asshownin Figures61and62,coalresourcesoftheU.S.Lower-48andCanadaarewidely distributed.Fromeasttowest,majorcoalproducingregionsincludeNovaScotia,Appalachia, IllinoisBasin,CentralInterior,GulfCoast,NorthernPlains,andRockies(extendingfarnorthinto BritishColumbiaandAlberta).Generally,Appalachiaproduceshigherrankedcoalsuchas AnthraciteandBituminous.LowerrankedSub-bituminouscoalsareproducedinareasofthe RockiessuchasthePowderRiverBasinofWyoming.TheNorthernPlainsandGulfCoastdeposits arelignite,whichisthelowestrankedcoal. 127 Figure61DistributionofU.S.CoalResources Source:GlobalEnergyDecisions

127 CoalrankingisbasedonBtucontentperton.

140 Figure62DistributionofCanadianCoalResources Source:TheCoalAssociationofCanada

AssessmentofU.S.coalreservesandresourcesisconductedbyEIAandUSGS.EIAreports measuredorprovedreserves,whiletheUSGSusesgeologicalmappingtoquantifytheunproved portionoftheresource.

141 Table38summarizestheassessedcoalresourcesoftheU.S.Thiscompilationusesthemostrecent volumesfromEIAforprovedreserves,combinedwithaUSGSestimateofundiscoveredcoal. Table38U.S.CoalResources(ShortTons)ConvertedtoMethaneon andEnergyBasiswith50%ConversionEfficiency BillionShortTonsof TrillionSCFof Resources Reserves DemonstratedReserves Coal methane IdentifiedResources DemonstratedReserveBase(0-1,000ft.deep) Measured(RecoverableReserves;<0.25 267 3,200 mi.) Indicated(0.25-0.75mi.) 228 2,700 TotalDemonstratedReserveBase 495 5,900 Inferred(0.75-3mi.;downto6,000ft.deep) 1,236 14,800 Totalidentified(measured,indicated,inferred) 1,731 20,700 UndiscoveredResources(>3.0mi.;downto6,000ft.deep) 2,237 26,800 TotalAssessedResources 3,968 47,500

Sources: Demonstratedreservebase:EIA,2004,AnnualCoatReport,November,2005. InferredandUndiscoveredresources:USGS,1974,USGSBulletin1412,131p.

Notes: ThecurrentUSGSassessmentwasdonewithadifferentassessment.ThetotalassessmentfortheLower-48statesis 1,620billiontons. RecoverableReserves ofcoaltotal267billiontons.Thisisasubsetofthelarger Demonstrated ReserveBase of495billiontons.The DemonstratedReserveBase isthatportionofcoal-in-place thatcouldpotentiallybeconvertedtoprovedreserves. RecoverableReserves arevolumesofcoal thatareaccessibleandeconomicallyrecoverablebycurrentminingmethodsunderexisting regulations. OutsideoftheDemonstratedReserveBasearelesscertaincategoriesofcoal,includingthe classificationsof“Inferred”and“Undiscovered.”InthecaseofInferredresources,thecoalbeds aremorethan0.75milesbutlessthanthreemilesfromexistingwellsormines. Undiscovered Resources arethosethathavesignificantuncertaintyandlieinareasgreaterthanthreemilesfrom existingwellsandmines.ThesumofDemonstratedReserveBase,Inferred,andUndiscoveredcoal isapproximately4,000billiontons. DemonstratedReserveBaseisthatportionoftheresourcebasethatitlikelytobeultimately targetedformining.TheInferredandUndiscoveredportionsoftheresourcerepresentcoalzones thatareeithertoothinortoodeeptoberealisticallytargeted.Forexample,theUndiscovered Resourceincludesseamsupto6,000feetdeep,whilecurrentundergroundminingislimitedto

142 about2,500feet.Inaddition,seamsasthinas14inchesforbituminousandanthraciteare included. IfweassumethattheDemonstratedReserveBaseofapproximately500billiontonsisthe potentiallymineableportionoftheresource,thentheunmineableportion(theremainderofthe 4,000tonsdiscussedabove)isatleast3,500billiontonsofcoal. Inaddition, Table38includesacolumnformethaneproductionfromthecoal.Theconversionof shorttonsofligniteandSub-bituminouscoaltomethaneiscalculatedonanenergybasis.The tableassumes50percent conversionefficiency .Conversionefficiencyisameasureofhowmuch energyremainsafterenergyisexpendedtoconvertthecoaltomethane.Aconversionefficiency of60percentisalsoreasonable.Assuming10,000Btu/lbofcoalasminedand60percentthermal conversionefficiency,about12mcfofmethaneisproducedfromeachshorttonofcoal.Forscale, currentnaturalgasconsumptionfortheentireU.S.isabout23Tcfperyear. ProjectLeadTime Thetypicalprojectleadtimefromconceptiontobringtheplanton-lineisaroundeightyears.For example,considerthetimelineofDuke’s$2billionIGCCplantinEdwardsport,Indiana.In2004, Cinergy/PSI(nowDukeEnergyIndiana)signedaletterofintentwithGEEnergyandBechtel CorporationtostudythefeasibilityofanIGCCplant.InNovember2007,theIndianaUtility RegulatoryCommissiongrantedDukepermissiontobuildtheSouthwesternIndianacoal gasificationplantinEdwardsport.Atthattime,Dukeanticipatedthatconstructionwouldbeginin early2008andbecompleteby2012. EnvironmentalImpactsofAbovegroundCoalGasification Usingcoaltoproducemethanewillhaveanumberofenvironmentalconsequences.Coalmining itselfcausesnumerousenvironmentalissues,rangingfromwidespreadlanddisturbance,soil erosion,dust,biodiversityimpacts,andwastepiles,inadditiontosubsidenceandabandonedmine workings.Oncecoalhasbeenextracted,itneedstobemovedfromtheminetothepowerplant orotherplaceofuse.

Themainpollutantsresultingfromconventionalcombustionofcoalaresulfuroxides(SO x),

nitrogenoxides(NO x),particulates,CO 2,andmercury(Hg).Incontrast,themethanization processesconsideredhereareconversionsratherthancombustionprocesses,whichismore effectiveatreducingcriteriapollutantsthanexistingpollutioncontroltechnologiesappliedto combustionproducts.Thesemethanizationprocessesproduceash,particles,sulfur,andtrace

metalsinsolidform,inadditiontoCO 2.Unlikecombustion,theCO 2isproducedinastreamwith atleast95percentconcentration.

Potentially,themostsignificantfutureissueforcoalmethanizationisCO 2emissions.Foreachshort tonofcoalconsumed,around1,500lbsofCO 2willbeproduced.Puttingitanotherway,theCO 2 emissionsareaboutthreekgCO 2perkilogramofmethaneproduced.Thesenumbersdonot

includeCO 2emissionsfromthediesel-poweredequipmenttomineandtransportthecoalfromthe minetothegasificationplant.

143

8.5 UndergroundCoalGasification

Undergroundcoalgasification(UCG)isatechnologythatconvertsenergyinundergroundcoaltoa combustiblegasthatcanbeusedforpowergenerationandasafeedstockforrefinedfuelsand chemicals.Theprocessinvolvesthedrillingofairinjectionwellsandgasproductionwells.Upon injectingairoroxygenthroughtheinjectionwell,thecoalseamreactstoproducearelativelylow quality,combustiblegas.Therawgasstreamcontainsmethane,carbonmonoxide,hydrogen,and carbondioxide,alongwithothercomponents.TheUCGprocessishaltedwheninjectionofairor oxygenceases.

EnergyProducts

AccordingtotheDOE,UCGcanbedeployedtoproducethefollowingproducts: 128

• Syntheticnaturalgas

• HighefficiencyelectricitythroughIGCCconfiguration

• LiquidfuelsusingtheFischer-Tropschprocess129

• Hydrogen

Technologies

Figure63isanillustrationofatypicallayoutforUCG.ThefollowingtextfromtheUKDepartment ofTradeandIndustrydescribestheprocessofUCG:

“IntheUCGprocess,thecombustiblegasisproducedbythepartial,in-situcombustionof anundergroundcoalseambyamixtureofoxygen(oroxygen-enrichedair)andwater,the reactants.Theoxygen(oroxygen-enrichedair)andwaterareinjectedfromthesurfacevia aninjectionwell,andtheresultingcoalgasificationoccursinachamber,thegasification reactor,withinthecoalseam.Theproductgasisextractedviaaproductionwell. Together,theinjectionwellandinjectionfacilities,theproductionwellandproduction facilitiesandtheirassociatedgasificationreactorcompromiseoneUCGmodule.” 130 128 DOE,2005,“UndergroundCoalGasificationintheUSAandAbroad,”testimonybyDr.JulioFriedmann, LawrenceLivermoreLaboratory,toSenateForeignRelationsCommittee. https://co2.llnl.gov/pdf/UCG_CongTest.pdf 129 DOE,2008,“Fischer-TropschFuels,” http://www.netl.doe.gov/publications/factsheets/rd/R&D089.pdf 130 UKDepartmentofTradeandIndustry,2004,“ReviewofEnvironmentalIssuesofUndergroundCoal Gasification,”DTIReportR272,November,2004.

144 Figure63ApproachUsedinUndergroundCoalGasificationwith VerticalWells Source:UKDepartmentofTradeandIndustry

TherawgasproducedinUCGmustbetreatedtorenderitusefulasafuelorchemicalfeedstock.

TreatmentinvolvesdehydrationandtheremovalofCO 2andotherimpurities.Thewastegas

streamsmustbedisposed.Forexample,theseparatedCO 2maybeinjectedintounderground reservoirsforsequestration.ItmayalsobeusedinaprocesscalledEnhancedCoalbedMethane

production,inwhichtheCO 2isinjectedintoacoalseam,resultingintheproductionof incrementalcoalbedmethane.

UCGhasbeendemonstratedorimplementedinseveralcountries.131 Severallargescaleplants havebeendevelopedintheFormerSovietUnionandhavebeenusedforheatingandpower production.TheapproachusedintheFormerSovietUnioninvolvedverticalwellsandrelatively shallowcoal.However,itisnowbelievedthatgiventechnologyadvances,thefuturemarket potentialmarketwouldbeindeeper,unmineablecoals. 132

Inadditiontoaccessingdeepcoalsthatwouldneverbemined,UCGhasthepotentialtobean environmentallyfriendlymethodofextractingenergyfromcoalsthatmaybewithinminingdepths, butinareaswhereminingisinfeasibleorenvironmentallyunacceptable. 131 U.K. Department of Trade and Industry, 2006, “Review of the Feasibility of Underground Coal Gasification in the UK.” http://www.dti.gov.uk/energy/page19148.html 132 U.K. Department of Trade and Industry, 2004, ibid.

145 U.S.ExperiencewithUCG AccordingtoDOE,UCGresearchhasbeenconductedintheU.S.forabout60years.Upuntilthe 1990s,therewere33fieldtrialsconductedbyDOEandtheNationalLaboratories.Theprogram wasconsideredasuccess,butduetoenergypricedeclinesinthe1980s,theprogramdidnot achievecommerciality.

EnvironmentalIssueswithUCG ThemostsignificantenvironmentalrisksofUCGinvolvegroundwatercontaminationthroughthe escapeofgasesandleachatemigrationasliquid.133 Leachateisacontaminatedliquidthatresults whenwatercollectscontaminantsasitmovesthroughasolidsubstance,suchasminetailings,or inthecaseofUCG,theundergroundcoalseam.However,theseriskscanbeminimizedthrough propersiteselectionandprocesscontrol.

Intermsofsiteselection,deepercoalseamshavemuchlesspotentialtodamageshallowaquifers. GroundwatercontaminationintwoU.S.testsitesoccurredinshallowcoals.Thegeological characteristicsofthecoalandsurroundingsitearealsoimportant.

Intermsofprocesscontrol,themostimportantfactoristokeepthepressurewithinthereactor lowerthanthatofthesurroundingstrata,soastopreventoutwardfluidmigration.Suchoutward migrationcouldpotentiallycontaminatethegroundwater.Also,afterareactorisshutdown, ventingmustbedoneproperly.

DirectionalDrillingApproach Overthepasttentofifteenyears,advanceshavebeenmadewithamethodinwhichaninjection wellisdrilledhorizontallythroughthecoalseam.Theairinjectionpointcanbemovedupthe boreholethroughtime,suchthatahighpercentageofthecoalisconvertedwithjustonewell. Multiple,branchedhorizontalwellsareenvisioned.Itislikelythatthisisthemethodthatwill eventuallybeusedfordeeperseams,butnocommercialscaleprojectsofthistypehavebeen developed.AccordingtotheBritishDepartmentofTradeandIndustry(DTI),around20coalwells wouldberequiredtodevelopa300MWpowerstation.

EconomicsofCoalGasification Estimated2008capitalcostsforvarioustechnologiestoconvertcoaltosyntheticnaturalgas (methane)areshowninTable39.Thefirstthreeoptionsareforentirelyabovegroundplants, whilethelasttwooptionsareforundergroundgasificationcombinedwithaboveground processing.Costsinthistablerepresentestimatedmid-2008costsforprocessingequipmentand drillingcostsforundergroundoptions.Notethatthereisnoundergroundoptionforcatalytic gasificationsincetherewouldbenopracticalwayofrecoveringthecatalystfromunderground reactionchambers.

Theestimatedcostperunitofsubstitutenaturalgas(SNG)foreachtechnologyisshowninTable 40.Substitutenaturalgasmadefromcoalinabovegroundgasificationplantsisaproven technology,butitshighcostshavelimiteditsapplicationintheU.S.toasinglecommercialplant. Costestimatesforlargegasificationplantsmaking150MMcfdofmethanerangefrom$7.61to 133 Leachateisacontaminatedliquidthatresultswhenwatercollectscontaminantsasitmovesthrougha solidsubstance,suchasminetailings,orinthecaseofUCG,theundergroundcoalseam.

146 $8.97perMMBtuatcurrentcostfactorsincludingtherun-upinconstructioncostof74percentfor alllarge-scaleenergyprojectsexperiencedfrom2004tomid-2008.

AlthoughUCGhasbeenappliedinaverylimitedscaleforseveraldecadesoutsidetheU.S.,it shouldbeconsideredanimmaturetechnologyforwhichconsiderableoperatingexperiencewillbe neededbeforeitiscommercializedonalargescale.Aswithabovegroundgasification,thefinal fuelproductfromthegasifiedcoalcanbethecrudesyngas(carbonmonoxideandhydrogen primarilyarethefuels),hydrogen,ormethane.ThecostsestimatedformethanemadefromUCG varywidelybasedonthedrillingdepthofthecoalandcoalseamthickness.Fora2,000feetdeep coalbedwitha50footseamthickness,thecostofmethanewouldbeintherangeof$5.61to $6.28perMMBtufora150MMcfdfacility.Aboutone-thirdofthecapitalcostisforwellsthat wouldbedrilledthroughoutthe30-yearlifeofthefacility.Althoughthepresent-valuecapitalcost forundergroundgasification(withabovegroundgasprocessingandmethanation)wouldbeabout thesameasabovegroundgasification,theper-unitcostsarelowerbecausetheminingand transportcostsofthecoalarenotincurred.However,thecostestimatesshownhereassumethat thetypicalroyaltytothelandownerandseverancetaxestothestatemustbepaidforthecoal gasifiedunderground.Theseroyaltyandtaxcostscouldbereducedthroughpoliciesdesignedto encouragethetechnology.

Thebottompartofthetableshowshowagreenhousegas(GHG)controlprogrammightaffect

SNGeconomics.Forexample,ataGHGallowancepriceof$20permetrictonofCO 2,thecostper MMBtuforSNGwouldincreaseby$1.11to$2.16perMMBtu.Theuncertaintyaboutwhetheror howGHGcontrolmightbeimplementedintheU.S.createsaneconomicriskthatdiscouragesSNG plantdevelopment.

147 Table39CapitalCostsofSubstituteNaturalGasOptions(150MMcfd Capacity) Source:ICFAnalysis (million 2008 dollars) 2,000 ft. 2,000 ft. Location: Underground Underground Above Ground Above Ground Above Ground 50 ft. Seam 50 ft. Seam

Steam-Oxygen Steam-Oxygen Technology: Gasification, Catalytic Hydro- Gasification, Hydro- Shift & Gasification to gasification to Shift & gasification to Methanation Methane Methane Methanation Methane Coal Handling/ Drying $87.3 $89.6 $83.5 Gasifier $367.8 $388.8 $331.8 Wells, etc. for Underground Chambers $846.9 $803.8 Air Separation $165.8 $215.2 Sulfur Removal/Recovery $141.3 $147.2 $98.1 $158.8 $130.7 Water Gas Shift $49.2 $37.3 $49.3 $42.7 CO2 Removal, Compression $114.2 $97.1 $83.2 $123.8 $95.1 H2, CH4 Separation $28.3 $32.3 Methanation $145.4 $145.4 Steam Methane Reformer $268.8 $307.3 Heat Exchanger $26.5 $26.7 $18.2 $29.7 $20.8 Water Treatment $28.3 $28.7 $27.2 $26.3 $31.0 Balance of Plant $92.3 $63.8 $80.1 $66.0 $58.5 Total Installed Cost $1,218.1 $841.9 $1,056.4 $1,661.3 $1,522.2 Overhead (11%) $134.0 $92.6 $116.2 $182.7 $167.4 Fees (6%) $73.1 $50.5 $63.4 $99.7 $91.3 Contingency (12%) $146.2 $101.0 $126.8 $199.4 $182.7 Working Capital $69.4 $61.8 $66.1 $62.4 $60.4 Total Capital $1,640.7 $1,147.9 $1,428.9 $2,205.5 $2,024.1

Total Capital Cost ($/Mcfd Capacity) $10,938 $7,653 $9,526 $14,703 $13,494

• Theundergroundprocessesdescribedabovearelessefficientcomparedtotheir abovegroundcounterpartbecause:

o Chemicalreactionsarenotascontrolled(e.g.morecoalisconverteddirectlytoCO 2 intheoxygen-steamgasificationstep).

o Energymustbeusedtocompressandmovefluidstotheundergroundreaction chamberandbacktothesurface.

o Therearethermallossestothegroundthroughthewellsandthroughthechamber walls.

148 o Someofthefluidsarelostastheypasstroughthepermeablechamberwalls.

o Also,thehydrogasificationprocessestendtoproducelessCO 2comparedtothe otherprocesses.

Table40Per-UnitCostsofSubstituteNaturalGasOptions Source:ICFAnalysis.

(million 2008 dollars) 2,000 ft. 2,000 ft. Location: Underground Underground Above Ground Above Ground Above Ground 50 ft. Seam 50 ft. Seam

Steam-Oxygen Steam-Oxygen Technology: Gasification, Catalytic Hydro- Gasification, Hydro- Shift & Gasification to gasification to Shift & gasification to Methanation Methane Methane Methanation Methane

Annual Costs ($ million) Capital $203.7 $142.5 $177.4 $202.1 $183.2 Coal $135.9 $148.1 $116.0 $16.8 $15.7 Water $0.3 $0.7 $0.5 $0.2 $0.6 Catalyst $5.1 $17.8 $0.0 $5.1 $0.0 Direct O&M $49.2 $34.4 $42.9 $42.5 $38.2 Taxes & Insurance $41.0 $28.7 $35.7 $35.4 $31.8 G&A, Overhead $18.0 $12.6 $15.7 $15.6 $14.0 Total $453.2 $384.8 $388.3 $317.5 $283.6

Annual Methane Sales (MMBtu) 50,550,000 50,550,000 50,550,000 50,550,000 50,550,000

Cost per MMBtu of Methane Sales Capital $4.03 $2.82 $3.51 $4.00 $3.62 Coal $2.69 $2.93 $2.30 $0.33 $0.31 Water $0.01 $0.01 $0.01 $0.00 $0.01 Catalyst $0.10 $0.35 $0.00 $0.10 $0.00 Direct O&M $0.97 $0.68 $0.85 $0.84 $0.76 Taxes & Insurance $0.81 $0.57 $0.71 $0.70 $0.63 G&A, Overhead $0.36 $0.25 $0.31 $0.31 $0.28 Total $8.97 $7.61 $7.68 $6.28 $5.61

Metric tonne CO2 per Mcf Methane 0.09 0.07 0.06 0.11 0.07 Added costs for CO2 $/tonne Cost Added per MMBtu due to CO2 Allowance Costs $10 $0.94 $0.72 $0.56 $1.08 $0.70 $20 $1.89 $1.44 $1.11 $2.16 $1.39 $30 $2.83 $2.16 $1.67 $3.24 $2.09 $40 $3.77 $2.88 $2.22 $4.32 $2.78 $50 $4.72 $3.60 $2.78 $5.40 $3.48

Note: Coal prices are assumed to be $40 per short ton ($1.71/MMBtu) delivered to above-ground plants.

149

FinancialIncentivesforCoalGasification InEPAct2005,Congressillustrateditsconcernaboutenergysecurityandsustainabilityby committingtheU.S.governmenttospendbillionsofdollarsoncleancoaltechnologies,including gasification.Thecommitmentoffinancialresourcesconsistedofacombinationoftaxcredits, directgrants,andloanguaranteesforexisting,underdevelopment,andnewlyproposedcleancoal andgasificationprojects.SomeofthekeyprovisionsofEPActincludethefollowing:

EPActenablesDOEtoprovide$200millionannuallyfornineyears,from2006to2014,intheform ofloanguarantees,loans,anddirectgrants,togasificationandothercleancoalprojectdevelopers foratotalof$1.8billion.Ofthisamount,atleast70percentmustbeusedforgasification projects.

Thereare‘carve-outs’forspecifictypesofprojectstoreceivedirectgrants.Portionsofthefunds mustbeallocatedtoprojectsintheUpperGreatPlains,Alaska,andtheWesternU.S.Aminimum offiveoftheseprojectsmustbepetroleumcokeprojects.

EPActestablishedtaxcreditsforupto$1.3billionforcoalgasification.Oftheseamounts,upto $800millionisforIGCCprojects;theremaining$500millionisforotheradvancedcoal-based projects.Thetaxcreditforgasificationprojectsforanyyearis20percentofthequalified investment,whilethecreditforotheradvancedcoal-basedprojectsis15percent.InNovember, 2006,theSecretaryofEnergyawarded$1.0billionoftaxcreditsfornineprojects. 134 Fiveofthe projectswilluseadvancedgasificationtoconvertcoaltoelectricityandtheotherfourwilluse gasificationforindustrialapplications.

Thereisathree-yearperiodfromthedateofenactmentwithinwhichtoapplyfortheseincentives, afterwhichthereisatwo-year“proofperiod”inwhichtheapplicantsmustvalidatetheclaims, andwithinwhichthegovernmentcanreduceorremovetheincentives.

EPActprovides$85millionforresearchanddevelopmentatthreespecificuniversitiesfrom2006 through2010.

ProvisionsundertheCleanAirCoalProgramareaimedtoincreasetheefficientandeconomicuse ofenergytopromotenationalenergysecurity,diversity,andenvironmentalperformance. Authorizedappropriationsunderthisprovisiontotal$2.5billionfrom2007to2013fornew projects,and$500millionfrom2007to2011forprojectsthatincreaseenvironmental performanceatexistingplants.

Throughtheloanguaranteeprogramandthetimingrequirements,theEPActestablishes commitmentsinmeetingprojectmilestonesandfinancialrequirementsfromprojectdevelopers. WhileEPActdemonstratedtheDOE’sgovernment’scommitmenttocleancoaldevelopment,the U.S.Congresshasnotprovidedthecompletefundingauthorizationneededtofollowthroughon thiscommitment.

134 CoalUtilizationResearchCouncil, http://www.coal.org/pdf/TaxIncentives.pdf

150 InadditiontoEPAct,theU.S.federalgovernmenthasbeenpursuinganumberofothercleancoal andconversioninitiatives.Forexample,DOE’soriginalFutureGenprogramwasdesignedtocreate thefirstzeroemissionpowerplantthatwillproducebothelectricityandhydrogen.However, becauseoftheincreaseinprojectedcosts,in2008DOEdecidedtorestructureFutureGentomake moremodestcontributionstoseveralpowerplantswithcarbonsequestrationratherthanalarge financialcontributiontoasingleproject.Thedetailsofthisrevisedprogramarestillbeingworked out.

Inadditiontothesefederalinitiatives,statesandcorporationsarealsomovingaheadwithclean coalandconversionprograms.Forexample,ArchCoalandDKRWAdvancedFuels,LLCare developinga13,000barrelperdayofultra-lowsulfurdieselcoal-to-liquids(CTL)projectin MedicineBow,Wyoming.

Inordertogainthemaximumbenefitfromcleancoalandconversionprojects,federalandstate governmentsandprivatecorporationshavealsobeenpursuingcarboncaptureandsequestration projects.Forexample,DOE’sproposed2008budgetincludes$79millionforthevalidationphase oftheCarbonSequestrationRegionalPartnershipandinitialworkonfoursequestrationfieldtests.

Additionalincentivesforcarbonsequestrationforpower,syntheticnaturalgasandcoal-to-liquids plantshavebeenproposedaspartofseveralGHGlegislationproposals.Onecommonideaisto provide“bonusallowances”tofacilitiesthatsequestercarbondioxide,particularlyintheearlyyears oftheregulatoryprogram.Theintentistoprovideafinancialincentivesothatthecarboncapture andstoragetechnologiescanbeprovenandcostscanbereducedthroughimproved understanding.

8.6 LandfillGas

Landfillmethaneisgeneratedbythedecompositionoforganicwasteinanaerobic(oxygen- deprived)conditionsatmunicipalsolidwaste(MSW)disposalfacilities,commonlyknownas landfills.Ofalltheanthropogenic(human-caused)sourcesofmethaneemissionsintheU.S., landfillsaccountforthemostgenerationfromasinglesourcecategory—25percentofthetotalin 2004. 135 Besidesthecompositionofthewasteitself,theamountofmethanegeneratedbya landfilloveritslifetimeisdependentuponthequantityandmoisturecontentofthewasteaswell asthedesignandmanagementpracticesofthefacility.Landfillswithmorewastedepositedin themwilltypicallyproducemoregasovertimethanthosewithlesswaste.Otherfactorsaside, landfillsindrierregionswillnotproduceasmuchgasasthoseinareasthatreceiveaverageor betterthanaverageprecipitation,asmoistureisanecessarycomponentindecomposition.Thegas generationpotentialofalandfillisbasically“fixed”basedonthefacility'ssizeandotherattributes andtheclimateinwhichitislocated.Significantgenerationoflandfillgasgenerallybeginsabout onetotwoyearsafterwastedisposalandcontinuesfortento60years, 135 dependingonlandfill conditions . Forthepurposesofdiscussinglandfillgasgeneration,MSWdisposalsitescanbecategorizedas oneoffourtypes:opendumps,sanitarylandfills,sanitarylandfillsre-circulatingleachate,and 135 USEPA,USEmissionsInventory2006, InventoryofUnitedStatesGreenhouseEmissionsandSinks:1990- 2004 ,April15,2006, http://yosemite.epa.gov/oar/globalwarming.nsf/content/ResourceCenterPublicationsGHGEmissionsUSEmissio nsInventory2006.html

151 bioreactors.Biogasfromwastecanbegeneratedbyopendumpsites,buttoamuchlesserextent thantheothertypesoflandfillgeneration.OpendumpsintheU.S.aretypicallysmallerthan landfillsanddonothaveanimpermeablelowerlinerorcapinstalledorotherstructuralqualitiesof sanitarylandfillsthathelpfacilitatetheanaerobicconditionsnecessaryforgasgeneration.Modern sanitarylandfillsarerequiredtoincludesafeguardsintheirdesignandoperationtoprotectthe environment,suchasliners,leachatecollection,andcompactionandcover.136 Leachateisthe liquidwasteresultofwaterpercolationdownwardthroughthewaste.SomeU.S.landfillscollect andre-circulateleachatethroughoutthewastemassto(1)handlethisby-productoflandfillingthat requirescollectionanddisposalitself,and(2)speedupdecomposition,therebyreducingvolume, creatingmoreairspaceforadditionalwaste,andextendingthelifeofthelandfill.Thisprocessof re-circulatingtheleachatecanintensifythegenerationoflandfillgas;nomoregasiscreatedbythe landfillthantherewouldhavebeenwithoutthere-circulation,ratherthegasisjustcreatedsooner. Therearedifferentsubtypesofbioreactors,but,ingeneral,abioreactorisconsideredtobea landfillthatinjectsliquidand/orairinacontrolledmannerintothewastemassto"accelerateor enhancebiostabilizationofthewaste."137

Landfillgasexcludingwatercontentisbasicallycomposedofroughly50percentmethaneand50 percentcarbondioxide.However,thegasistypicallysaturatedwithmoistureandcontainslessthan onepercentnon-methaneorganiccompounds(NMOCs).Minuteamountsofnitrogen,oxygen, andhydrogenandtraceamountsofinorganiccompounds,suchashydrogensulfidewhichhasa strongodor,arealsofoundinlandfillgas.138 Atexitfromafacility,landfillgasisgenerally between95and100degreesFahrenheit.

Approximately3,200cubicfeetoflandfillgasisproducedpertonofwasteoverthewaste’s20or moreyearsofdecay 139 —thisgenerationpeaksaroundtwoyearsafterthewaste’splacementand declinesthereafter.Asaruleofthumbinthelandfillgasindustry,onemilliontonsofwastein- placeinalandfillwillgenerate300standardcubicfeetperminute(scfm)oflandfillgasatany givenpointintimeduringthatwaste'sproductiveperiod.Thisisenoughtogenerateapproximately 0.8megawatts(MW)ofelectricityusingavailabletechnology.

Thehigherheatingvalue(HHV)ofmethaneis1,012Britishthermalunitsperstandardcubicfoot (Btu/scf).140 Landfillgasthatis50percentmethanewouldthereforehaveaheatingvalueofabout 506Btu/scf.Traditionally,EPAhasusedthehigherheatingvalueoffuelswhendeveloping regulationsandwhencommunicatingenvironmentalinformation.Duetovaryingcompositionsof landfillgasatdifferentlandfills,measuredheatingvaluescanrangefrom350to600Btu/scf.

136 USEPA,OfficeofSolidWasteWebsite,2006, http://www.epa.gov/epaoswer/non- hw/muncpl/landfill/sw_landfill.htm 137 USEPA,OfficeofSolidWasteWebsite,2006, http://www.epa.gov/epaoswer/non- hw/muncpl/landfill/bioreactors.htm 138 USEPA,LandfillMethaneOutreachProgram(LMOP),FrequentQuestionsonLandfillGasandHowIt AffectsPublicHealth,Safety,andtheEnvironment ,2006, http://www.epa.gov/lmop/faq-3.htm 139 USEPA,AP42,FifthEdition,VolumeI,Chapter2:SolidWasteDisposal,January1995, http://www.epa.gov/ttn/chief/ap42/ch02/index.html 140 ChemicalEngineers’Handbook .JohnH.Perry,ed.McGraw-HillBookCompany:NewYork,1963, Page9-9.

152 CharacterizationofU.S.Landfills OperationalU.S.landfillshavedecreasedinnumbersteadilyoverthepast15to20years.In1988, therewereover7,900U.S.landfillsoperating.Recentreportsputthenumberofoperatinglandfills between1,600and1,800. 141 However,averagelandfillsizeisincreasing.Large,regionallandfills arebecomingmorecommonwhilesmaller,localizedlandfillsarefillingupandclosingdown.The resultisthatoveralllandfillcapacityintheU.S.hasremainedrelativelyconstant.142

Approximately249milliontonsofMSW(includingresidentialandcommercialwaste,organics, tires,andotherwastesthatarenotindustrial,constructionanddemolition,agricultural,or imported)weredepositedinlandfillsin2005alone. 143 Theamountofwasteestimatedtohave beenin-place30yearsorlessintheyear2004wasapproximately6billiontons.Thissubsetof waste(representativeofopenandclosedlandfills)wasexpectedtocontributeabout90percentof thelandfillgasgeneratedin2004. 135

Alllandfillsarenotconsideredtobeprimecandidatesforlandfillgasenergyrecoveryduetotheir size,geographiclocation,oranycombinationoftheseandotherfactors.TheU.S.EPALandfill MethaneOutreachProgram(LMOP)estimatesthat,inadditiontotheroughly380landfillsalready collectinglandfillgasforenergyrecovery,approximately600additionallandfillsarecurrentlygood candidatesforlandfillgasenergyrecovery.Themajorityoflandfillshavemorethanonemillion tonsofwasteinplaceandeitherarestillacceptingwasteorhavebeenclosedforfiveorfewer years.144

A2006“stateofgarbage”surveyshowsthat,inspiteofslowlyincreasingrecyclingrates,theU.S. trendofincreasedMSWgenerationiscontinuing,141 andthetotalamountofMSWgeneratedover thenextseveralyearsisexpectedtocontinueincreasingaspopulationgrows. 135 Whilethe numberofoperatinglandfillswillprobablycontinuetodecreaseandeventuallyleveloff,the amountofwasteplacedintolandfillsisnotexpectedtodecreaseorevenleveloffformanyyears. Thisindicatesthatlandfillgasasanenergysourceshouldcontinuetobeavailableforthe foreseeablefuture.Thenumberofindividualsources(landfills)inthefutureisquestionablebutthe amountofwastecanbeprojected.FollowingcurrentMSWgenerationanddisposaltrends,the amountofoverallwastegenerating90percentofthelandfillgasinlandfillsin2020couldbe approximately8billiontons.

Landfillsize,andthereforethegasflowpersource,canvarygreatly,dependingupongeographic location,ownership,regulations,localitiesserved,andotherfactors.Asmentionedpreviously,one milliontonsofwastein-placeinalandfillwillgenerateapproximately300scfmoflandfillgas. Around70percentofthelandfillsconsideredbyLMOPtobecurrentcandidatesforenergy recoveryhaveawastein-placebetweenoneandfivemilliontonswithamediansizeofabouttwo

141 BioCycle, TheStateofGarbageinAmerica(Abstractonly) ,April2006. 142 USEPA,OfficeofSolidWaste,MunicipalSolidWasteGeneration,Recycling,andDisposalintheUnited States:FactsandFiguresfor2003,April2005, http://www.epa.gov/epaoswer/non- hw/muncpl/pubs/msw05rpt.pdf 143 14 th AnnualNationwideSurveyofSolidWasteManagementintheUnitedStates,TheStateofGarbagein America ,EarthEngineeringCenterofColumbiaUniversityandBioCycle,January2004, http://www.earthcycle.com/ec-pdf/Statepercent20ofpercent20Garbagepercent202004.pdf 144 USEPA,LandfillMethaneOutreachProgram(LMOP),LandfillandLandfillGasEnergyProjectdatabase, 2006, http://www.epa.gov/lmop/proj/index.htm

153 milliontons.144 Therefore,anaverageflowpersourcecouldberepresentedas600scfm,or enoughlandfillgastogenerateabout1.6MWofelectricity.

GasGenerationPotential TheamountofrawlandfillgasthatwasgeneratedintheU.S.in2004wasapproximately3,400 millionstandardcubicfeetperday(mmscfd)or1,240Bcfperyear.Ofthisamount,about290Bcf peryearofrawgas(150Bcfperyearofmethane,assuming50percentmethane)wasutilizedin landfillgasenergyrecoveryprojectswhileanother250Bcfperyearofrawgaswascollectedand flared(combustionwithoutenergyrecovery).135 Theroughly600orsolandfillsidentifiedby LMOPasbeinggoodcandidatesforenergyrecoveryhaveacombinedenergypotentialof approximately264Bcfperyear. 145

Basedontheaboveestimateof8billiontonscontributingto90percentofthelandfillgas generatedin2020,thetotalamountofrawlandfillgasgeneratedin2020couldbeapproximately 4,500MMcfd(1,640Bcfperyear).The1,640Bcfperyearofrawgasequatesto800Bcfperyear ofmethane.ThiscanbecomparedtocurrentU.S.naturalgasproductionofroughly20,000Bcf peryear.

ExperiencewithLandfillGas LMOPreportsthatapproximately400landfillgasenergyprojectsarecurrentlyoperationalinthe U.S.withseveralmoreunderconstructionforcompletionin2006andadditionalprojectsplanned for2007andbeyond.144 Severalproventechnologiesareinuse,suchasreciprocatingengines,gas turbines,boilers,microturbines,leachateevaporators,andindividualizeddirectthermalapplications suchasbrickkilnsandsludgedryers.Therearemanyotherusesforlandfillgasaswell,andnew venturescontinuetoemerge.

AlandfillinCaliforniahasbeencreatingcompressednaturalgasfromlandfillgasforyearstofuel trucksandotherequipment.Severalexistingandplannedprojectsinvolvetheupgradingoflandfill gastohighBtuqualityandinjectingitintonaturalgaspipelines.Combinedheatandpower projectsareincreasinginpopularityastheprocessofrecoveringandusingwasteheatfromthe combustionofthelandfillgasincreasestheoverallprojectefficiency.

Othercurrentandfutureusesforlandfillgasareelectricitygenerationfromorganicrankinecycle enginesandStirling‘externalcombustion’engines,heatinggreenhouses,fuelingcraftstudios,and spaceheatingwithinfraredheaters.

Approximatelytwo-thirdsofexistinglandfillgasenergyprojectsutilizethegastogenerate electricity,whetherforon-siteuse,saletothegrid,orboth.Theremainingthirdofprojectsuse thegasforadirectapplication,suchastogeneratesteamviacombustioninaboiler. Table41 providesbasiccountsofcurrentlyoperationalelectricity-generatinganddirect-useprojects,as reportedintheLMOPdatabaseoflandfillgasenergyprojects.144

145 USEPA,LandfillMethaneOutreachProgram(LMOP),AnOverviewofLandfillGasEnergyintheUnited States, 2006, http://www.epa.gov/lmop/docs/overview.pdf

154 Table41ExistingLandfillGasEnergyTechnologyProjectswithProject Counts(February2005) Count of Count of Electricity-Generating Currently Currently Direct-Use Technology Technology Operational Operational Projects Projects Reciprocating Engine a,b 204 Boiler 38 Gas Turbine a 30 Direct Thermal 38 Microturbine 16 Leachate Evaporation 19 Steam Turbine 16 High Btu 9 Cogeneration c 13 Greenhouse 4 Combined Cycle d 5 Medium Btu 1 Stirling Cycle Engine 1 Alternative Fuel 1 Fuel Cell 1 Organic Rankine Cycle b 2 Total 286 Total 110 a. Oneprojectinvolvesreciprocatingenginesatonelandfillandagasturbineatanotherlandfill;forthe individualcountsbytechnology,theprojectiscountedtwice,butisonlycountedonceforthetotal.

b. Oneprojectinvolvesareciprocatingengineandanorganicrankinecycle;fortheindividualcountsby technology,theprojectiscountedtwice,butisonlycountedonceforthetotal.

c. Technologiesusedforcogenerationincludereciprocatingengines,gasturbines,microturbines,and boiler/steamturbines.

d. Combined-cycleinvolvestheuseofagasturbineandasteamturbine. LandfillGasCollectionandPreparation Typicalgascollectionbeginsafteraportionofalandfill(calledacell)isclosed.Therearetwo collectionsystemconfigurations:verticalwellsandhorizontaltrenches.Verticalwellsarebyfarthe mostcommontypeofwellusedforgascollection.Trenchesmaybeappropriatefordeeper landfills,andmaybeusedinareasofactivefilling.Inaconventionalverticalwellsystem,vertical wellsofapproximatelytwotothreefeetindiameteraredrilledintothewasteatatypicalspacing ofonewellperacre.Perforatedpolyvinylchloride(PVC)pipeapproximatelysixinchesindiameter isinsertedintothewellandtheholeisfilledwithgravelandcappedwithanimperviousmaterial. Eachwellheadisconnectedtolateralpiping,whichtransportsthegastoamaincollectionheader. Eachwellheadisfittedwithvalvesandapressuretapsothattheoperatorcanmonitorandadjust thegasflowfromeachwell,asnecessary.

Animportantpartofanygascollectionsystemisthecondensatecollectionandtreatmentsystem. Condensateformswhenwarm,humidgasfromthelandfillcoolsasittravelsthroughthecollection

155 system.Ifcondensateisnotremoved,itcanblockthecollectionsystemanddisrupttheenergy recoveryprocess.Typically,condensatecontrolbeginsinthefieldcollectionsystem,wheresloping pipesandheadersareusedtoallowdrainageintocollecting("knockout")tanksortraps.These systemsareaugmentedbypost-collectioncondensateremovalaswell.Someofthemethodsfor disposalofcondensatearedischargetothepublicsewersystem,on-sitetreatment,and recirculationtothelandfill.Thebestmethodforaparticularlandfillwilldependuponthe characteristicsofthecondensate(whichmayvarydependingonsite-specificwasteconstituents), regulatoryconsiderations,andthecostoftreatmentanddisposal.

Ablowerisnecessarytopullthegasfromthecollectionwellsintothecollectionheader,and conveythegastothetreatmentsystem.Thesize,type,andnumberofblowersneededdependon thegasflowrateandtheresistanceinthecollectionsystem.

Aflareissimplyadeviceforignitingandburningthelandfillgas.Flaresareconsidereda componentofeachenergyrecoveryoptiontodisposeofgasduringsystemstart-upanddowntime. Inaddition,itmaybethemostcost-effectivetoincreasethesizeoftheenergyrecoverysystem graduallyandtoflareexcessgasbetweensystemupgrades(e.g.,beforeaddinganotherengine). Flaredesignsincludeopen(orcandlestick)flaresandenclosedflares.Enclosedflaresaremore expensivebutmaybepreferable(orrequired)becausetheyallowforstacktestingandcanachieve slightlyhighercombustionefficiencies.Inaddition,enclosedflaresmayreducenoiseandlight nuisances.

Afterlandfillgashasbeencollected,andbeforeitisusedinanenergyproject,itistreatedto removemoisturethatisnotcapturedintheknockouttanks,aswellasparticulatesandother impurities.Treatmentrequirementsdependontheenduseapplication.Minimaltreatmentis requiredfordirectuseofgasinboilersandreciprocatingengines.Thistreatmentincludes dehumidificationtodropthegasdew-pointbelowwintertemperatures,particlefilterstoremove particulatesthatcoulddamageenginecomponents,andcompressiontomeetthefuelpressure requirementsoftheenergyapplication.Somereciprocatingengineapplicationsandmanygas turbineapplicationswillalsorequiresiloxaneremovalifthelevelofsiloxanesisverysignificant.146 Siloxaneremovalisaccomplishedbyadsorptionbedssituatedafterthedehumidificationprocess.

146 Siloxanesareaclassofcompoundspresentinanumberofconsumerproducts.Siloxanesformhard ceramic-likedepositsoncombustion.Thesedepositscanshortenthelifeofenginesorgasturbinesandalso requiremorefrequentoilchanges.

156 Totalcollectionsystemcostswillvarywidely,basedonanumberofsite-specificfactors.Ifthe landfillisdeep,collectioncostswilltendtobehigherduetothefactthatwelldepthswillneedto beincreased.Collectioncostsalsoincreasewiththenumberofwellsinstalled.Table42presents estimatedcapital,andoperatingandmaintenancecostsfortypicalcollectionandtreatment systemsattypicallandfillsgenerating500,1,000,and2,000cubicfeetperminute(cfm)oflandfill gas.Thecapitalcostsforthesesystemsincludeinstallationofalloftheequipmentdescribedabove andstart-upcosts.Theannualoperatingandmaintenancecostsincludealllabor,materials, electricityandadministrativecostsrequiredtooperatetheequipmentdescribedabove.This includesthemonthlyoptimizationofgascollectionateachwellhead.Thesecoststranslateinto roughly$2.75to$3.00perMMBtuforlow-Btugas.

Table42SummaryofRepresentativeLandfillCollectionand TreatmentCosts(Low-BtuGas) (2006$)

AnnualO&M Capital Costs EstimatedGasFlow Costs (cfm) ($ million) ($million)

500 1.2 0.23 1,000 2.1 0.45 2,000 4.1 0.90 Source: BasedonEPA’sLFGcostModel

8.7 BiologicMethane Thissectiondiscussesthreetypesofbiologicmethane:

• AgriculturalBiogas

• BiogasfromDigesters

• WastewaterTreatmentBiogas

AgriculturalBiogas Agriculturalbiogasistheproductionofmethanethroughtheanaerobicdigestionofagricultural byproducts.Oneofthemostpromisingsourcesistheproductionofbiogasfrommanure managementatConcentratedAnimalFeedingOperations(CAFOs)includingdairy,swineand chicken-raisingoperations.TheEPAestimatesthatthereisthepotentialtoproduce100Bcfof biogasfromswineanddairyfarmsalone.Thereisgrowinginterestinbiogasforseveralreasons.

157 First,farmoperatorsalreadyneedtodisposeofmanureandanaerobicdigestionisonemethod addressingdisposal.Second,combustionofbiogasisawayofreducingemissionsofmethane,a potentgreenhousegas.Third,biogasisclassifiedasarenewablefuel,soitsusedoesnotcount towardsgreenhousegasemissions.Inthepast,thefocushasbeenonusingbiogasforon-site powergeneration.Morerecently,developersarestartingtoremoveimpurities(CO 2andH 2S)from thegasandsupplyittoend-usecustomersviagaspipelines.Thereisthepotentialforthispipeline useofbiogastoincreasesignificantlyinthenearfuture.Already,dairiesinCaliforniaandother westernstatesaresupplyingbiogastopipelines. Manuredigesterbiogasisproducedatanimalproductionoperationswhenmanuredecomposes anaerobically(withoutoxygen)inadigester.Animalproductionoperationsuseanaerobicdigestion toreducethesolidscontentofmanureandtoimproveitsquality.Energy-recoverydigestersare specially-designeddigestersthatoptimizetheproductionofbiogasfromthedecompositionof manure.

Anaerobicdigestersmaybedesignedsimplytoreduceandstabilizemanuresolids,ortheymaybe designedtorecoverbiogasanduseitforenergy.IntheU.S.,digestersaremostcommonlyfound atlargeswineanddairyoperations.Theseanimalproductionoperationshavethegreatest potentialforgeneratingbiogaswhenmanureiscollectedandstoredasaliquid,slurry,orsemi- solid.Becausethevastmajorityoflargedairyandswineoperationsuseliquidorslurrymanure managementsystems,thebiogasproductionpotentialisverysignificantattheseoperations.As biogassystemsizeincreases,theunitcostsforconstructionandoperationdecreasesignificantly. EPAhassuggestedthatanimaloperationsmostlikelytoprofitfromanaerobicmanuredigestion aredairyoperationswithamilkingherdofmorethan500cowsandswineoperationswithmore than2,000headofconfinementcapacity. 147

Typesofsources Therearethreetypesofenergy-recoverydigestersthataretypicallyusedbyanimalproduction operationsintheU.S.:

• Coveredanaerobiclagoon :Aflexiblecoverisinstalledoveramanurestoragelagoonto recoverbiogas.Thissystemisthesimplestandmostcommonmanurestorageand stabilizationsystemcurrentlyinuse.Manurewastestreamswithlowsolidscontent (e.g.,flushedbarns)aremostappropriateforacoveredlagoondigestersystem(zeroto threepercentsolidscontent).

• Completemixdigester :Acompletemixdigesterisanenclosed,heatedmanurestorage tankthathascontrolledtemperature,constantvolume,andmixing.Thesedigesterscan accommodatetotalsolidscontentinthewastestreamrangingbetweenthreeand10 percent,suchasawastescrapedfromaswinebarnoralow-waterusedairyoperation.

• Plug-flowdigester: Aplug-flowdigesterisanarrow,heatedmanurestoragetankthatis coveredwitharigidorflexiblecover.Theplug-flowsystemoperatesbestwithscrape- collected,freshdairymanure(>10percenttotalsolids). 147 USEPA.MarketOpportunitiesforBiogasRecoverySystems,AGuidetoIdentifyingCandidatesforOn- FarmandCentralizedSystems.EPA-430-8-06-004.Availabeonlineat: http://www.epa.gov/agstar/pdf/biogas percent20recoverypercent20systems_screenres.pdf

158 CharacteristicsofBiogas Manuredigesterbiogasmaybeproducedbydigestersoperatinginoneofthreetemperature regimes:

• Psychrophilic ,orlow-temperaturedigestion,isthenaturaldecompositionpathfor manuresattemperaturesfoundinlagoons.Thesetemperaturesvaryfromabout38to 85°F(3to29°C).Biogasproductionwillvaryseasonallywithvariationsinlagoon temperature.Typically,uncoveredlagoonsoperateinthepsychophillicrange.

• Mesophilic digestioncultivatesbacteriathathavepeakactivitybetween90and105°F (32to40°C).Thesedigestersareheatedandbiogasproductionwillnotvaryseasonally. MostU.S.energy-recoverydigestersoperateinthemesophilicrange.

• Thermophilic digesterspromotebacteriathatgrowattemperaturesbetween135and 155°F(57to68°C).Thesedigestersareheatedandbiogasproductionwillnotvary seasonally.Thistypeofdigestionisunusualduetothehighcosttomaintain temperaturesinthisrange. Biogasfromamanuredigestertypicallycontains,onaverage,60to80percentmethane, dependingonthetypeofanimalandthemanurecollectionsystem.Thebalanceofthebiogasis composedofcarbondioxideandtraceamountsofhydrogensulfide.

Theamountofmethanegeneratedbyanimaltypeanddigestionmethodhavebeenestimated basedondatacollectedfromdigestersystemsparticipatinginEPA’sAgSTARprogram.Asshown in Table43,theactualmethanegenerationratewillvarysignificantlyfromsitetosite,dueto variablessuchasdigesterdesign,animaldietandweight,andlocalclimaticconditions.

159 Table43AnaerobicDigestionMethaneGenerationbyAnimalType MethaneGeneration AnimalGroup Animal Type (cubicfeet/head-day)

Dairy DairyCalf 38.50 Dairy DairyCow:Dry 38.50 Dairy DairyCow:Lactating 38.50 Dairy DairyHeifer 38.50 Swine Boars 0.00 Swine FeederPigs 4.40 Swine NursingPigs 1.30 Swine Sow:Gestating 6.10 Swine Sow:Lactating 6.10 Swine WeanedPigs 1.30 Availability

Theuseofmanurebiogastoproduceenergyislimitedtofarmsthathavetheanimalsandmanure managementtoaccommodateanaerobicdigestion.Farmsthatproduceelectricityfrombiogas mayselltheelectricitybacktothegrid,makingthisenergyavailabletoconsumersoutsideofthe farm.Sellingelectricitybacktothegrid,however,hasnotbeenaneconomicallyviableoptionfor thesefarms.Furthermore,notallanaerobicdigestersrecoverenergy.Thenumberofanimal operationswithanaerobicdigestersrepresentsasmallfractionofthetotalnumberofanimal operations.Basedon2002UnitedStatesDepartmentofAgriculture(USDA)CensusofAgriculture data,thereareatotalof91,989dairyoperationsand78,895swineoperationsintheU.S.(Table 44).Outoftheseoperations,only0.07percentofdairyoperationsand0.05percentofswine operationshaveanaerobicdigesters.

Inthecomingyears,moreanimaloperationsmayconsideranaerobicdigestionasamanure managementoption.Thenumberofoperationsthatmaybecandidatesforanaerobicdigesters dependsonthenumberofanimalsandthemanuremanagementsystemateachfarm.Animal populationandmanuremanagementsystemdatawerecompiledaspartoftheManure ManagementportionoftheEPA InventoryofUnitedStatesGreenhouseGasEmissionsandSinks: 1990–2004.148 ThesedatacanbecombinedwithdatafromtheWinter2006AgSTARdigest andthe2002USDACensusofAgriculturetocharacterizethesizeandmanuremanagement systemofanimaloperationsintheUnitedStates. 148 USEPA.April2006.InventoryofUnitedStatesGreenhouseGasEmissionsandSinks:1990–2004.EPA 430-R-06-002.Availableonlineat: http://yosemite.epa.gov/oar/globalwarming.nsf/content/ResourceCenterPublicationsGHGEmissionsUSEmission sInventory2006.html

160 Table44NumberofOperationsbyAnimal,FarmSize,andManure Management NumberofOperationsbyManureManagementSystem FarmSize Pasture, Animal Range, Anaerobic Liquid/ Solid Deep (head) Lagoon Total or Digestion Slurry Storage Pit Paddock ≥500 320 48 1,614 675 245 - 2,902 Dairy 200-499 3,213 9 617 653 54 - 4,546 1-199 68,954 5 2,223 3,017 9,195 1,147 84,541 ≥2000 - 14 2,581 1,084 297 2,774 6,749 Swine 200-2000 - 3 3,990 5,219 832 8,869 18,913 1-199 53,230 1 - - - - 53,231 EPAhasidentifieddairyoperationswithgreaterthan500headandswineoperationswithmore than2,000headasthemostviablecandidatesforanaerobicdigestion.Also,thepotentialfor generatingbiogasfrommanureisgreatestformanuremanagementsystemsthatcollectandstore manureasaliquid,slurry,orsemi-solid(lagoon,liquid/slurry,ordeeppit).Consideringthese parameters,thereare2,289dairyoperationsand6,439swineoperationsthatarepotential candidatesforanaerobicdigestion.

DigesterBiogas

Anaerobicdigestionisabiochemicalprocessinwhichbacteriadigestbiomassinanoxygen-free environment.Severaldifferenttypesofbacteriaworktogetherinadigestertobreakdown complexorganicwastes;theresultingproductis"biogas."Controlledanaerobicdigestionrequires anairtightchamberandawarmenvironment.Topromotebacterialactivity,thedigestermust maintainatemperatureofatleast68°F,howeverbyusinghighertemperaturesofupto150°F, theprocessingtimeisshortened,whichallowsthedigestertohandlealargervolumeoforganic waste.

Characterization Biogas,alsoknownas"digestergas",isactuallyamixtureofgasesincludingmethaneandcarbon dioxide(CO 2),whichmakeupmorethan90percentofthetotalvolume.Smalleramountsofother elements,includinghydrogensulfide,nitrogen,hydrogen,methylmercaptansandoxygenarealso present.Theenergycontentofdigestergasdependsontheamountofmethaneitcontains,since methaneisacombustiblehydrocarbon.Methanecontentindigestergasvariesfromabout55 percentto80percent.Typicaldigestergas,withamethaneconcentrationof65percent,contains about600Btuofenergypercubicfoot.

Manuredivertedtoananaerobicdigesterisgenerallycollectedfromtheanimalhousingareaata farm.Themanureiscollectedfrequently,asoftenasafewtimesperdayoratleastafewtimes

161 perweekinordertomaintaintheconsistencyofthemanure.Manuremaybescrapedfromthe barnorflushedusingrecycledwater.Beddinganddebrisarenotdesirableinthedigester,and thereforethemanurewastestreammaybedivertedtoscreensorotherseparationdevicespriorto enteringthedigester.

Anaerobicdigesterphysicaldescriptionsvarybydigestertype.TheUSDANaturalResource ConservationService(NRCS)haspublisheddesignguidelinesforeachofthefollowingthreetypes ofanaerobicdigesters: 149

• CoveredAnaerobicLagoons aredefinedbyUSDANRCSas“aconstantvolumelagoon designedformethaneproductionandrecoveryinconjunctionwithaseparatewaste storagefacility.”Acovercanbefloatedonorsuspendedoverthesurfaceofaproperly sizedanaerobiclagoontorecovermethane.Ideally,thecoverisfloatedontheprimary lagoonofatwo-celllagoonsystem,withtheprimarylagoonmaintainedasaconstant volumetreatmentlagoonandthesecondcellusedtoprovidestorageoftreatedeffluent untiltheeffluentcanbeproperlyappliedtoland.Thelagoonsarenotusuallyheated andthelagoontemperatureandbiogasproductionvarywithambienttemperatures. Coarsesolids,suchashayandsilagefibersincowmanure,mustbeseparatedina pretreatmentstepandkeptfromthelagoon.Ifdairysolidsarenotseparated,theywill floattothetopandformacrust.Thatcrustwillthicken,reducingbiogasproduction andeventuallyfillingthelagoon.

• Complete-mixDigesters areconstantvolume,flowthrough,controlledtemperature tanksdesignedformethaneproductionandrecovery.Thesedigesterscan accommodatethewidestvarietyofwastes.Complete-mixdigestersareusually aboveground,heated,insulated,roundtanks;however,thecomplete-mixdesignhas alsobeenadaptedtofunctioninaheated,mixed,coveredearthenbasin.Mixingcanbe accomplishedwithgasrecirculation,mechanicalpropellers,orliquidcirculation.A complete-mixdigestercanbedesignedtomaximizebiogasproductionasanenergy sourceortooptimizeVSreductionwithlessregardforsurplusenergy.

• Plug-flowDigesters areheated,unmixed,rectangulartanks.Newwasteispumpedinto oneendofthedigester,therebydisplacinganequalportionofoldermaterial horizontallythroughthedigesterandpushingtheoldestmaterialoutthroughthe oppositeend.Biogasformedinadigesterbubblestothesurfaceandmaybecollected byafixedrigidtop,aflexibleinflatabletop,orafloatingcover,dependingonthetype ofdigester. Thebiogasproducedbythemanuredigesteriscollectedfromthegasspacebetweenthemanure andthedigestercoverusingalowpressureblower.Thebiogasgoesthroughafreewater knockoutvesselbeforebeingconveyedtothecombustiondevice.Further,gasclean-upisnot performedformanureoperationsduetothehighcostofclean-uprelativetothesizeofatypical manureoperation.However,verylargeoperationsmaychoosetoperformsomeofthesamegas clean-upoperationsthatwerediscussedforlandfillgasenergysystems.

149 USDA-NRCS.BiogasInterimDigesterStandards, http://www.epa.gov/agstar/resources/standards.html

162 CollectionandTreatmentSystemCosts Thecapital,operating,andmaintenancecostsforeachtypeofdigestercanbeestimatedbasedon costcurvesdevelopedbyEPAfortheAgSTARFarmWaremodel.EPAdevelopedthecostcurves basedonactualcostdatacollectedfromsystemsoperatingdigesterswhoreportedthesefinancial datatoEPA.TheestimatedcostsarepresentedinTable45.

Themosteconomicdigestersarethoseatdairyfarmswhichhaveresourcecostsof$10to$26per MMBtu,accountingforgasusedtoheatthedigester.Inwarmerclimateswherelittleorno heatingofthedigestersisneeded,resourcecostsare$6.50to$19.00perMMBtufordairyfarm digesters.

Table45EstimatedCostperHeadbyAnimalandDigesterType Annual OneTime Operatingand Animal Number DigesterType CapitalCost Maintenance Type ofHead ($perhead) Cost($per head) Dairy 500 CoveredAnaerobicLagoon $310 $15 Dairy 500 CompleteMix $880 $44 Dairy 500 PlugFlow $800 $40 Swine 2,000 CoveredAnaerobicLagoon $80 $5 Swine 2,000 CompleteMix $180 $9 ExperiencewithBiogas Thereare82anaerobicdigestersrecentlyoperatingatanimaloperationsintheU.S.:60dairy operations,17swineoperations,threepoultryoperations,onedairy/swinecombinedoperation, andonedairy/poultrycombinedoperation.Thecompletelistoftheseanaerobicdigestersis availableinEPA’sWinter2006AgSTARDigest. Table46presentsasummaryofthetypesof digestersandtheoperatingtemperatureregimesofthedigestersaspresentedinthesummary.

163

Table46AnaerobicDigestersCurrentlyOperatingintheUnitedStates DigesterType TemperatureRegime

Animal Type Mix Lagoon Covered Complete PlugFlow Anaerobic Mesophilic TotalNumber ofOperations Unavailable Unavailable Psychrophilic Thermophilic Dairy 60 10 13 36 1 8 37 3 12 Swine 17 10 5 - 2 5 10 - 2 Poultry 3 - 1 2 - - 3 - - Dairy/Swine 1 - - 1 - - - - 1 Dairy/Poultry 1 - - 1 - - 1 - - TOTAL 82 20 19 40 3 13 51 3 15 Thetotalreportedoperationalenergyoutputofthecurrentlyoperatingdigestersystemsis approximately16.5megawatts 4.Atmorethan70oftheoperationaldigestersystems,thecaptured biogasisusedtogenerateelectricityandrecoverwasteheatprimarilyforwaterheating.Four systemsflareallofthecapturedgasforodorcontrol,whilethegascombustionmethodis unknownforsixsystems.

WastewaterTreatmentBiogas

Wastewatertreatmentbiogasisproducedfromtheanaerobicdigestionofdomestic/industrial wastewatersludge.Duringthewastewatertreatmentprocess,solidsfromprimaryandsecondary treatmentarecollectedandfurtherprocessed,viadigestion,tostabilizeandreducethevolumeof thesludge.Thedigestionisperformeitheraerobically(inthepresenceofoxygen)oranaerobically (withoutoxygen)toproducebiogas.Anaerobicdigestionandwastewatertreatmenttakesplacein aclosedorcoveredtanktoexcludeairoroxygenfromthewaste.Biogasisalsogeneratedfrom otheranaerobicwastewatertreatmentprocessesincludinganaerobiclagoonsandfacultative lagoons.

Wastewatertreatmentbiogasconsistsof65-70percentmethane,30percentcarbondioxideand otherinertgasessuchasnitrogen.Themostcommontemperaturerangefordigestionis85ºFto 95ºF.Biogasgenerationisnotseasonalbecausewastewaterflowsarerelativelyconstant throughouttheyear,yieldingasteadyflowofbiogasfromtheanaerobicdigesters.PerIPCC guidelines,themaximummethaneproductioncapacityofdomesticwastewateris0.6kgof 150 methaneperkgofBOD 5 BOD 5generationratesarereportedbetween0.08to0.12kgper capitaperday. 151 152 Acorrectionfactorof0.8isalsousedforanaerobictreatmentsystems. 150 Doorn,MichaelR.J.etal.,Pre-PublicationDraft2006IPCCguidelinesforNationalGreenhouseGas Inventories,Chapter6:WastewaterTreatmentandDischarge.2006. 151 Metcalf&Eddy,Inc.WastewaterEngineering:Treatment,Disposal,andReuse.McGrawHillPublishing, 2003. 152 BOD 5referstobiochemicaloxygendemandover5days.

164 Therefore,thegenerationrateforanaerobicwastewatertreatmentsystemis0.0384to0.0576kg ofmethanepercapitaperday.(Thisis728to1,075scfperyearpercapita).Thehigherheating value(HHV)ofmethaneis1,012BritishThermalUnitsperstandardcubicfoot(Btu/scf). 153 Therefore,biogasthatcontainsapproximately65-70percentmethanewouldhaveanapproximate heatingvalueof657to708Btu/scf.

Mostwastewatertreatmentplantsthatutilizeanaerobicdigestioncollectandusetheirbiogas onsite.Ifusedonsite,thebiogascreatedduringtheanaerobicdigestionprocessistypically collectedandusedwithoutpretreatmentinboilersthatgeneratesteamforspaceanddigester heatingandinreciprocatingenginesthatdriveaircompressorsand/orelectricgenerators.Any excessbiogasthatcannotbeusedonsiteisgenerallyflared.Thecostofthecollectionsystem pipingandtheblowerformovingthegasthroughthispipingisrelativelyinsignificantin comparisontothecostofthegasutilizationsystemsdiscussedinsubsequentsections.

Availability Accordingtothe2004CWNS,thereareapproximately16,614publiclyownedtreatmentplants (2,658publiclyoperatedtreatmentworks[POTWs]thatreceivedomesticandindustrialwastewater and13,956POTWsthatreceivedomesticwastewateronly).77percentofthePOTWsreceiving domesticandindustrialwastewaterhaveaflowbelowfivemilliongallonsperday(MGD).87 percentofthePOTWsreceivingdomesticwastewateronlyhaveaflowbelowoneMGD.

Approximately3,300POTWsutilizeanaerobicdigestion,220utilizefacultativelagoons,andseven utilizeanaerobiclagoons. 154 Amajorityoftheseanaerobicsystemsutilizetheirbiogasforoneof threepurposes:inboilersthatgeneratesteamforspaceanddigesterheating,orinreciprocating enginestodriveaircompressorsandelectricgenerators.

153 ChemicalEngineers’Handbook.JohnH.Perry,ed.McGrawHillBookCompany,NewYork,1963, Page9-9. 154 U.SEnvironmentalProtectionAgency,CleanWatershedsNeedsSurvey2004–ReporttoCongress,Office ofWastewaterManagement,Washington,DC.2004.

165 Thispageintentionallyblank.

166 9 CLOSINGDISCUSSION

Thisreportevaluatesthepotentialforunconventionalnaturalgastocontributetofuturenatural gasproductioninNorthAmerica.WehavediscussedthestatusofU.S.andCanadianactivityand productionandtherolethatisnowbeingplayedbytightgas,coalbedmethaneandshalegas. Industryhasmadeamajorshifttowardunconventionalgasdevelopment,andthecurrentemphasis isondevelopingtightgasandshalegasresources.Coalbedmethaneactivityalsocontributes significantlytoproduction.

TherapidexpansionofhorizontalshalegasdevelopmentintheU.S.hasusheredinanewerafor NorthAmericangassupply.Theemergenceofseveralnewplaysspreadacrossnumerousbasinsin theU.S.andCanadahasmajorimplicationsforfutureproduction,bothnationallyandregionally. Itisnowapparentthatwewillseeactivityandincreasedshalegasproductioninmanyareasofthe U.S.andCanadaincomingdecades.

TightgasdevelopmenthassurgedinWyoming,Colorado,Utah,andTexas,andactivitycontinues toincrease.Theundevelopedpotentialintheseareasisexcellent.

Expansionofunconventionalnaturalgasproductionhashadalargeimpactonthenaturalgas transportationandprocessingindustries.Areasofintenseinfrastructureactivityoverthepast decadeincludeWyoming,EastTexas,andtheMid-Continent.GasproductionintheRockieshas increasedsorapidly,thatmajorpipelineexpansionswererequiredtomovegasfromtheregion. Environmentalandregulatoryissueswilllikelyimpactthedevelopmentofunconventional resources.Theseincludewellandenvironmentalpermittingandrelatedcosts,landaccess,water useanddisposal,andsurfacedisturbance.Wateruseanddisposalforfracturingofshalewellshas alreadyemergedasasignificantissue,althoughtodateithasnotsignificantlyrestricted developmentinmostcases. Thisreportalsoevaluatesotherformsofunconventionalgas,includingabovegroundand undergroundcoalgasification,gasfromoilshales,landfillgas,biogas,andgashydrates.Withthe exceptionofabovegroundgasificationandlandfillgas,mostofthesewillnotcontribute significantlytoNorthAmericangasproductionthrough2020.However,thetremendousvolumes ofpotentiallyavailablegaswarrantimprovedunderstandingandexpandedresearch.

167