A Phase I Dose-Finding, Pharmacokinetics and Genotyping
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Nanomedicines and Combination Therapy of Doxorubicin and Olaparib for Treatment of Ovarian Cancer
Nanomedicines and Combination Therapy of Doxorubicin and Olaparib for Treatment of Ovarian Cancer by Sina Eetezadi A thesis submitted in conformity with the requirements for the degree of Doctor of Philosophy Department of Pharmaceutical Sciences University of Toronto © Copyright by Sina Eetezadi 2016 Nanomedicines and Combination Therapy of Doxorubicin and Olaparib for Treatment of Ovarian Cancer Sina Eetezadi Doctor of Philosophy Department of Pharmaceutical Sciences University of Toronto 2016 Abstract Ovarian cancer is the fourth leading cause of death in women of developed countries, with dismal survival improvements achieved in the past three decades. Specifically, current chemotherapy strategies for second-line treatment of relapsed ovarian cancer are unable to effectively treat recurrent disease. This thesis aims to improve the therapeutic outcome associated with recurrent ovarian cancer by (1) creating a 3D cell screening method as an in vitro model of the disease (2) developing a nanomedicine of doxorubicin (DOX) that is more efficacious than PEGylated liposomal doxorubicin (PLD / Doxil®) and (3) evaluating additional strategies to enhance treatment efficacy such as mild hyperthermia (MHT) and combination therapy with inhibitors of the poly(ADP-ribose) polymerase enzyme family (PARP). Overall, this work demonstrates the use of 3D multicellular tumor spheroids (MCTS) as an in vitro drug testing platform which more closely reflects the clinical presentation of recurrent ovarian cancer relative to traditional monolayer cultures. With the use of this technology, it was found that tissue penetration of drug is not only an issue for large tumors, but also for invisible, microscopic lesions that result from metastasis or remain following cytoreductive surgery. A novel block-copolymer micelle formulation for DOX was developed and fulfilled the goal of ii controlling drug release while enhancing intratumoral distribution and MCTS bioavailability of DOX, which resulted in a significant improvement in growth inhibition, relative to PLD. -
Specific Effects of Trabectedin and Lurbinectedin on Human Macrophage Function and Fate—Novel Insights
cancers Article Specific Effects of Trabectedin and Lurbinectedin on Human Macrophage Function and Fate—Novel Insights 1, 1, 1 Adrián Povo-Retana y, Marina Mojena y, Adrian B. Stremtan , Victoria B. Fernández-García 1, Ana Gómez-Sáez 1, Cristina Nuevo-Tapioles 2,3 , José M. Molina-Guijarro 4 , José Avendaño-Ortiz 5, José M. Cuezva 2,3 , Eduardo López-Collazo 5, Juan F. Martínez-Leal 4 and Lisardo Boscá 1,5,6,* 1 Instituto de Investigaciones Biomédicas Alberto Sols (Centro Mixto CSIC-UAM), 28029 Madrid, Spain; [email protected] (A.P.-R.); [email protected] (M.M.); [email protected] (A.B.S.); [email protected] (V.B.F.-G.); [email protected] (A.G.-S.) 2 Centro de Biología Molecular (Centro Mixto CSIC-UAM), Nicolás Cabrera S/N, Ciudad Universitaria de Cantoblanco, 28049 Madrid, Spain; [email protected] (C.N.-T.); [email protected] (J.M.C.) 3 Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), 28029 Madrid, Spain 4 Pharma Mar SA, 28770 Colmenar Viejo, Spain; [email protected] (J.M.M.-G.); [email protected] (J.F.M.-L.) 5 Instituto de Investigación Sanitaria La Paz (IdiPaz), Hospital Universitario La Paz, 28046 Madrid, Spain; [email protected] (J.A.-O.); [email protected] (E.L.-C.) 6 Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain * Correspondence: [email protected]; Tel.: +34-9149-72747 These authors have equal contribution. y Received: 28 August 2020; Accepted: 16 October 2020; Published: 20 October 2020 Simple Summary: Trabectedin and lurbinectedin are two potent onco-therapeutic drugs for the treatment of advanced soft tissue sarcomas. -
The Ewing Family of Tumors Relies on BCL-2 and BCL-XL to Escape PARP Inhibitor Toxicity Daniel A.R
Published OnlineFirst October 22, 2018; DOI: 10.1158/1078-0432.CCR-18-0277 Cancer Therapy: Preclinical Clinical Cancer Research The Ewing Family of Tumors Relies on BCL-2 and BCL-XL to Escape PARP Inhibitor Toxicity Daniel A.R. Heisey1, Timothy L. Lochmann1, Konstantinos V. Floros1, Colin M. Coon1, Krista M. Powell1, Sheeba Jacob1, Marissa L. Calbert1, Maninderjit S. Ghotra1, Giovanna T. Stein2, Yuki Kato Maves3, Steven C. Smith4, Cyril H. Benes2, Joel D. Leverson5, Andrew J. Souers5, Sosipatros A. Boikos6, and Anthony C. Faber1 Abstract Purpose: It was recently demonstrated that the EWSR1-FLI1 revealed increased expression of the antiapoptotic protein t(11;22)(q24;12) translocation contributes to the hypersensi- BCL-2 in the chemotherapy-resistant cells, conferring apo- tivity of Ewing sarcoma to PARP inhibitors, prompting clinical ptotic resistance to olaparib. Resistance to olaparib was evaluation of olaparib in a cohort of heavily pretreated Ewing maintained in this chemotherapy-resistant model in vivo, sarcoma tumors. Unfortunately, olaparib activity was disap- whereas the addition of the BCL-2/XL inhibitor navitoclax pointing, suggesting an underappreciated resistance mecha- led to tumor growth inhibition. In 2 PDXs, olaparib and nism to PARP inhibition in patients with Ewing sarcoma. We navitoclax were minimally effective as monotherapy, yet sought to elucidate the resistance factors to PARP inhibitor induced dramatic tumor growth inhibition when dosed in therapy in Ewing sarcoma and identify a rational drug com- combination. We found that EWS-FLI1 increases BCL-2 bination capable of rescuing PARP inhibitor activity. expression; however, inhibition of BCL-2 alone by veneto- Experimental Design: We employed a pair of cell lines clax is insufficient to sensitize Ewing sarcoma cells to ola- derived from the same patient with Ewing sarcoma prior to parib, revealing a dual necessity for BCL-2 and BCL-XL in and following chemotherapy, a panel of Ewing sarcoma cell Ewing sarcoma survival. -
BC Cancer Benefit Drug List September 2021
Page 1 of 65 BC Cancer Benefit Drug List September 2021 DEFINITIONS Class I Reimbursed for active cancer or approved treatment or approved indication only. Reimbursed for approved indications only. Completion of the BC Cancer Compassionate Access Program Application (formerly Undesignated Indication Form) is necessary to Restricted Funding (R) provide the appropriate clinical information for each patient. NOTES 1. BC Cancer will reimburse, to the Communities Oncology Network hospital pharmacy, the actual acquisition cost of a Benefit Drug, up to the maximum price as determined by BC Cancer, based on the current brand and contract price. Please contact the OSCAR Hotline at 1-888-355-0355 if more information is required. 2. Not Otherwise Specified (NOS) code only applicable to Class I drugs where indicated. 3. Intrahepatic use of chemotherapy drugs is not reimbursable unless specified. 4. For queries regarding other indications not specified, please contact the BC Cancer Compassionate Access Program Office at 604.877.6000 x 6277 or [email protected] DOSAGE TUMOUR PROTOCOL DRUG APPROVED INDICATIONS CLASS NOTES FORM SITE CODES Therapy for Metastatic Castration-Sensitive Prostate Cancer using abiraterone tablet Genitourinary UGUMCSPABI* R Abiraterone and Prednisone Palliative Therapy for Metastatic Castration Resistant Prostate Cancer abiraterone tablet Genitourinary UGUPABI R Using Abiraterone and prednisone acitretin capsule Lymphoma reversal of early dysplastic and neoplastic stem changes LYNOS I first-line treatment of epidermal -
Dual Oncogenic and Tumor Suppressor Roles of the Promyelocytic Leukemia Gene in Hepatocarcinogenesis Associated with Hepatitis B Virus Surface Antigen
www.impactjournals.com/oncotarget/ Oncotarget, Vol. 7, No. 19 Dual oncogenic and tumor suppressor roles of the promyelocytic leukemia gene in hepatocarcinogenesis associated with hepatitis B virus surface antigen Yih-Lin Chung1, and Mei-Ling Wu2 1Department of Radiation Oncology, Koo Foundation Sun-Yat-Sen Cancer Center, Taipei, Taiwan 2Department of Pathology and Laboratory Medicine, Koo Foundation Sun-Yat-Sen Cancer Center, Taipei, Taiwan Correspondence to: Yih-Lin Chung, email: [email protected] Keywords: hepatitis B virus, hepatocarcinogenesis, PML, tumor suppressor, oncogene Received: November 05, 2015 Accepted: March 18, 2016 Published: April 6, 2016 ABSTRACT Proteasome-mediated degradation of promyelocytic leukemia tumor suppressor (PML) is upregulated in many viral infections and cancers. We previously showed that PML knockdown promotes early-onset hepatocellular carcinoma (HCC) in hepatitis B virus surface antigen (HBsAg)-transgenic mice. Here we report the effects of PML restoration on late-onset HBsAg-induced HCC. We compared protein expression patterns, genetic mutations and the effects of pharmacologically targeting PML in wild-type, PML-/-, PML+/+HBsAgtg/o and PML-/-HBsAgtg/o mice. PML-/- mice exhibited somatic mutations in DNA repair genes and developed severe steatosis and proliferative disorders, but not HCC. PML-/-HBsAgtg/o mice exhibited early mutations in cancer driver genes and developed hyperplasia, fatty livers and indolent adipose- like HCC. In PML+/+HBsAg-transgenic mice, HBsAg expression declined over time, and HBsAg-associated PML suppression was concomitantly relieved. Nevertheless, these mice accumulated mutations in genes contributing to oxidative stress pathways and developed aggressive late-onset angiogenic trabecular HCC. PML inhibition using non-toxic doses of arsenic trioxide selectively killed long-term HBsAg-affected liver cells in PML+/+HBsAgtg/o mice with falling HBsAg and rising PML levels, but not normal liver cells or early-onset HCC cells in PML-/-HBsAgtg/0 mice. -
Olaparib and Temozolomide in SCLC
Olaparib and temozolomide in SCLC Anna Farago, MD, PhD and Benjamin Drapkin, MD, PhD March 16, 2018 Disclosures Farago: • Consulting fees from: PharmaMar, AbbVie, Takeda, Merrimack, Loxo Oncology • Honorarium from: Foundation Medicine • Research funding (to institution) from: AstraZeneca, AbbVie, Novartis, PharmaMar, Loxo Oncology, Ignyta, Merck, Bristol-Myers Squibb Drapkin: • Research funding (to institution) from: AstraZeneca, AbbVie, Novartis Bedside to Bench… and Back PARP inhibition in SCLC • PARP1 regulates base excision repair, homologous recombination, and non-homologous end joining. Inhibition of PARP enzymatic activity blocks PARP-mediated DNA repair.1 • PARP1 is highly expressed in SCLC compared to other cancers.2, 3 • SCLC cell lines are sensitive to PARP inhibitors. PARP sensitivity is not associated with BRCA1/2 mutations or HR defects.4,5 • “Trapping” of PARP complexes to sites of DNA single stranded breaks by PARP inhibitors can cause failure of repair and induction of double strand breaks.6 1. Sonnenblick et al., 2015 • PARP inhibitors synergize with agents that increase prevalence of 2. Byers et al., 2012 3. Cardnell et al., 2013 7,8 single stranded breaks in tumor models, including SCLC models. 4. Stewart et al., 2017 5. George et al., 2015 6. Hopkins et al., 2015 7. Murai et al., 2014 8. Lok et al., 2016 Farago et al., Presented at AACR annual meeting 2017 Rationale for olaparib + temozolomide in relapsed SCLC • Catalytic inhibitor of PARP1 and • Alkylating agent that induces Olaparib PARP2 Temozolomide single strand DNA breaks • Moderate PARP-trapping activity1 • FDA-approved in newly • FDA-approved as monotherapy for diagnosed glioblastoma patients with BRCA-mutated multiforme and refractory advanced ovarian cancer and for anaplastic astrocytoma patients with germline BRCA-mutated • Single agent activity in SCLC2 breast cancer • STOMP UK trial: Maintenance olaparib vs placebo following first-line chemotherapy. -
The Essentials of Marine Biotechnology. Frontiers in Marine Science [Online], 8, Article 629629
ROTTER, A., BARBIER, M., BERTONI, F. et al. 2021. The essentials of marine biotechnology. Frontiers in marine science [online], 8, article 629629. Available from: https://doi.org/10.3389/fmars.2021.629629 The essentials of marine biotechnology. ROTTER, A., BARBIER, M., BERTONI, F. et al. 2021 Copyright © 2021 Rotter, Barbier, Bertoni, Bones, Cancela, Carlsson, Carvalho, Cegłowska, Chirivella-Martorell, Conk Dalay, Cueto, Dailianis, Deniz, Díaz-Marrero, Drakulovic, Dubnika, Edwards, Einarsson, Erdoˇgan, Eroldoˇgan, Ezra, Fazi, FitzGerald, Gargan, Gaudêncio, Gligora Udoviˇc, Ivoševi´c DeNardis, Jónsdóttir, Kataržyt˙e, Klun, Kotta, Ktari, Ljubeši´c, Luki´c Bilela, Mandalakis, Massa-Gallucci, Matijošyt˙e, Mazur-Marzec, Mehiri, Nielsen, Novoveská, Overling˙e, Perale, Ramasamy, Rebours, Reinsch, Reyes, Rinkevich, Robbens, Röttinger, Rudovica, Sabotiˇc, Safarik, Talve, Tasdemir, Theodotou Schneider, Thomas, Toru´nska-Sitarz, Varese and Vasquez.. This article was first published in Frontiers in Marine Science on 16.03.2021. This document was downloaded from https://openair.rgu.ac.uk fmars-08-629629 March 10, 2021 Time: 14:8 # 1 REVIEW published: 16 March 2021 doi: 10.3389/fmars.2021.629629 The Essentials of Marine Biotechnology Ana Rotter1*, Michéle Barbier2, Francesco Bertoni3,4, Atle M. Bones5, M. Leonor Cancela6,7, Jens Carlsson8, Maria F. Carvalho9, Marta Cegłowska10, Jerónimo Chirivella-Martorell11, Meltem Conk Dalay12, Mercedes Cueto13, 14 15 16 17 Edited by: Thanos Dailianis , Irem Deniz , Ana R. Díaz-Marrero , Dragana Drakulovic , 18 19 -
Marine Vibrionaceae As a Reservoir for Bioprospecting and Ecology Studies
Downloaded from orbit.dtu.dk on: Oct 09, 2021 Marine Vibrionaceae as a reservoir for bioprospecting and ecology studies Giubergia, Sonia Publication date: 2016 Document Version Publisher's PDF, also known as Version of record Link back to DTU Orbit Citation (APA): Giubergia, S. (2016). Marine Vibrionaceae as a reservoir for bioprospecting and ecology studies. Novo Nordisk Foundation Center for Biosustainability. General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. Users may download and print one copy of any publication from the public portal for the purpose of private study or research. You may not further distribute the material or use it for any profit-making activity or commercial gain You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Marine Vibrionaceae as a reservoir for bioprospecting and ecology studies. Sonia Giubergia PhD thesis April 2016 Copyright: Sonia Giubergia 2016 Novo Nordisk Foundation Center for Biosustainability Technical University of Denmark Kogle Allè 6 – 2970 Horshølm Denmark Cover: the Mediterranean Sea at Hyères, France (Sonia Giubergia) ii PREFACE The present PhD study has been conducted at the Department of Systems Biology and at the Novo Nordisk Foundation Centre for Biosustainability at the Technical University of Denmark from May 2013 to April 2016 under the supervision of Professor Lone Gram. -
Cancer Control Potential of Marine Natural Product Scaffolds Through
Drug Discovery Today Volume 21, Number 11 November 2016 REVIEWS Teaser Greater emphasis on marine natural products research could selectively cure multiple human ailments with fewer hazardous effects. Cancer control potential of marine natural product scaffolds through FOUNDATION REVIEW inhibition of tumor cell migration and invasion Reviews 1 2 Mudit Mudit BS Mudit Mudit and Khalid A. El Sayed Pharmacy, PhD, is an assistant professor in the 1 Department of Pharmaceutical, Social and Administrative Sciences, D’Youville College School of Pharmacy, Department of Pharmaceutical, Social and Buffalo, NY 14201, USA 2 Administrative Sciences at Department of Basic Pharmaceutical Sciences, School of Pharmacy, The University of Louisiana at Monroe, the D’Youville College Monroe, LA 71201, USA School of Pharmacy. He is an active member of several professional organizations, including the The marine environment is a reliable source for the discovery of novel American Association of Colleges of Pharmacy, American Association of Pharmaceutical Scientists treatment options for numerous diseases. Past research efforts toward the (AAPS), American Chemical Society, and Rho Chi discovery of marine-derived anticancer agents have resulted in several Pharmacy Honor Society. He has given numerous research presentations both at regional and national commercially available marine-based drugs. The pharmaceutical value of meetings, and has been recognized by the AAPS for excellence in graduate education in the fields of Drug anticancer drugs from marine natural products (MNPs) ranges from Design and Discovery. He has also been a reviewer for US$563 billion to US$5.69 trillion. In this review, we highlight several many scientific manuscripts, research and educational grants, and annual professional meeting abstracts and marine-derived entities with the potential for cancer control and posters. -
Neuro-Oncology 22(12), 1840–1850, 2020 | Doi:10.1093/Neuonc/Noaa104 | Advance Access Date 29 April 2020
applyparastyle "fig//caption/p[1]" parastyle "FigCapt" applyparastyle "fig" parastyle "Figure" 1840 Neuro-Oncology 22(12), 1840–1850, 2020 | doi:10.1093/neuonc/noaa104 | Advance Access date 29 April 2020 Pharmacokinetics, safety, and tolerability of olaparib and temozolomide for recurrent glioblastoma: results of the phase I OPARATIC trial Catherine Hanna, Kathreena M Kurian, Karin Williams, Colin Watts, Alan Jackson, Ross Carruthers, Karen Strathdee, Garth Cruickshank, Laurence Dunn, Sara Erridge, Lisa Godfrey, Sarah Jefferies, Catherine McBain, Rebecca Sleigh, Alex McCormick, Marc Pittman, Sarah Halford, and Anthony J. Chalmers Institute of Cancer Sciences, University of Glasgow, Glasgow, UK (C.H., K.W., R.C., K.S., A.J.C.); Brain Tumour Research Centre, University of Bristol, Bristol, UK (K.M.K.); Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK (C.W., G.C.); Division of Informatics, Imaging and Data Sciences, University of Manchester, Manchester, UK (A.J.); Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, UK (L.D.); Edinburgh Centre for Neuro-Oncology, NHS Lothian, Edinburgh, UK (S.E.); Cancer Research UK Centre for Drug Development, London, UK (L.G., M.P., S.H.); Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK (S.J.); The Christie NHS Foundation Trust, Manchester, UK (C.M.); LGC Group, Cambridgeshire, UK (R.S.); AstraZeneca, Macclesfield, UK (A.M.). Corresponding Author: Anthony J. Chalmers, Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow G61 1QH, UK ([email protected]). Abstract Background. The poly(ADP-ribose) polymerase (PARP) inhibitor olaparib potentiated radiation and temozolomide (TMZ) chemotherapy in preclinical glioblastoma models but brain penetration was poor. -
Phenotype-Based Drug Screening Reveals Association Between Venetoclax Response and Differentiation Stage in Acute Myeloid Leukemia
Acute Myeloid Leukemia SUPPLEMENTARY APPENDIX Phenotype-based drug screening reveals association between venetoclax response and differentiation stage in acute myeloid leukemia Heikki Kuusanmäki, 1,2 Aino-Maija Leppä, 1 Petri Pölönen, 3 Mika Kontro, 2 Olli Dufva, 2 Debashish Deb, 1 Bhagwan Yadav, 2 Oscar Brück, 2 Ashwini Kumar, 1 Hele Everaus, 4 Bjørn T. Gjertsen, 5 Merja Heinäniemi, 3 Kimmo Porkka, 2 Satu Mustjoki 2,6 and Caroline A. Heckman 1 1Institute for Molecular Medicine Finland, Helsinki Institute of Life Science, University of Helsinki, Helsinki; 2Hematology Research Unit, Helsinki University Hospital Comprehensive Cancer Center, Helsinki; 3Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio, Finland; 4Department of Hematology and Oncology, University of Tartu, Tartu, Estonia; 5Centre for Cancer Biomarkers, De - partment of Clinical Science, University of Bergen, Bergen, Norway and 6Translational Immunology Research Program and Department of Clinical Chemistry and Hematology, University of Helsinki, Helsinki, Finland ©2020 Ferrata Storti Foundation. This is an open-access paper. doi:10.3324/haematol. 2018.214882 Received: December 17, 2018. Accepted: July 8, 2019. Pre-published: July 11, 2019. Correspondence: CAROLINE A. HECKMAN - [email protected] HEIKKI KUUSANMÄKI - [email protected] Supplemental Material Phenotype-based drug screening reveals an association between venetoclax response and differentiation stage in acute myeloid leukemia Authors: Heikki Kuusanmäki1, 2, Aino-Maija -
Systemic Therapy Update
Systemic Therapy Update Volume 23 Issue 11 November 2020 For Health Professionals Who Care for Cancer Patients Inside This Issue: Editor’s Choice New Programs: Olaparib Maintenance Therapy in Newly Reformatted PPPOs: BRAJACTG, BRAJACTTG, BRAJACTW, Diagnosed Ovarian Cancer (UGOOVFOLAM) BRAJDCARBT, BRAJFECD, BRAJFECDT, BRAJTTW, Provincial Systemic Therapy Program BRAJZOL2, BRAVGEMP, BRAVPTRAT, BRLATACG, Interim Processes for Managing COVID-19 Pandemic | BRLATWAC, CNAJTZRT, CNBEV, CNCAB, CNTEMOZ, Revised Policy: Parenteral Drug Therapy [III-90] CNTEMOZMD, GIAJFFOX, GIAVCAP, GIAVPG, GICIRB, Drug Shortages GIENACTRT, GIFFOXB, GIFIRINOX, GIFOLFIRI, GIGAVCC, New: Bleomycin, Leuprolide | Resolved: Anagrelide, GIGAVFFOX, GIGFLODOC, GIGFOLFIRI, GIPAJFIROX, GIPE, GIPGEM, GIPGEMABR, GIRAJFFOX, GIRCRT, GOCXCATB, Bromocriptine © GOENDAI, GOENDCAT, GOOVBEVG, GOOVCARB, Cancer Drug Manual GOOVCATM, GOOVCATX, GOOVDDCAT, GOOVGEM, New: Gilteritinib, Pentostatin Revised: Arsenic Trioxide, GOOVPLDC, GUAJPG, GUAVPG, GUBEP, GUNAJPG, Doxorubicin Pegylated Liposomal, Idelalisib UGUPABI, GUSCPE, GUSUNI, HNNAVPG, LKCMLI, Benefit Drug List ULKMFRUX, LUAJNP, LUAVPG, LULACATRT, LULAPERT, New: UGOOVFOLAM LUSCPE, LUSCPERT, LUSCPI, LYABVD, LYBENDR, LYCHOP, New Protocols, PPPOs and Patient Handouts LYCHOPR, LYCLLFBR, ULYFIBRU, LYGDP, LYGDPR, LYIBRU, GO: UGOOVFOLAM MYBORPRE, MYBORREL, UMYCARDEX, UMYCARLD, Revised Protocols, PPPOs and Patient Handouts UMYDARBD, UMYDARLD, UMYLENMTN, MYMPBOR, GI: GIAVCRT, GIAVPANI, GIFIRINOX, GIGAVCC, GIIR, MYPAM, MYZOL, SAAVGI, SAIME, SMAVDT,